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Direct numerical simulation of pore-scale turbulence is performed in a unit cell of a face-
centered cubic lattice at three different pore Reynolds numbers (300, 500, and 1000). The
pore-geometry gives rise to very low porosity resulting in rapid acceleration and deceleration
of the flow in different regions. Eulerian statistics of mean velocity and turbulent kinetic
energy are first described to provide a good understanding of the overall flow topology.
In addition, the spatial variances and probability density functions for the instantaneous
and temporal fluctuation velocities are computed to assess the higher-order statistics. The
flow field is then analyzed using angular Lagrangian multiscale statistics of fluid particles
to study their directional change at different timescales. Two power laws are observed
for the evolution of the mean absolute angle as a function of time lag, demarking the
early time and an intermediate, inertial range. The effect of the geometric confinement
on the asymptotic behavior of the angular statistics is examined in detail. An asymptotic
limit different than π/2 (corresponding to equidistribution of the mean angle, observed
for three-dimensional isotropic turbulence with periodic boundaries) or 2

3 π (observed for
two-dimensional wall-bounded turbulence) is obtained, representing the strong effect of
geometric confinement on turbulence. Besides, the probability density functions (PDFs) for
the instantaneous curvature angles are computed and the normalized PDFs are fit to a Fisher
distribution. Furthermore, a Monte Carlo-based stochastic model is developed to predict
the asymptotic curvature angle.

DOI: 10.1103/PhysRevFluids.3.084501

I. INTRODUCTION

Packed bed reactors are routinely used for synthesis of basic chemicals and intermediates in the
chemical and process industries; e.g., packed-bed catalysis (Refs. [1,2]), as well as in the nuclear
applications; e.g., high-temperature reactor (HTR) cooling (Ref. [3]). Random packing of porous
media is one of the arrangements used in practice that exhibit typical flow Reynolds number on the
order of 1000 or more. This results in unsteady inertial flows as well as transitional or even fully
developed turbulence within pore space. Contrary to conventional thought about low-speed fluid
flow in porous media, the inertial contribution to the flow field is often important in applications, and
the inertial terms can dramatically change the topology of the flow field (such as formation of jets,
vortices, dead zones, etc. within pores). These flow characteristics together with resultant dispersion
properties play a critical role in the transport of reactants and products to and from active reaction
sites. However, the mechanisms of how inertial and turbulent flows affect the macroscopic quantities,
such as friction factor or pressure drop, are poorly understood (Ref. [4]).

*Sourabh.Apte@oregonstate.edu
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Dybbs and Edwards [5] used direct observations using index-matched porous media to report
on the topological characteristics of the microscale of the flow fields in the inertial range. They
identified four distinct regimes for flow through porous media based on the pore Reynolds number
(Rep) defined as

Rep = UintDB

νγ

φ

1 − φ
, (1)

where Uint is the interstitial velocity of flow in porous media, DB the bead diameter, νγ the kinematic
viscosity of fluid, and φ is the porosity. The flow regimes are described below:

(1) Darcy or creeping flow regime, Rep < 10: Under these conditions, the flow is dominated by
viscous forces. The drag force, however, makes little inertial contribution, which is proportional to
the square of the Reynolds number [6]. It should be noted here that, although the flows are simple
in this regime, much attention has been received from different perspectives of theory, experiment,
and computation on this flow regime.

(2) The steady inertial (nonlinear) flow regime, 10 < Rep < 150: A dramatic change in the
character of the flow has been observed to occur in this regime as inertial forces begin to dominate
over viscous ones [7,8]. The influence of the inertial term on the resulting flow field in porous media
is similar in many ways to the secondary flows that have been reported by Taylor and others for
curved tubes [9,10]. Helical and other complex flows have been observed experimentally [7] and
predicted numerically [6,11–14] in simple periodic media at these Reynolds numbers.

(3) Unsteady laminar flow regime, 150 < Rep < 350 : In this regime, the flow is no longer steady
[11], but it is not yet truly turbulent. Magnico [15] pointed out that increases in Reynolds number
toward large enough values result in steady helical vortices in the form of tubes. Koch and Ladd [12]
present 2D numerical simulations in a regular array of cylinders that exhibit quasi-periodic vortex
shedding. Also, there have been direct experimental observations suggestive of vortex shedding (see
Refs. [16–21]).

(4) The chaotic (fully developed turbulence) flow regime, Re > 350+: Direct and indirect
evidence of subpore-scale turbulence in porous media has been reported by several research groups
[14,22–28]. There is some inconsistency among the groups, with some reporting turbulent conditions
occurring at relatively low Reynolds numbers (Re ∼ 350+), whereas others have reported that
turbulence was not observed till higher Reynolds numbers (Re ∼ 1000). The disparity among diverse
publications probably represents differences in the geometry of the system under investigation and
of the definition of turbulence.

Nearly all theoretical studies of dispersion in porous media have been on the condition of either
(i) Stokes flow (which neglects the influence of inertial contributions completely), or (ii) inertial
flow without any turbulence effects. Researchers typically rely on established empirical correlations
for predicting transport and dispersive properties of flow in fixed beds and ultimately in reactor
design [29,30]. Development of Reynolds-averaged Navier-Stokes (RANS) models for flow at the
pore-scale level has been attempted by many researchers (for instance, in Refs. [31,32]). To name a
few, the RANS k-ε model has been derived by time averaging the volume-averaged extended Darcy-
Forchheimer model equations [33], or by volume averaging the time-averaged Reynolds-averaged
equation [34–36], or by the double-decomposition technique developed based on exchangeability of
volume-time or time-volume averaging [37], or by modifying the Darcy-Forchheimer model [32].
In these models, extra terms requiring closure are obtained by conducting numerical experiments
using simple geometries such as a periodic array of rods and by using standard turbulence closure
techniques based on a gradient diffusion hypothesis. However, these models lack validation with
experimental or DNS data. A majority of these models predict nonzero Reynolds stress for laminar
flows [38], making them inconsistent for applications over the full range of Re from laminar to
turbulent flows.

