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SUMMARY

We present an efficient adaptive numerical scheme for parabolic partial differential equations based on
a finite volume (FV) discretization with explicit time discretization using embedded Runge–Kutta (RK)
schemes. A multiresolution strategy allows local grid refinement while controlling the approximation
error in space. The costly fluxes are evaluated on the adaptive grid only. Compact RK methods of
second and third order are then used to choose automatically the new time step while controlling the
approximation error in time. Non-admissible choices of the time step are avoided by limiting its variation.
The implementation of the multiresolution representation uses a dynamic tree data structure, which allows
memory compression and CPU time reduction. This new numerical scheme is validated using different
classical test problems in one, two and three space dimensions. The gain in memory and CPU time with
respect to the FV scheme on a regular grid is reported, which demonstrates the efficiency of the new
method. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The mathematical modelling of many chemical–physical problems encountered in industrial or
environmental applications often leads to a system of non-linear partial differential equations
(PDEs). In many cases, their solutions exhibit a multitude of spatial and temporal scales, which are,
however, not uniformly distributed in the space–time domain, e.g. in turbulence or in combustion
processes. Efficient numerical discretizations could then take advantage of this property by intro-
ducing some kind of adaptivity in space and time, in order to reduce the computational complexity
of direct approaches, which use uniform discretizations. A key question of many adaptive schemes
is how to estimate and control the error of the solution with respect to the solution computed on
the finest regular grid where the quality of the approximation can be estimated in many cases.

There have been different efforts to define adaptive space discretizations, some emerge from
ad hoc criteria, others are based on more elaborated a posteriori error estimators using control
strategies by solving adjoint problems [1, 2]. We mention the adaptive mesh refinement methods
introduced by Berger and Oliger [3], multiresolution (MR)-based schemes, which have been first
developed by Harten for conservation laws [4, 5]. Harten’s approach was extended and further
developed by Cohen et al. [6], Chiavassa and Donat [7], Roussel et al. [8] and Roussel and
Schneider [9]. Starting with a classical discretization, either finite volumes (FV) or finite differences,
the main idea of MR methods is to balance the truncation error of the underlying scheme on a
finest regular grid and the threshold error introduced when discarding small detail coefficients of
the MR decomposition of the solution. An overview of the different methods can be found, e.g.
in [10].

The sparse point representation (SPR) method was introduced by Holmström [11]. It combines
the simplicity and accuracy of traditional finite difference schemes with the ability of wavelet
coefficients to characterize the local regularity of functions. The idea is to represent functions
by their point-values corresponding to significant wavelet coefficients. This is similar to Harten’s
approach using an MR based on point-values and locally uniform finite differences. Other adaptive
wavelet methods were proposed with many similarities to the SPR method, e.g. the filter bank
method [12] and the second generation wavelet collocation method [13] may be considered as
generalizations of the SPR method.

A different but related philosophy was proposed by Domingues et al. [14] using adaptive block
representations (ABRs). The idea is to decompose the mesh into blocks. Each block has a uniform
grid and the same number of grid points. However, the refinement level may differ between the
blocks. Nevertheless, the blocks are organized into a tree structure, e.g. in one space dimension
we have a binary tree, in two dimensions a quad tree and in three dimensions an oct tree. The root
of the tree corresponds to the whole domain on the coarsest level. On the first level, the nodes
correspond to 2d blocks (where d denotes the space dimension), the grid being refined by a factor 2
in each direction. Each sub-block may then be decomposed into 2d sub-blocks with the grid again
being refined by a factor 2 in each direction. This process can be iterated down to the finest level.
The refinement criterion is based on the wavelet coefficients of a one-level decomposition of each
sub-block. The computations are then performed on the leaves of the tree using finite differences
on the locally refined grid with some extra virtual points, to be able to evaluate the finite difference
stencils near the boundary. This method could be efficiently implemented on parallel computers.

The main drawback of adaptive MR methods with explicit time discretization is that, for highly
non-linear problems, the time step required to ensure the numerical stability cannot be determined
analytically. For such problems, computations are usually performed using a much smaller time
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step than the one required, which significantly increases the cost in terms of CPU time. Recently,
Ferm and Löstedt [15] proposed a time-step control for adaptive mesh refinement methods coupled
with a Runge–Kutta–Fehlberg (RKF) scheme to choose automatically the size of the time step.
Results have been presented for first-order hyperbolic conservation laws (Burgers, Euler and the
wave equation) in one space dimension.

The aim of the present paper is to develop a time-stepping scheme with automatic error control
for the space-adaptive MR scheme presented in Roussel et al. [8] and Roussel and Schneider [9].
The time integration uses embedded RK methods of second and third order, which allow an
estimation of the local error in time. An original technique is also proposed to avoid non-admissible
choices of the time step, which occur in classical embedded RK methods. The adaptivity is
obtained by a MR decomposition, which automatically detects the local regularity of the solution
and hence guarantees dynamic grid adaption to track the solution in space and scale. The costly
numerical fluxes are evaluated on this locally refined grid, while ensuring strict conservation. The
implementation uses graded tree data structures, which allow an efficient representation of the
solution on adaptive grids with reduced memory requirements. Numerical experiments in one, two
and three dimensions validate this method and demonstrate its efficiency.

The paper is organized as follows: Section 2 summarizes the space discretization using finite
volumes for both regular and adaptive meshes. The time discretization uses compact embedded
RK methods for time-step control. Section 3 presents applications of the adaptive methods and
comparisons with the results obtained using a FV discretization on a regular grid and discusses the
accuracy, CPU time compression and efficiency. We show results for the viscous Burgers equation
in one space dimension. For reaction–diffusion equations, we present results for a cellular flame
instability in two and three space dimensions. Finally, conclusions are drawn and perspectives for
future investigations are illuminated.

2. SPACE AND TIME DISCRETIZATION

2.1. Adaptive MR methods using FVs

We consider the initial value problem for parabolic conservation laws on (x, t)∈�×[0,+∞),
�⊂Rd , of the form

�u
�t
=D(u,∇u), u(x,0)=u0(x) (1)

in d=1,2,3 space dimensions, with appropriate boundary conditions, where D(u,∇u)=
−∇ ·F(u,∇u)+S(u) denotes the divergence and source term operator. The flux F is decomposed
into advective and diffusive terms, i.e.

F(u,∇u)=Fadv(u)+Fdif(∇u)= f (u)−�∇u (2)

where � denotes the diffusivity, which is here assumed to be constant and positive. To discretize
(1), we use a classical FV formulation in the standard conservative form.

The domain � corresponds to a parallelepiped in d dimensions. It is partitioned into cells
(�i )i∈�, �={1, . . . , imax}. We then denote by ūi (t) the cell-average of a given quantity u on �i
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at the instant t

ūi (t)≈ 1

|�i |
∫

�i

u(x, t)dx

where |�i |=
∫
�i

dx is the volume of the cell. Integrating (1) on �i yields

dūi
dt

(t)=D̄i (t) (3)

where

D̄i=− 1

|�i |
∫

��i

F(u,∇u) ·�i dx+ S̄i

In the following, we describe the space discretization and the time integration applied to (3).

2.1.1. Numerical flux. In the 1D case, �i is an interval [xi−1/2, xi+1/2] of length �xi= xi+1/2−
xi−1/2. Equation (3) becomes

D̄i=− 1

�xi
(F̄i+1/2− F̄i−1/2)+ S̄i (4)

where F̄ is the numerical flux. Advective and diffusive terms are approximated differently. For the
advective part, we use Roe’s scheme [16] with a second-order ENO interpolation (see e.g. [4]),
whereas, for the diffusive part, we choose a second-order accurate centered scheme. The source
term is approximated by S̄i≈ S(ūi ), which yields second-order accuracy in case of a linear source
term.

The extension to higher dimensions in Cartesian geometries is performed by tensor products.
For the 2D case, �i, j is a rectangle with a volume |�i, j |=�xi �y j . Equation (3) can be written as

dūi, j
dt

(t)=D̄i, j (t) (5)

where

D̄i, j=− 1

�xi
(F̄i+1/2, j− F̄i−1/2, j )− 1

�y j
(F̄i, j+1/2− F̄i, j−1/2)+ S̄i, j

and for the 3D case �i, j,k is a rectangular parallelepiped with volume |�i, j,k |=�xi �y j�zk . The
same numerical flux as in the 1D case is applied in each direction of the 2D and 3D cases.

2.1.2. MR representation. Our starting point is the cell-average MR representation [4]. The nodes
are cell-average values and two operators are defined to navigate through the tree. A complete
description of the 1D MR representation is given in this subsection and a brief description explains
how to extend it to higher dimensions in Cartesian geometry using a tensor product approach.