Detailed, index-matched PIV data of turbulence in complex geometries of porous bed are difficult
to obtain and very rare. Recently, Refs. [23,24] measured the turbulent flow field up to Rep = 4000
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using the two-component PIV method implementing the refractive index matching technique in a
random packing bed; Ref. [25] used a similar way to estimate the turbulent filtration in porous media.
However, this method lacks in obtaining all velocity components, pressure fluctuations, and complete
three-dimensional spectral analysis of turbulence statistics.

Obtaining velocity and pressure data using high-fidelity, direct numerical simulations (DNS)
to investigate three-dimensional flow in complex porous media is thus critical to further advance
reduced-order models especially in the unsteady, inertial as well as transitional and fully turbulent
regimes. Some numerical works have been performed using the Lattice-Boltzmann method [22]
for weakly turbulent and chaotic flow in a periodic porous medium, direct numerical simulations
[27,28,39] for fully turbulent flows through packed beds, as well as large-eddy simulations [40].

Since the last decade, much attention has been drawn to the quantification of Lagrangian statistics
[41] in turbulence. Lagrangian description of turbulence has unique physical advantages that are
specifically important for mixing and dispersion studies in addition to the Eulerian statistics. The
structural description of the statistical dynamics of turbulence is well captured by studying the
temporal correlations along fluid particle trajectories compared to that from the investigation of
spatial correlations of instantaneous velocity fields. Curvature of the flow trajectories (for example,
Refs. [42–45]) is dominated by the small-scale structures and velocity gradients; but contains only
little information on multiscale dynamics of turbulent flows. Some insights into the multiscale
dynamics can be obtained from the standard Lagrangian structure functions; however, those then
lack any direct information about the curvature of the flow. Bos et al. [46] and Kadoch et al. [47]
introduced a new approach to study the trajectory of a fluid particle by computing the geometrical
multiscale statistics. The curvature angle was defined by three adjacent points along a trajectory
as a function of the time lag. Its evolution with respect to time increments was computed for both
3D isotropic turbulence and 2D forced turbulence with solid boundaries. For short time lags, the
instantaneous angle is directly related to the curvature and is found to vary linearly with the time lag.
For large time lags, an asymptotic limit of π/2 is approached, corresponding to the equidistribution of
the angle, for unconfined flows such as isotropic turbulence, owing to symmetry and equal probability
of possible trajectories at long times. This asymptotic limit can be easily used to study effects of
geometric confinement on turbulence and resultant particle trajectories, making these Lagrangian
statistics well suited for flow through porous media. In addition, the variation of the angle varies
between the short and long-time limits contains the signature of the multiscale dynamics of turbulent
flow.

In the present work, direct numerical simulation (DNS) of pore-scale turbulence is performed in a
unit cell of a face-centered cubic lattice at three different pore Reynolds numbers (300, 500, and 1000).
The pore-geometry gives rise to very low porosity resulting in rapid acceleration and deceleration
of the flow in different regions. Hill and Koch [22] studied the same geometry using the Lattice-
Boltzmann method for flows up to a Reynolds number of 300. They investigated transition from steady
inertial to weakly turbulent and chaotic flows within this configuration. Their investigation focused on
quantifying the transition process as well identifying inertial vortical flow structures. In the present
work, simulations are performed in the fully turbulent regime (with the lowest Reynolds number
investigated being similar to that of the highest Reynolds number studied by Hill and Koch [22]).
This allows not only to investigate whether the flow features observed in their study persist at higher
Reynolds numbers, but also to quantify the effects of geometric confinement on the turbulent flow
and long-time dispersion by studying the Lagrangian multiscale statistics. Additionally, a stochastic
model using Monte Carlo simulations characterizing the porous geometry in three-dimensions is
developed and shown to predict this confinement effect on the asymptotic behavior of the curvature
angle.

The rest of the paper is arranged in the following way. Section II provides the details of the porous
geometry, simulation parameters, and the numerical approach. Section III presents the methodology
for the angular Lagrangian multiscale statistics. Mean velocity field, TKE distributions, variances, and
probability density functions for the instantaneous and temporal fluctuating velocities, Lagrangian
correlations, energy spectrum, and the curvature angle statistics are described in Sec. IV. In addition,
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FIG. 1. (a) Schematic of a face-centered porous unit cubic cell; (b) same as (a) except some beads are
removed and a particle trajectory illustrates the definition of the curvature angle � between subsequent
Lagrangian particle increments.

a stochastic Monte Carlo-based model is developed which allows to predict the asymptotic behavior
of the curvature angle in porous geometries. Finally, summary and conclusions are given in Sec. V.

II. SIMULATION SETUP

A. Porous geometry

A porous face-centered cubic (FCC) unit cell (Fig. 1) is used in this work. It has a half sphere
entering at each face of the cube, and a half-quarter sphere at each corner. The face-centered cubic
arrangement creates the lowest possible porosity (φ), the ratio of the void volume (Vvoid) to the total
volume (Vtotal), to be 0.26 for the structured packings. Due to this extreme compactness, the flow
through the unit cell experiences rapid expansion and contraction. A pressure gradient is imposed
to drive the flow through the bed and a triply periodic boundary condition is applied for the unit
cell. Majority of the flow enters the cubic cell through the upstream open corners, converges into the
center pore resulting in strong accelerations and decelerations, and then leaving the unit cell along
downstream corners.

Hill and Koch [22] studied the same geometry using the Lattice-Boltzmann method for flows up
to Rep = 300, where the pore Reynolds number (Rep) is defined with the adoption of porosity as
given in Eq. (1). In this work, the flow at three pore Reynolds numbers, Rep = 300, 500, and 1000,
is simulated using direct numerical simulation, ranging from unsteady inertial to turbulent regions.
Note that the definition for Reynolds number used by Hill and Koch [22] is different from the one
used in the present work. In Hill and Koch [22], Re is defined as

Re = Ux a

νγ

. (2)

where, Ux is the spatial averaged velocity component in the x direction, which is the superficial
velocity and can be related with the interstitial velocity by Ux = Uintφ, and a is the radius of the
bead. While in the current study, the pore Reynolds number Rep is used as it includes the porosity
(φ) and thus is more commonly used in porous media literature. To be consistent, Re mentioned in
Hill and Koch [22] has been converted to Rep in the current study. As a result, the highest Reynolds
number Hill and Koch [22] used based on their definition is 106, which corresponds to Rep of almost
300.