We use the scheme proposed and implemented in [8] based on a graded tree structure. In the
following, we denote by � the set of the indices of the existing nodes, by L(�) the restriction of
� to the leaves and by �l the restriction of � to a level l, 0�l<L . For the 1D case, we denote by
�=�0,0 the root cell, �l,i , 0�l<L , i ∈�l the different node cells, ūl,i the cell-average value of u
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for the cell �l,i and Ūl=(ūl,i )i∈�l the set of the existing cell-average values at level l. To estimate
the cell-averages of a level l from the ones of the level l+1, we use the projection operator Pl+1→l

Pl+1→l :Ūl+1 	→Ūl (6)

This operator is exact and unique, given that the parent cell-average is nothing but the weighted
average of the children cell-averages. For a regular grid structure in one dimension, it is simply
defined by the mean value

ūl,i =(Pl+1→l Ūl+1)i= 1
2 (ūl+1,2i+ ūl+1,2i+1) (7)

To estimate the cell-averages of a level l+1 from the ones of the level l, we use the prediction
operator Pl→l+1.

Pl→l+1 :Ūl 	→Ũl+1 (8)

This operator gives an approximation of Ūl at the level l+1 by interpolation. It is not unique,
nevertheless, in order to be applicable in the dynamic graded tree structure as defined above, this
operator must satisfy two properties:

• It has to be local, i.e. the interpolation for a child is made from the cell-averages of its parent
and the s nearest neighbors of the parent in each direction.
• It has to be consistent with the projection, i.e. Pl+1→l ◦Pl→l+1= Id.
For the regular grid structure in one dimension, we use as prediction operator a polynomial

interpolation of the cell-averages, like the one proposed by Harten [4], with accuracy order of
the MR method r=3, which corresponds to a polynomial interpolation of degree 2. With this
accuracy, only one nearest neighbor of the parent is required in each direction. Hence,

ũl+1,2i = I (Ūl; l+1,2i)= ūl,i− 1
8 (ūl,i+1− ūl,i−1)

ũl+1,2i+1 = I (Ūl; l+1,2i+1)= ūl,i+ 1
8 (ūl,i+1− ūl,i−1)

(9)

The detail is the difference between the exact and the predicted values. In the 1D case, it is
defined as

d̄l,i= ūl,i− ũl,i (10)

Since the sum of the details for all the brothers of a parent cell are equal to zero by definition,
these coefficients are redundant [4]. Given that a parent has 2d children, only 2d−1 details are
independent.

Thus, the knowledge of the cell-average value on the 2d children is equivalent to the knowledge
of the cell-average value of the parent and these 2d−1 independent details. This can be expressed
in one dimension by

(ūl+1,2i , ūl+1,2i+1)←→(d̄l+1,2i , ūl,i )

For more details on this equivalence, we refer to Harten [4]. For a given level l, it can be summa-
rized by

Ūl←→(D̄l ,Ūl−1)

where D̄l denotes the vector of the details on the level l.
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Repeating this operation recursively on L levels, one gets the so-called MR transform on the
cell-average values [4]

M̄ :ŪL 	−→(D̄L , D̄L−1, . . . , D̄1,Ū0) (11)

In conclusion, the knowledge of the cell-average values of all the leaves is equivalent to the
knowledge of the cell-average value of the root and the details of all the other nodes of the
tree structure. More details on the 2D and 3D scheme and its implementation are presented
in [8].

Thresholding of the MR representation leads to a tree structure adapted to the solution. This
procedure consists in removing leaves where details are smaller than a prescribed tolerance �,
while preserving the graded tree data structure. This is performed by the threshold operator T(�).
After thresholding, one more level is added as security zone, to account for the evolution of the
solution in the tree representation at the next time step. The choice for an accurate tolerance is
discussed in [8].

2.1.3. Conservative flux computation. When a leaf at level l has no neighbor at the same level in
a given direction (left or right), the flux at the interface is computed using the cell-average value
of the adjacent virtual leaf, which is computed by projection from its parent at the level l−1 [8].

In order to ensure conservation of the scheme in the flux computations, the ingoing flux for this
parent cell (at the level l−1) is taken as the sum of the fluxes going out of the adjacent leaves at
the level l, i.e. in 2D

Fl,i, j→l,i+1, j=Fl+1,2i+1,2 j→l+1,2i+2,2 j+Fl+1,2i+1,2 j+1→l+1,2i+2,2 j+1

where F denotes the convective and diffusive fluxes defined in (2).

2.2. Time integration

There are different procedures to introduce time-step control for ordinary differential equations
(ODEs). In the mid 1960s, Fehlberg proposed an embedded RK method for solving ODEs, when
he discovered a fifth-order method with six function evaluations while another combination of
these functions yields a fourth-order scheme [17–19]. The main idea of this method is to use
two RK schemes of different order. Basically, one estimates the error by computing the difference
between a solution calculated with a given scheme and the one obtained using a scheme with
a higher order of accuracy. This so-called truncation error can then be exploited to control the
global error by changing the time-step size. Recently, the RKF method has been applied to PDEs
using second- and third-order RK formulas [15, 20]. Numerical results have been presented for
first-order hyperbolic PDEs in one space dimension.

Inspired by this work, we develop here a simplified and more efficient time-step control for
the multidimensional-adaptive MR method presented in [8]. This time scheme uses second- and
third-order embedded RK formulas of compact form, which allow to reduce the computational
cost, since the flux evaluations of the second-order scheme can be recycled for the third-order one.
Instead of estimating an optimal error control, which is very costly, the predicted time step for
the next iteration is limited to avoid numerical instabilities. This choice avoids extra computations
and circumvents additional storage.
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For the time-step control, we use RK methods of order p−1 and p. Omitting the spatial subscript
everywhere, the order p−1 scheme reads as follows:

ǔm+1= ǔm+
p∑

i=1
b̌i�i (12)

where

�1 = �t D̄(ǔm)

�2 = �t D̄(c2�t, ǔ
m+a21�1)

...

�p = �t D̄(cp�t, ǔ
m+ap1�1+···+ap p−1�p−1)

(13)

and the pth order formula is denoted by

ûm+1= ûm+
p+1∑
i=1

b̂i�i (14)

where ai, j , b̌i , b̂i and ci are the RKF coefficients.
The estimation of the truncation error is defined as the difference between approximations of

order p and p−1, and hence yields

�old=‖ûm+1− ǔm+1‖∞ (15)

By construction, this truncation error �old scales as (�t)p. Using a time step �told, an error �old is
produced, i.e. �old is a function of �told, and similarly a new step �tnew produces an error �desired,
i.e. �desired is a function of �tnew.

Both are then related by

�tnew
�told

=
∣∣∣∣�desired�old

∣∣∣∣
1/p

Therefore, if we fix �desired, it follows that, if �old<�desired, then the time step can be increased,
and if �old��desired, then the time step must be decreased. Hence, this procedure allows to adjust
automatically the step size in order to achieve a prescribed accuracy in time.

Note that, for systems of PDEs, u has more than one component, and we thus take the maximum
over the components, which have been normalized by dividing by their averages of the computa-
tional domain. The reason is to compare quantities of similar order of magnitude.

Nevertheless, when (�t)new is increased too much, the new predicted value may fail to meet
the desired accuracy. In contrast to [15], this is not allowed in the present method, as we cannot
go back to the previous time step once the solution at the new time step is computed, due to the
fact that we are using a low storage memory model. Hence it is decided here to limit the increase
of the time step by introducing a safety factor (S). The new time step (�t)new is chosen such that

−S
2

� (�t)new−(�t)old
(�t)old

�S

2
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Using a more stringent limiter, i.e. a safety factor, the choice of non-admissible time steps can
be avoided. The drawback of the limiter is that, when the initial time step is far from the ideal
time step, some CPU time could be wasted, since the time step cannot be increased sufficiently
fast. To overcome this, we introduce a time-dependent limiter S=S(t) with an exponential decay
during the first time steps, i.e.

S(t)=(S0−Smin)exp

(
− t

�t

)
+Smin

The behavior of the limiter S(t) for t=0 is the maximal allowed variation S0 and, for t→∞,
it is Smin, where Smin<S0. Motivated from our numerical experiments, we use S0=0.1 and
Smin=0.01 for all case studies presented in Section 3. This means that we allow 10% of variation
of the time step in the initial time step and after few iterations we allow only 1%.