084501-4
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B. Numerical approach and grid convergence

The numerical approach is based on a fictitious domain method to handle arbitrarily shaped
immersed objects without requiring the need for body-fitted grids [48]. Uniform Cartesian grids
are used in the entire simulation domain, including both fluid and solid phases. An additional body
force is imposed on the solid part to enforce the rigidity constraint and satisfy the no-slip boundary
condition. The absence of highly skewed unstructured mesh at the bead surface has been shown to
accelerate the convergence and lower the uncertainty [26]. The following governing equations are
solved over the entire domain, including the region within the solid bed, and a rigidity constraint
force, f , is applied that is nonzero only in the solid region.

The governing equations read as

∇ · u = 0, (3)

ργ

[
∂u
∂t

+ (u · ∇)u
]

= −∇p + μγ ∇2u + ργ g + f, (4)

where u is the velocity vector (with components given by u = (ux, uy, uz), ργ the fluid density, μγ

the fluid dynamic viscosity, p the pressure, and g the gravitational acceleration.
A fully parallel, structured, collocated grid solver has been developed and thoroughly verified

and validated for a range of test cases including flow over a cylinder and sphere for different
Reynolds numbers, flow over touching spheres at different orientations, flow developed by an
oscillating cylinder, among others. In addition, the flow solver is validated by comparing the numerical
predictions with PIV data for flow through a randomly oriented packed bed [49]. The details of the
algorithm as well as very detailed verification and validation studies have been published elsewhere
[48]. In addition, the solver was also used to perform direct one-to-one comparison with a body-fitted
solver with known second-order accuracy for steady inertial, unsteady inertial, and turbulent flow
through porous media [26]. The details of this comparison focused on issues such as grid resolution
needed near the wall, issues related to touching spheres and contact points, quality of solution
compared with the body-fitted solver, comparison with experimental work of Ref. [7] on flow through
a packed array of half spheres, and establishing the grid resolution requirement per bead diameter
for predicting the unsteady flow-field in packed porous beds within 5% uncertainty based on the grid
convergence index (GCI). Turbulent flow at a pore Reynolds number of 600 was also computed in
the same configuration and compared with the body-fitted approach to obtain very good predictive
capability of the present fictitious domain solver. This same solver was also used to study turbulent
flow in a randomly packed bed of 51 spheres capturing complex pore-scale flow features in agreement
with published data (Refs. [26,50]).

For the present studies, the flow is driven by a pressure drop as a body force in a triple periodic
domain. According to Hill and Koch [22], a constant pressure gradient ∇P , whose magnitude is
proportional to the nondimentional body force F , is used to drive the flow,

|∇P | = 18 μγ c Uint

D2
B

F, (5)

where, μγ is the dynamic viscosity of the fluid and c the solid volume fraction, defined as 2
3π (DB/L)3

(L is the length of the unit cube). The body force F changes with the pore Reynolds number according
to the linear fit obtained by Hill and Koch [22] and is given as

F = 365 + 10.9

(
1 − φ

2
Rep

)
(27 < Rep < 216), (6)

F = 462 + 9.85

(
1 − φ

2
Rep

)
(Rep � 216). (7)
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TABLE I. Comparison of the body force obtained from correlation (7) and that obtained from the shear
stress on sphere surfaces to maintain same Reynolds numbers.

�
��F

Rep 300 500 1000

Eq. (7) (Ref. [22]) 1506 2284 4106
Present study 1575 2362 4198

As shown in Table I, a posteriori calculation of body force needed to balance the shear stress
on the sphere surfaces for different Reynolds numbers exhibits a good agreement with the above
correlation, even for the range of Reynolds numbers studied in the present work.

Using the pressure drop given in Eq. (5) and performing an overall momentum balance on the
bed, one can estimate the wall shear stresses. If we neglect the form drag (assuming viscous drag
dominates), the estimated wall stress (τw) is the maximum possible value for a given Rep

�P

L
= τw

(
1 − φ

φ

)
6

DB

; Friction velocity, uτ =
√

τw

ρ
≈ 0.5‖〈Uint〉‖. (8)

Requiring the first grid point to be within y+ = yuτ /ν = 1, this indicates that the distance of the
first grid point normal to the sphere surface is given as y ≈ 2DB/Rep. Recently, Gunjal et al. [51]
conducted Reynolds averaged Navier-Stokes simulations in face-centered cubic arrangements of
packed spheres to show that the ratio of surface drag to total drag was on the order of 0.21 for Rep

up to 1000. Taking this factor into account, modifies the estimate for near-wall grid resolution for
Rep = 1000 to roughly 200 points in each direction per bead to completely resolve all scales. Note
that this estimate is based on assuming all pressure drop to be equal to the viscous drag. This provides
an overestimation of the resolution requirement.

To obtain a more direct estimate on grid resolution requirements in the present DNS simulations,
3D DNS studies were performed at Rep = 500, 1000 in a unit cell of face-centered cubic spheres with
systematic grid refinement study using 48, 64, 96, 112, 128, and 144 grid points per bead diameter
DB . A grid converged solution was obtained for first-order (mean flow) as well as second-order
statistics (turbulent kinetic energy, TKE) for Rep = 500 at a resolution of DB/96. For Rep = 1000,
the mean flow converged at DB/144, whereas TKE was showed small changes compared to coarser
mesh. This indicates that for the high Rep simulations of up to Rep = 1000, a grid converged solution
can be expected with a resolution of around DB/150. To obtain a high resolution DNS study and
provide sufficient resolution in the bead contact region, a refined grid based on DB/δ = 250 (δ is
the grid resolution in one direction) was used to resolve the pore-scale flow structures, which results
in 3533 degrees of freedom for each case. Ref. [14] has performed a grid convergence study on the
same geometry and concluded that the current grid resolution provides a good representation of the
flow field. In wall units, δ+ is estimated to be less than 1 for Rep = 300, close to 1 for Rep = 500
and about 2 for Rep = 1000.