The implementation of RK 3(2) is no more costlier than the classical RK3, thanks to the fact
that we use a compact scheme based on the RK2 result to calculate RK3 without any additional
flux evaluation. Omitting the spatial subscript everywhere, the RK2 method implemented here is

ū∗ = ūn�tD̄(ūn)

ūn+1 = 1
2 [ūn+ ū∗+�tD̄(ū∗)]

(16)

and the RK3 method is

ū∗∗ = 1
4 [3ūn+ ū∗+�tD̄(ū∗)]

ūn+1 = 1
3 [ūn+2ū∗∗+2�tD̄(ū∗∗)]

(17)

The storage requirement of the RKF 3(2) is slightly larger than the usual RK3 method because it
is also necessary to store the second-stage of the RK2 computation.

2.3. Space–time integration

Now we briefly summarize the MR algorithm for the time evolution of the solution computed
on the adaptive grid. First, depending on the initial condition, an initial graded tree is created by
performing successive refinement where details are above the given threshold. Then, given the
graded tree structure, a time evolution is made on the leaves, computing RK2 and RK3 for a given
initial time step. In addition, using that result, the time adaption is made to compute the time step
for the next iteration. After that the details are computed by the MR transform. A thresholding
operation is applied, while respecting the graded tree structure. After having applied an inverse
MR transform to get back the cell averages, another time adaption is made to compute the time
step for the next iteration.

Denoting by Ē(�tn) the discrete-time evolution operator, �tn being the time step at the iteration
n, the algorithm can schematically be summarized by

Ū n+1=M̄−1 ·T(�) ·M̄·Ē(�tn) ·Ū n (18)

where M̄ is the MR transform operator, M̄−1 its inverse and T(�) the threshold operator with
tolerance �.

An appropriate choice of the tolerance � allows to equilibrate the perturbation and discretization
error and therewith to maintain the approximation order of the scheme on the regular grid [8].
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3. NUMERICAL RESULTS

In this section, we present numerical examples in one, two and three space dimensions using FV
second-order accurate schemes with third-order RK time integration. In the case of an adaptive
space discretization, an MR analysis of order r=3 is used. The time control is done by the RK
3(2) method. In the following, the different methods are applied to the viscous Burgers equation
in one space dimension and reaction–diffusion equations in two and three space dimensions. We
compare MR with time-step control with MR computations using a fixed time step and also with
the FV reference scheme on a fixed grid and fixed time step. This allows to measure the speed-up
of the adaptive schemes with respect to the FV scheme. To assess the memory reduction of the
adaptive MR computations with or without fixed time step, the ratio between the number of cells
in the adaptive and regular fine grids is also given.

3.1. Viscous Burgers equation in one dimension

First, we consider the viscous Burgers equation

�u
�t
+u �u

�x
=�

�2u
�x2

where u=u(x, t), t�0, x ∈[−1,1] and �=10−2/�. The above equation is completed with periodic
boundary conditions. The initial condition is given by

u(x,0)=−sin(�x)
Figure 1 shows the initial condition and the numerical solution at t=1.6037/� computed with
the MR method with time-step control (MR/CTS). Table I summarizes the memory and CPU
time compressions for the five different methods using three different maximal scales L=11, 12
and 13, which correspond to grids of size 2L . First, we observe that all space and time-adaptive
methods require less CPU time than the FV method using a fixed time step. For L=11, we find
that the adaptive MR method with a fixed time step (MR) only requires 55% of the CPU time and
42.7% of the memory compared with the FV method. The adaptive MR method with time-step
control (MR/CTS) yields a further reduction of CPU time by a factor four with respect to MR,
i.e. only 14% of the CPU time of the FV computations is needed.

Concerning the memory requirements, both space-adaptive methods yield comparable results,
i.e. less than 44% of FV memory is used. For an increasing number of scales, both memory and
CPU time compression are improved (Table I). For example, for L=13 scales, we only need 5
and 28% of the CPU time with respect to the FV method, and 17.6 and 19.4% of the memory
for MR/CTS and MR, respectively. The above results illustrate that MR/CTS yields a speed-up
of more than 5 with respect to MR and of 20 with respect to FV.

To verify the precision of the different numerical methods, we compare the slope of the numerical
solution |�u/�x |max at �t=1.6037 with the slope of the exact solution given in [21], which yields
152. Table I shows that the slope of the numerical solutions is close to the one of the exact
solution, and that the precision is improved for an increasing number of scales. The introduction
of adaptive time stepping does not significantly affect the memory compression and the precision
of the computation. It can also be noticed that, when the solution exhibits small scales, the
desired accuracy in time has to be reduced in order to avoid numerical instabilities, like spurious
oscillations.
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Figure 1. Top: initial condition and numerical solution of the Burgers equation at t=1.6037/�≈0.51,
computed using the MR/CTS method with L=13 levels. Bottom: corresponding adaptive grids.