III. LAGRANGIAN ANGULAR MULTISCALE STATISTICS

A. Definition of the Lagrangian angular statistics

The geometric confinement effects on the flow structures have received much attention recently
[47], particularly for turbulent flows in porous media [27,40]. Angular multiscale statistics of fluid
particle trajectories [46] are obtained to quantify the effect of confinement on the flow from a
Lagrangian point of view. Following a fluid particle in the Lagrangian frame, an angle, �, formed by
consecutive particle locations [see Fig. 1(b)], as a function of time lag is related to the coarse-grained
curvature of the fluid particle paths. To calculate this angle, three equal-time lag (τ ) points along the
trajectory are chosen, and the instantaneous curvature angle � is defined as the angle between two
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FIG. 2. Illustration of the two power laws and the asymptotic limit of the mean curvature angle θ evolution
over time lags in log-log scale, where τK is the Kolmogorov timescale and T L the integral timescale (reproduced
according to Bos et al. [46]).

position vectors constructed consecutively by these three points using the following equation:

cos(�(t, τ )) = δX(x(t0), t, τ ) · δX(x(t0), t + τ, τ )

|δX(x(t0), t, τ )||δX(x(t0), t + τ, τ )| , (9)

where δX(x(t0), t, τ ) = X(x0, t ) − X(x0, t − τ ) is the spatial increment and X(x0, t ) is the position
of a fluid particle at time t , which is initially injected at x0. The cosine of the angle describes the
directional change of the particle with time lag and thus characterizes the multiscale feature of
turbulent flows.

As discussed in Ref. [46], the major focus of the analyses will be on the average absolute angle

θ (τ ) ≡ 〈|�(t, τ )|〉, (10)

and the probability density functions (PDFs) of �(t, τ ). Two power laws and an asymptotic behavior
are expected to characterize the evolution of the mean absolute angle as a function of time lag
τ as illustrated in Fig. 2. At short time increments (0 < τ < τK ), the averaged angle is linearly
proportional to the time lag with the constant of proportionality dependent on the curvature of the
trajectory, corresponding to the ballistic regime, where the angle can be predicted by truncating
the Taylor series expansion of the smooth trajectories under the conditions that both velocity and
the perpendicular acceleration do not depend on τ . At intermediate times (τK < τ < T L), an inertial
range is observed, especially for high Reynolds number flows, where the mean angle shows a
linear trend with respect to the square root of τ . This can be explained using the Kolmogorov
phenomenology, due to the fact that now the acceleration depends on τ . Thus, the inertial region
is bounded by the Kolmogorov timescale (τK ) and the integral timescale (T L). At large time lags
(τ 	 T L), it has been shown in isotropic turbulence that the mean curvature angle approaches π/2,
indicating that all directions are equally probable in the asymptotic limit. It is hypothesized that
this evolution of the mean curvature angle may change in the presence of wall (solid surfaces of
beads) confinement, owing to the limited directions that a fluid particle can traverse. Reference [47]
has shown that in a confined two-dimensional turbulent flow field, the geometric confinement does
have impact on the directional change of fluid particles and the asymptotic limit angle was found to
be 2

3π . In this work, this hypothesis is being tested in the three-dimensional turbulence field inside
of a porous cubic cell. The asymptotic average absolute angle is determined to quantify the effect
of confinement. The evolution of cos(θ ) and the PDFs of [1 − cos(�)] at three different Rep are
compared to show the influence of the Reynolds number.

B. Particle tracking algorithm

Each tracer particle is injected at the center of a control volume at t0. The initial Lagrangian tracer
location X(xcv, t0) is the same as xcv, the center coordinates of the control volume which contains the
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tracer. In the following, X0 is used to represent X(xcv, t0) for simplicity. The fluid velocity ucv(t0) at
corresponding xcv is used as particle velocity v(X0, t0) at the first time step to advance tracers. After
the initial time step, the particle velocity v(X0, ti ) is calculated using trilinear interpolation of the
Eulerian velocity field u(ti ) to the particle location, and a fourth-order Runge-Kutta (RK4) scheme
is implemented to advance the tracer locations in time.

In this study, 10,000 particles are randomly released at the same time and tracked to collect the
trajectories. The lifetime of each tracer is about 10 times the Lagrangian integral timescale, which
ensures that the multiscale features could be well captured.

IV. RESULTS AND DISCUSSION

In this section, the Eulerian statistics of the mean and rms (root mean square) velocity fields inside
the pore are first described briefly. The statistics are used to estimate the integral length scales and
their variation with increasing Reynolds number. In addition, the variance and probability density
function of the instantaneous and fluctuation velocity fields over the entire computational domain
are computed to contrast the trends with studies at lower Reynolds numbers conducted by Hill and
Koch [22].

The Lagrangian statistics including auto-correlations, integral timescales, and energy spectra are
described next for the three Reynolds numbers followed by the angular multiscale statistics. Finally,
a Monte Carlo-based stochastic model is presented and applied to predict the asymptotic limit of the
curvature angle for the present geometry.

A. Porous flow description

As described earlier in the simulation setup, the flow through the triply periodic domain is driven
by a body force in the flow direction based on the correlations given by Eq. (7). After an initial
transient, a stationary state is reached and the computation is continued for several flow through
times (Tf ) over which statistics are collected. Tf is defined as

Tf = L

Uint
. (11)

where L is the length of the unit cube. For each case, the flow was first computed for several flow
through times to ensure that a stationary state has been reached. This is confirmed by monitoring
the total kinetic energy in the domain, which starts out to be a large value and then decreases and
remains more or less constant after an initial transient period. This initial transient period was about
130Tf for the lowest and about 80Tf for the largest Reynolds number studied. After a stationary
state has been established, the computations were performed for additional 80Tf for each Reynolds
number to collect flow statistics which was found to be large enough to obtain converged statistics.

The distribution of Eulerian statistics of mean and turbulence kinetic energy inside the pore is
illustrated below. The compactness and confinement of the porous bed geometry gives rise to regions
of intense acceleration and deceleration as the flow enters the central pore from corners and then
leaves at the corners on the other end. To visualize the flow field, the contours for time-averaged
velocity component in the streamwise direction and the turbulent kinetic energy distributions at the
center slice of the XY plane [Fig. 1(b)] are plotted in Fig. 3.