In Figure 2, we plot the evolution of the time step for the MR/CTS method, using different
numbers of maximum scales, L=11,12 and 13. For late times, i.e. t>0.4, we see that the time
step is decreasing for increasing spatial resolution. At earlier times the evolutions strongly depend
on the maximum number of scales and we find different behavior during the evolution.

3.2. Diffusion–reaction equations in 2D

In the following sections, we perform numerical simulations of cellular instabilities of flame
balls. A flame ball is a stationary or slowly propagating spherical flame structure in a premixed
gaseous mixture. Such flames have been experimentally observed for low Lewis numbers under
micro-gravity conditions [22].
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Table I. CPU and memory compression for the different methods, using an initial CFL=0.4, �=10−2
and the limiter parameters Smin=0.01, and S0=0.10.

Method Scales #Steps %CPU time %Memory |�u/�x |max �desired

FV 11 18346 100 100 149.6
MR 11 18346 55 42.7 149.5
MR/CTS 11 3697 14 43.3 147.5 10−5

FV 12 70767 100 100 151.7
MR 12 70767 37 26.2 149.8
MR/CTS 12 13370 8 27.2 149.4 10−6

FV 13 277839 100 100 153.2
MR 13 277839 28 19.4 151.8
MR/CTS 13 56741 5 17.6 150.7 10−6

At �t=1.6037 we compare the slope of the numerical solutions with the exact one |�u/�x |max=152.
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Figure 2. Evolution of the time step for the viscous Burgers equation from t=0 to t=0.51, using
MR/CTS method with L=11,12 and 13.

The thermodiffusive approximation is well adapted for the computation of flame balls, because
the flame velocity is very small [23]. We consider also a constant density approximation and
one-step chemical kinetics. The system of equations modelling such a flame structure is a set of
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two diffusion–reaction equations of the form [23]
�T
�t
=∇2T +�−s

�Y
�t
= 1

Le
∇2Y−�

(19)

where T =T (x, t) denotes the dimensionless temperature, Y =Y (x, t) the partial mass of the
limiting reactant and Le the Lewis number. The dimensionless reaction rate is

�=�(T,Y )= Ze2

2Le
Y exp

[
Ze(T −1)
1+	(T −1)

]

where Ze denotes the Zeldovich number and 	 the burnt–unburnt temperature ratio. The heat loss
due to radiation follows the Stefan–Boltzmann law and is written as

s=s(T )=
[(T+	−1−1)4−(	−1−1)4]
where 
 is the dimensionless radiation coefficient. The global reaction rate is

R(t)=
∫

�
�dx dy

The initial conditions are

T (r,0)=

⎧⎪⎨
⎪⎩
1 if r�r0

exp

(
1− r

r0

)
if r>r0

(20)

Y (r,0)=

⎧⎪⎨
⎪⎩
0 if r�r0

1−exp
[
Le

(
1− r

r0

)]
if r>r0

(21)

where r0 denotes the initial radius of the flame ball. The boundaries are far enough from the
flame ball, so that they have a negligible influence. Hence we decided to use Neumann boundary
conditions.

The circular initial condition is perturbed by stretching the circle in one direction. We also apply
a rotation, so that the symmetry axes of the problem are not lined up with the grid. Hence we have

r=
√

X2

a2
+ Y 2

b2

where

X = x cos�+ y sin�

Y =−x sin�+ y cos�
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In the computations, the Lewis number is Le=0.3, the Zeldovich number is Ze=10 and the
temperature ratio 	=0.64. The aspect ratio of the ellipse is given by a=2, b=1, the rotation angle
is �=−�/6, and the initial radius is r0=1. The computational domain is �=[−30,30]2 and the
elapsed time is t=15. The initial time step is calculated using the stability condition of the heat
equation, while neglecting the non-linear reaction and radiation terms, i.e.

(�t)0= c�
2

�(�x)2

where �=min(1,Le). For the computations with fixed time step, this value is used for every time
iteration. Usually, we have c�<0.5. However, due to the non-linearity of both reaction and radiation
source terms, this choice in fact does not guarantee the stability of the method. For such problems,
numerical methods with adaptive time stepping are well adapted.