The mean velocity field normalized by Uint, shown in Figs. 3(a), 3(c), and 3(e), illustrates an almost
identical distribution for all Reynolds numbers. The mean flow enters the center pore from the left
hand side corners and starts to accelerate due to the geometric confinement, then decelerates and
leaves the pore by the corners at the right-hand side. The uniform pattern of mean velocity distribution
indicates that the largest flow motion in the pore is solely determined by the geometry. Even if the
mean flowfield for all three Reynolds number is very similar, the situation is quite different for TKE.
Observing from Figs. 3(b), 3(d), and 3(f), the TKE distributions, normalized by U 2

int, are varying
substantially with increasing Reynolds number. First, the amount of TKE magnifies largely under the
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FIG. 3. Visualization of mean velocity in streamwise direction (Ux) and TKE distributions at three Reynolds
numbers. Top, Rep = 300; center, Rep = 500; bottom, Rep = 1000. The left side column shows velocity
contour, and the right-hand side TKE.

effect of the stronger velocity fluctuations. Second, the distributions of TKE, although remaining in
a semi-similar pattern, are moderately mutating with rising Rep, especially in the center of the pore
where the area with low TKE region is diminished apparently at higher Rep. This is suggesting that the
inertial term in the Navier-Stokes equation is playing an important role for higher Reynolds number
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TABLE II. Time-averaged spatial variances of the instantaneous and temporal fluctuating velocities in the
streamwise and spanwise directions at three different Reynolds numbers; the over bar means time-averaging;
the first line are the data reported by Hill and Koch (2002) at the same Reynolds number of Rep = 300 at one
time instant.

Rep R|| R⊥ R
f

|| R
f

⊥

300 by Ref. [22] 0.518 0.660 – –
300 0.5546 0.7084 0.1440 0.1964
500 0.6125 0.7474 0.2218 0.2867
1000 0.6646 0.7758 0.2801 0.3500

flows in the porous media. To summarize, the mean velocity field, i.e., the large-scale motion, keeps
the same distribution with increasing Reynolds number; while the generation of TKE, representing
the small scale motions, is greatly enlarged and its distribution is noticeably altered. The multiscale
nature of turbulence inside of porous bed is revealed by such visualizations.

B. Flow field statistics

To quantify the observations from the previous section, the statistics of the instantaneous velocity
(u) and the temporal fluctuating velocity (u′) are investigated in detail by computing the spatial
variance and the probability density functions at different Reynolds numbers. Similar to the temporal
fluctuation velocity computed by using Reynolds-averaging,

u′ = u − U, (12)

where U is the temporal average, the spatial fluctuation of any quantity ψ is defined by

ψ̃ = ψ − 〈ψ〉γ , (13)

where ψ̃ is the spatial fluctuation of ψ , 〈〉 represents spatial averaging, and the superscribed γ

indicates the averaging is performed in the fluid domain only. Hill and Koch [22] conducted a similar
analysis for lower Reynolds numbers; however, their results were restricted to only the instantaneous
velocity fields for the steady and weakly turbulent flow regimes. For the current study, the statistics,
including the spatial PDFs and variances are first sampled in the fluid domain at multiple time
instances over about 10Tf , and then time-averaged.

1. Spatial variance

Following Hill and Koch [22], the spatial variance for instantaneous velocity is referred to as R
and defined by

Rij (t ) = 〈ũi ũj 〉γ /U 2
int. (14)

The streamwise and spanwise components of the variances are given by the diagonal part of Rij as

R|| = R11 and R⊥ = (R22 + R33)/2, (15)

where the subscript || represents streamwise and ⊥ spanwise directions, respectively. For the temporal
fluctuation velocity, the spatial variances in the streamwise and spanwise directions, i.e., Rf

|| and R
f

⊥,
are defined in a similar way as Eqs. (14) and (15).

Table II shows the time-averaged spatial variances for the instantaneous and fluctuating velocities
in both streamwise and spanwise directions. A reasonable agreement of the variances at Rep = 300

084501-10



ANGULAR MULTISCALE STATISTICS OF TURBULENCE …

FIG. 4. PDFs of the instantaneous velocity component in x direction (a), and (b) showing the same data as
(a) but in the lin-log scale; (c) and (d) are showing the velocity component in y direction, where the solid line
represents the Gaussian distribution with zero mean and unit standard deviation.

is found between the current study and Hill and Koch [22]. The small differences may be attributed
to (i) the time-averaging, which may have removed some of the temporal fluctuations, and (ii) the
grid resolution, which was much coarser in Hill and Koch [22], so that some very small velocities
near the solid wall may not be completely resolved in their work.

Observing from Table II, the variance of the instantaneous velocity is larger than that corresponding
to the fluctuating velocity for all Reynolds numbers. In addition, the variance values in the streamwise
direction are smaller than that in the spanwise directions. This is also confirmed by the PDFs in Fig. 4,
as discussed further below, which shows that the instantaneous velocity in the streamwise direction
has an asymmetric distribution with the tail on the left-hand side being much smaller than that on the
right-hand side; while the PDF for velocity in the spanwise direction generally follows the Gaussian
distribution. This is owing to the fact that the mean flow is strong in the streamwise direction, while
almost zero in the other directions.

The variance of the temporal fluctuating velocity increases significantly with increasing Reynolds
number. This indicates that the turbulence is more intensified, which is consistent with the
observations from Figs. 3(b), 3(d), and 3(f). The spatial variances for the instantaneous velocity,
however, in both streamwise and spanwise directions increase only slightly with respect to Reynolds
number, which is consistent with the results reported in Hill and Koch [22]. The explanation is that
the major part of the variances of instantaneous velocity components in a closely packed bed should
come from the velocities near the bead surface, which essentially are very weak due to the no-slip
boundary condition.
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(a) (b)

(c) (d)

FIG. 5. The PDFs for fluctuating velocity components in x direction (a), and (b) showing the same data as
(a) but in the lin-log scale; (c) and (d) are showing the velocity component in y direction, where the solid line
represents the Gaussian distribution with zero mean and unit standard deviation.

2. Probability density function

The probability density functions for the instantaneous and temporal fluctuating velocities are
provided in Figs. 4 and 5, respectively. The variances in Table II are used to normalize the PDFs so
that they have unit standard deviations. Owing to the periodicity, the statistics in y and z directions
should be the same (which was verified) and hence only the PDFs of velocity in y direction are
shown. The figures on the right hand side column are showing the same data as on the left, except
that they are plotted in the lin-log scale.

a. Instantaneous velocity. The PDFs for the instantaneous velocity components in the streamwise
and spanwise directions are given in Fig. 4. One common feature of the PDFs for both velocity
components in the streamwise and spanwise directions is the distinguished peak in the PDF at zero
of abscissa. It is also observed that the corresponding probability decreases with increasing Reynolds
number suggesting that at lower Reynolds numbers, there is higher probability for small values of
velocity.

Close observation of Figs. 4(a) and 4(b) shows some similar trends as reported by Hill and Koch
[22] for the velocity in the main flow direction (x direction). At higher Reynolds number, more
x component velocities in the upstream direction are detected. This can be observed at the left tail of
the PDFs, especially in Fig. 4(b). It is the result of stronger recirculation as well as due to large amount
of vortices generated with one of the components perpendicular to the x direction. A secondary peak
is detected at about 1.5 times the standard deviation [see Fig. 4(a)], and the corresponding probability
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becomes higher for larger Reynolds numbers. These characteristics of the PDF are not as pronounced
at the lower Reynolds number flows studied by Hill and Koch [22] and potentially result from the
stronger fluctuations owing to unsteady inertial effects at higher Reynolds numbers. In addition, a
near-exponential decay, at a rate faster than the Gaussian distribution, is observed at the right hand
side tail of the PDFs, especially for lower Reynolds numbers; and the decay rate is closer to the
Gaussian distribution at higher Reynolds numbers.

The PDFs of instantaneous velocities in the spanwise direction, shown in Figs. 4(c) and 4(d), are
symmetric with a peak at the center. They decently follow the Gaussian distribution until about three
times the standard deviation in both positive and negative abscissas. Then they continue to decay,
but at a rate that is noticeably larger than the Gaussian case. Similar to what has been noted for the
streamwise velocity, at lower Reynolds numbers, the decay rate is more likely an exponential function;
while for higher Reynolds numbers it is closer to the Gaussian distribution. This shows that the decay
rates of the tails of the velocity field are Reynolds number dependent for the range considered in
the present study. Hill and Koch [22] conjectured that the exponential decay at lower Reynolds
numbers is because of the distribution of the pore size and not dependent upon the Reynolds number.
However, as shown in the present study, with increasing Reynolds numbers, the flow structures and
length scales become smaller even in the main flow direction. This isotropization of the velocity field
at higher Rep is more clearly seen in the PDFs of the fluctuating velocity rather than the instantaneous
velocity. At lower Reynolds numbers, the flow structures are elongated in the main flow direction,
and give rise to larger fluctuating velocities.

b. Temporal fluctuating velocity. Figure 5 illustrates the PDFs for the temporal fluctuation velocity
components in the streamwise and spanwise directions. Similar to Fig. 4, the figures on the right
column are in linear-log scale showing the same data as those on the left.

It can be observed that, except the spikes at the center, the PDFs for the fluctuating velocity in
both streamwise and spanwise directions follow the Gaussian distribution until about three standard
deviations. After that, the PDFs fall down at rates slower than the Gaussian distribution, unlike
the PDFs of instantaneous velocity. However, similar to the instantaneous velocity, the PDFs at
higher Reynolds number are closer to the Gaussian distribution, whereas for lower Rep, it follows an
exponential decay. These are consistent with the hypothesis that with increasing Rep, the length scales
and flow structures in all directions become smaller thus decreasing the magnitude of fluctuations
in velocity. In addition, distinct peaks are seen at the zero of the abscissa just like the instantaneous
velocity and the value of the probability of the peaks decreases with increasing Rep, indicating
that the turbulence is greatly enhanced by the unsteady inertial effects. Moreover, an asymmetric
distribution is detected from Figs. 5(a) and 5(b) for PDFs of velocity fluctuations in the main flow
direction, whereas the PDFs are mostly symmetric for spanwise directions, as shown in Figs. 5(c)
and 5(d).

C. Lagrangian auto-correlation and energy spectrum

Lagrangian statistics are more important in the sense of dispersion analysis for flow through
porous media. According to Ref. [52], turbulent dispersion is easier to understand physically within
the Lagrangian framework. In this section, fluid tracer particles are tracked to obtain the Lagrangian
trajectories. Tracer trajectories are then used to calculate Lagrangian velocity auto-correlations and
energy spectrum.

The Lagrangian auto-correlations are computed according to Eq. (16) [53],

ρL
ij (τ ) = 〈v′

i (X0, t ) v′
j (X0, t + τ )〉

[〈vi
′2(X0, t )〉 〈vj

′2(X0, t + τ )〉]1/2
, (16)

where ρL
ij is the Lagrangian auto-correlation, v′

i the ith component of the particle fluctuation velocity
and 〈〉 represents ensemble averaging. The results are plotted in Figs. 6(a)–6(c), where the abscissa,
i.e., the time lag τ , is normalized by the corresponding Lagrangian integral timescale, T L

11 computed
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FIG. 6. Lagrangian auto-correlation with x axis normalized by the corresponding integral timescale T L
11,

(a) Rep = 300, (b) Rep = 500, and (c) Rep = 1000, where is ρL
11, ρL

22, and ρL
33;

(d) energy spectrum of ρL
11 for all three Reynolds numbers.

by integrating the auto-correlation over the abscissa as

T L
11 =

∫
ρL

11(τ � 0)dτ. (17)

It is observed that the correlations in the spanwise directions decorrelate much faster than those in
the streamwise direction regardless of the Reynolds number. Also, the correlation in the streamwise
direction decorrelates at about four times of T L

11 monotonically. Since the integral timescale (T L
11)

decreases greatly with respect to Reynolds number, the correlations for the largest Reynolds number,
Rep = 1000, fall down much quicker than the other two. The timescale separation in distinct flow
directions and also for different Reynolds numbers characterize the multiscale nature of turbulence
in porous bed.

Table III shows the normalized Eulerian integral length and Lagrangian integral timescales,
obtained from the respective auto-correlations, for the three Reynolds numbers studied here. The
integral length scale is scaled with the bead diameter (DB). It is observed that even for the lower
Rep case, the integral length scale is only about 10% of the sphere diameter, indicating that the

TABLE III. Normalized integral length and timescales for different pore Reynolds numbers.