Figure 3 shows the time evolution of the isotherms, together with the corresponding adaptive
grids, computed with the MR/CTS method. We observe that the elliptical flame structure is
splitting and growing in space. At the two extremities of the long axis of the ellipse, the tangential
reactant flux tends to increase the concentration of the fresh gas and with it the chemical reaction.
Therefore, the flame is propagating faster in the direction of the long axis of the ellipse. As a
consequence, the flame is splitting at the two extremities of the short axis of the ellipse. Owing
to the radiative heat loss, we also observe a local extinction of the reaction at these extremities.
These two cells split again into smaller cells. This phenomenon is the so-called cellular flame
instability.

In Table II, CPU time and memory compressions are given for the three methods, FV, MR
and MR/CTS, using L=8,9 scales, which corresponds to a maximal resolution of 256×256 and
512×512 grid points, respectively. Using MR with RK3, we only require 28.69% of the CPU time
required by the fine-grid computation, and using MR/CTS with RK3(2), we only need 10.13%
of CPU time, compared with FV. We observe that the memory compression is not affected by
introducing time adaptivity, i.e. less than 14% coefficients are needed for adaptive methods in
comparison with the FV method. The memory requirement of MR/CTS is slightly larger than the
one of MR due to the additional storage of the RKF 3(2) method with respect of RK3.

Concerning the precision, we find that the global reaction rate agrees well with the one obtained
with the FV computation, whatever the chosen adaptive method (cf. Table II). Using nine scales,
the error on the global reaction rate is less than 0.15% for the MR method and 0.3% for the
MR/CTS method.

On the left side of Figure 4, we plot the time evolution of the time step, showing 1 out of 100
steps for the MR/CTS method with L=9 scales. For this test-case, we observe that the time step
tends toward a value around 1.3×10−3.

3.3. Diffusion–reaction equations in three dimensions

Now, we solve system (19), in three space dimensions, with a flame ball initially stretched to study
3D cellular flame instabilities. Hence, as initial condition, we choose a spherical flame stretched
in one direction and apply a rotation on two axes, so that

r=
√

X2

a2
+ Y 2

b2
+ Z2

c2
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(a)

(b)

(c)

Figure 3. Numerical simulation of a 2D splitting flame ball using the MR/CTS method, L=9 scales,
Le=0.3, Ze=10, 	=0.64, 
=0.05. Isotherms from T =0.1 to 1 every 0.1 at t=0 (a); t=7.5 (b); and

t=15 (c), are shown (left) with their corresponding adaptive meshes (right).

where

X = x cos�− y sin�

Y = (x sin�+ y cos�)cos−z sin

Z = (x sin�+ y cos�)sin+z cos
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Table II. Numerical simulation of a 2D splitting flame ball.

Method #Steps %CPU time %Memory � �0 R

L=8
FV 6069 100.00 100.00 38.73
MR 6069 28.69 13.29 10−2 38.66
MR/CTS 3311 10.13 13.21 10−2 10−4 38.55

L=9
FV 24273 100.00 100.00 39.94
MR 24273 11.43 5.05 10−2 39.88
MR/CTS 12027 7.58 5.03 10−2 10−5 39.78

CPU and memory compressions for the different methods, using initial c�=0.3, with 8 or 9 scales, with limiter
parameters Smin=0.01 and S0=0.10. The global reaction rate R is given at t=15.
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Figure 4. Evolution of the time step using the MR/CTS method for the splitting flame
ball, with L=9 scales in two dimensions (left), with L=8 scales in three dimensions

(right), where Smin=0.01, and S0=0.10.

The parameters of the ellipsoid are a=b=1.5, c=3, and the rotation angles are �=�/3 and
=�/4. The initial radius is r0=1. The computational domain is �=[−20,20]3 and we use L=8
scales. As for the 2D case, the Lewis number is Le=0.3, the Zeldovich number Ze=10 and the
temperature ratio 	=0.64. To accelerate the splitting, we chose a larger radiation coefficient, i.e.

=0.1. The dimensionless elapsed time is t=10.