Rep 300 500 1000

LE
11/DB 0.102 0.0884 0.0684

(T L
11 Uint )/DB 0.55 0.356 0.322
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coherent structures are confined within the pore. Such observation supports the pore scale prevalence
hypothesis (PSPH) and the results reported in Jin et al. [28]. This implies that, the turbulence in the
pore-scale is strongly affected by the porosity, and restrained by the pore size.

The integral timescale normalized by the flow timescale based on the interstitial velocity and
the bead diameter is also given in Table III. Since the integral timescale is smaller than this flow
timescale, this suggests that the Lagrangian coherent structures are restricted by the pore size. As
a result, the single periodic unit cell considered in the present work appears to be sufficient for
the Reynolds numbers studied. However, the timescale shows that for smaller Reynolds numbers
the integral timescale approaches the flow timescale. Hence, for lower Reynolds numbers, larger
computational domains may become necessary.

Additionally, Lagrangian energy spectra are computed by applying a Fourier transform to the
auto-correlations in the streamwise direction and plotted in log-log scale in Fig. 6(d). The abscissa is
the frequency f normalized by multiplying with the integral timescale. According to Ref. [54], the
Lagrangian energy spectrum should follow a power law with an exponent close to −2, representing
the inertial flow regime. Inspection of Fig. 6(d) shows that even for the highest Reynolds number the
spectrum is only following a power law with slope of −2 in a very small region (around f = 1). For
larger values of f , a pronounced f −1 behavior is observed. This is typical of energy spectra for the
low Reynolds numbers studied here. Even Rep = 1000 is not high enough to observe a wide inertial
scaling in the Lagrangian energy spectrum. This is discussed with more details in the following
section.

D. Lagrangian angular multiscale statistics

As mentioned in Sec. III, the Lagrangian tracer trajectories are used to compute the instantaneous
curvature angle � by Eq. (9) to assess the influence of the confinement on the flow structures. Since
the turbulent flow is in statistically stationary state, ensemble averaging is applied for all trajectories
to obtain an overall representation of the mean angle θ . However, according to the previous results
reported in Ref. [39], since the mean flow is very strong, the trajectories obtained using fluid particles
advancing with instantaneous velocities (U + u′) do not show the asymptotic behavior of the averaged
angle. As a result, the particles are advanced using the fluctuation velocities (u′) only to eliminate
the mean flow effects. The evolution of the average absolute angle θ , characterizing the directional
change of a particle, as a function of time lag is shown in Fig. 7(a) at three different Reynolds
numbers.

The presence of two power laws is apparent. For short time lags, a ballistic regime is obtained
regardless of Rep. This linear behavior corresponds to smooth trajectories where particles have the
tendency to go straight, which are generally independent of the flow geometry. However, in the
inertial region, θ is expected to correlate with τ 1/2, which becomes more heavily pronounced at
higher Rep, indicating its dependency on the Reynolds number. This trend is observed in Fig. 7(a)
and the highest Reynolds number flow (ReP = 1000) has a somewhat noticeable inertial region, while
at Rep = 300 it is barely seen. It should be noted that a significant scale separation, as observed in
high Reynolds number turbulent flows, is not present. This is mainly because Rep = 1000 is still not
sufficiently large, and extending the study to even higher Reynolds numbers becomes computationally
very expensive. The slow emergence of the inertial range in Lagrangian statistics is fairly common
[46]. To see the extent of the inertial range, the inset of Fig. 7(a) shows the compensated angle,
θ̃ (τ ) = θ (τ )Urms/(ετ )1/2, where Urms is the root-mean-square velocity, and ε is the total dissipation
rate. It shows a plateau, which becomes more pronounced for Rep = 1000.

The origins of these two power laws are discussed in Ref. [46]. Besides, the inertial region is
also found to be bounded by the Kolmogorov timescale and integral timescale. More importantly,
the asymptotic mean angle for all three Reynolds numbers collapse at the same value, 1.72 radian,
which is noticeably higher than π/2 corresponding to equidistribution and obtained for isotropic
turbulence [46]. It is conjectured to be connected with the porous bed arrangement. Also, because of
the uniformity of the asymptotic mean angle for all cases, it can be hypothesized that the asymptotic
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(a) (b)

(c) (d)

FIG. 7. (a) Evolution of the mean absolute angle θ for Rep = 300 , Rep = 500 , and Rep =
1000 ; probability density functions for cos(�), (b) Rep = 300, (c) Rep = 500, and (d) Rep = 1000;

the red dashed line denotes the value of uniform distribution, 0.5.

average angle θ is exclusively determined by the geometry. This hypothesis is further tested by
developing a stochastic model that can predict this asymptotic behavior and the influence of the pore
geometry, as discussed in Sec. IV E.

The above analyses are focusing on the mean absolute angle only. In the sense of the higher
order statistics, the PDFs for the cosine of the instantaneous curvature angle cos(�) and its evolution
with time lag are plotted in Figs. 7(b), 7(c), and 7(d). For very short time increments, a spike near
cos(�) = 1 can be observed for all Reynolds number cases, implying that the particles tend to move
smoothly along the trajectory and have a pronounced tendency to go straight. For larger time lags,
an equidistribution with the probability of 1/2 (the red dashed line) is approached, i.e., the ballistic
regime. This is coming from the fact that, the cosine of the angle generated by any pair of three
randomly chosen points in the three-dimensional domain, which are decorrelated to each other due
to the sufficiently long time interval, should be equidistributed (Ref. [46]). Also, the rate of PDFs
transitioning from one peak near cos(�) = 1 to the equidistribution is believed to be related with
the Reynolds number. As mentioned in Sec. IV C, the integral timescale decreases dramatically with
increasing Rep. This suggests that the faster decorrelation of the flow structures leads to an earlier
transition to the equidistribution of the PDFs.