In Figure 5, we observe the ellipsoid splitting along its two shortest axes and growing in space.
After the first splitting, the new cells split again. In Table III, we give the performances for both
MR and MR/CTS computations. To give some absolute values about the CPU time using a
Pentium 4 (tm) 2.4GHz processor, the MR computation required around 8 days and 4 h, and
the MR/CTS around 5 days and 2 h. The FV computation was performed on a few iterations
only to estimate the CPU time that such computation would require, which is about 379 days
using the same computer. The memory requirement of MR/CTS is also slightly larger than the
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(a)

(b)

(c)

Figure 5. Numerical simulation of a 3D splitting flame ball using the MR/CTS method,
L=8 scales, Le=0.3, Ze=10, 	=0.64, 
=0.1 are shown. Isotherms T =0.5 (black) and
T =0.1 (gray) at t=0 (a); t=5 (b); and t=10 (c) are presented (left) with corresponding

adaptive meshes (right) for these times.

one of MR due to the additional storage of the RKF 3(2) method with respect of RK3. The
MR/CTS implementation is significantly more efficient that the MR; however, slightly less accurate
than MR.

We remark that the MR/CTS method reduces the CPU time by a factor 1.6, in comparison
with the MR method. The difference on the global reaction rate remains small, i.e. less than 0.3%.
On the right side of Figure 4, the time evolution of the time step is plotted. We find that the time
step is decreased in the computation and tends toward a value around 3×10−4. In fact, the main
part of the gain in CPU time of this method is obtained for t<4, where a larger time step can
be used, due to the fact that the local flame velocity is smaller. Hence, for problems where no
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Table III. Numerical simulation of a 3D splitting flame ball.

Method #Steps %CPU time %Memory � �0 R

MR 62 501 2.16 1.05 0.05 677.1
MR/CTS 28 871 1.35 1.24 0.05 10−4 675.0

CPU and memory compressions for the different methods, using initial c�=0.5, with L=8 scales,
and limiter parameters Smin=0.01 and S0=0.10. The global reaction rate R given at t=10.

absolute stability criterion exists, an adaptive time stepping enables us to reduce significantly the
required CPU time.

4. CONCLUSIONS AND PERSPECTIVES

The present paper describes a new space-adaptive method with time-step control to solve multidi-
mensional PDEs. It is based on a finite volume (FV) discretization with explicit time stepping. The
previously developed adaptive multiresolution (MR) scheme [8, 9] has been further improved using
an automatic time-step control. We demonstrated the efficiency of the new method for different
test problems in one, two and three space dimensions. We studied its performance by comparing
the CPU time and the memory requirements with the FV method using a uniform discretization
and a third-order Runge–Kutta (RK) scheme. The implemented time-step control method uses a
low storage in memory. For efficiency reasons, we introduced a limiter on the time step. This
avoids inappropriate choices of the time step, i.e. large time steps, which may generate numerical
instabilities of the computation. The limiter is a function of time and it is usually larger during
the first time steps. It also avoids that inappropriate initial time steps increase the CPU time. The
computational extra cost of the time-step control is very low because we use compact formulas to
perform the time evolution. We showed that this new method reduces significantly the CPU time
while controlling accuracy. Another feature of this technique, applied to non-linear problems for
which it is difficult to establish stability criteria, is that the blow up of explicit computations can
be avoided.

The time step in the above presented method is fixed for all scales, and hence the finest spatial
scale present in the computations imposes the maximal time-step size, in order to guarantee the
stability of the explicit RK 3(2) method. The maximal time-step size of the scheme is restricted
by the finest spatial scale present in the computations, in order to guarantee the stability of the
explicit RK 3(2) method. In [24] we introduced scale-dependent time stepping for the adaptive
MR method presented in [8]. The underlying idea is that the time step on larger scales can be
increased successively, without violating the stability requirement at a given scale. This allows an
additional speed-up due to a reduced number of flux evaluations, since small time steps are only
needed locally in regions where small scales are active. In a more recent work on 2D compressible
Euler equations [25], we applied the time-step control to the local time-stepping scheme after one
complete local time cycle, i.e. when the solution has been completely advanced with the time step
of the largest scale and becomes synchronized again. In the cases considered we found that both
accuracy and CPU time requirement of the scheme were improved. In a future work, we plan to
compute 3D flame balls using local time stepping with time-step control.
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Future applications of adaptive time schemes are ABRs, where the mesh is replaced on blocks
of different refinement levels according to a tree structure. This has been proposed in [14] using
finite differences and interpolatory wavelets. This approach could also be extended to FV schemes
coupled with a cell-average MR method. The advantage of the ABR is that it is well suited for
parallel computing. The different blocks, which are of the same size, can be distributed on different
processors, while guaranteeing a load-balance between them.

On a longer term, we plan to extend this space–time-adaptive scheme to the 3D compressible
Navier–Stokes equations to perform coherent vortex simulations [26] of compressible turbulent
flows.
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