Additionally, according to Refs. [46,47], the PDFs for cos(�) should be able to fit to a Fisher
distribution under the assumption that velocity and acceleration are in near-Gaussian distribution
and independent. From the PDFs shown in Fig. 5, it is observed that the spatial PDFs of fluctuation
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FIG. 8. PDFs of the normalized instantaneous curvature angle, short times in solid colored lines, long times
in dashed color lines, and the bold black solid line represents the F2,3 distribution.

velocities nearly follow the Gaussian distribution. If this assumption also holds for the acceleration,
the squares of both velocity and acceleration should follow the χ2 distribution, and the ratio of these
two χ2 distributed variables ought to comply with the Fisher distribution. As for � in the current
study, its cosine can be approximated as cos(�) ≈ 1 − �2/2 when the curvature angle is small. As
a result, under such assumptions and using normalization, the PDFs of 1 − cos(�) are expected to
align with the Fisher distribution. The results are plotted in Fig. 8, where all the PDFs displayed
in Figs. 7(b)–7(d) are compiled together in colored lines and the F2,3 distribution is shown as bold
black solid line. The numbers 2 and 3 are referring to the dimensionalities of the acceleration in
the perpendicular direction and local velocity, respectively. Following Ref. [47], half of the square
of the corresponding mean angle [Fig. 7(a)] is used to normalize the probability density functions.
The PDFs indeed obey the F2,3 distribution in a fairly good way, especially for short time lags (solid
color lines). For long time lags (dashed color lines), the normalized PDFs are deviating from the
Fisher distribution as expected. This is because the long-time behavior is determined mainly by the
geometry and is not influenced by the flow properties.

E. A Monte Carlo stochastic model

A Monte Carlo-based stochastic model to predict the long-time behavior of the curvature angle
in the porous bed is developed and its prediction is compared with the asymptotic value obtained
from the Lagrangian particle tracking in DNS. It is hypothesized that this long-time behavior of the
curvature angle is dependent on the pore geometry. To verify such hypothesis, fluid trajectories are
firstly modeled using the so-called “blocks” [see Fig. 9(a), three sample blocks in different colors
are placed in a unit sphere]. Each block is generated by three points in space: one is the center of the
sphere (O) and the other two (A and B) are on the surface. Accordingly, an angle (θS) is determined
by those three points, which is used to mimic the curvature angle (�) along a real fluid trajectory.
The cosine of this angle is defined as

cos(θS ) =
−→
AO · −→

OB

|−→AO| · |−→
OB|

. (18)

In total 111 556 blocks are generated in the unit sphere so that it contains almost all possible angles
ranging from 0 to π . The unit spheres with different sizes are then randomly placed and tested in the
porous geometry [Fig. 9(b)]. Only the blocks that are in the fluid domain without any intersection
with the solid beads are valid, indicating that the associated curvature angle may be possible in such
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(a)

(c)

(b)

FIG. 9. (a) Schematic of sample blocks in a mask function, (b) illustration of how the blue mask functions
are placed inside of the porous bed, (c) application of the stochastic model to a two-dimensional periodic channel
and corresponding two-dimensional mask functions denoted by circles of different radii.

scenario. This procedure is repeated to obtain a large number of samples (100 000 samples). The
cosine of the angle is recorded for each valid realization and the mean value is calculated. The steps
in the stochastic model are summarized as follows:

(i) The blocks in a unit sphere are constructed first. Three points A, B, and O [Fig. 9(a)] are used
to compose one pair of block, where A and B are on the surface of the sphere, and O denotes the
center. Over 100 000 blocks are built in the unit sphere and the cosine of the corresponding angles
are in almost equal distribution;

(ii) Multiple spheres with sizes from 0.025 DH to 5 DH are then generated based on the unit
sphere containing all the blocks. DH represents the hydraulic diameter of the porous media and is
defined as

DH = DB

φ

1 − φ
. (19)

After that, these spheres are randomly placed and tested in the porous geometry;
(iii) To determine if one block is valid or not, a multistep geometric check is conducted to make

sure there is no intersection between the block and the solid beads. Also, the periodicity is enforced
during this procedure;
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(iv) If one block has been verified to be valid, the associated cosine of the angle is recorded and
counted into the final statistic. In total, 100 000 successful blocks are collected;

(v) To ensure the number of blocks is sufficient in this study, a convergence study is carried out
with number of blocks of 66 564 and 272 484, which shows little impact of the block numbers on the
final result. The deviation of the predicted asymptotic curvature angle between each case is below
0.2%.

The Monte Carlo-based stochastic model is first tested on a simple two-dimensional periodic
channel with length (Lx) to be 100 times the width (Ly) and periodic boundary condition specified in
the x direction. Similar to the three-dimensional case, a sample filter function or the mask function,
containing three sample blocks illustrated by red, blue, and green colors, is displayed in Fig. 9(c).
The filter function is designed to contain all the possible angles formed by three points. One of them
is the center of the circle, and the other two points are selected randomly on a unit circle. Filter
functions of different sizes [Fig. 9(c)] are then randomly placed into the test geometry (2D periodic
channel) with the periodicity applied in the x direction. If any part of the block is interrupted by the
solid boundary of the channel, this block is deemed invalid and not counted into the final statistic of
the mean curvature of particle trajectories. Otherwise, the angle associated with the valid block is
collected into the statistics. Over 200 000 filter functions were tested with about 100 000 blocks of
different angles.

1. Two-dimensional, periodic channel

This simple two-dimensional case is selected to illustrate the effectiveness of this model, and also
verify its appropriateness. For the periodic channel, more particle trajectories will be aligned in the
axial flow direction owing to the confinement effect of the channel walls. This can be easily tested
by varying the size of the mask/filter function from a very small radius of the circle to a much larger
value compared to the width of the channel. The model is first applied to this simple test case, to
understand the effect of confinement in two dimensions.

Intuitively, when the size of the filter function is small compared to the channel width, all blocks
would have high probability to be valid; however, with increasing filter size, more blocks would
become invalid owing to the confinement effect of the solid channel wall. In other words, when the
diameter of the mask functions is small, the ensemble-averaged angle should be approaching π/2
indicating equidistribution of particle trajectories, that is, the confinement has little effect on the
curvature angle. Whereas as the filter functions get larger compared to the channel width, because of
the geometric confinement, the curvature angles are forced to get closer to either of the two extreme
values, 0 or π . Therefore, at this moment 〈θS〉 would again approach π/2. Moreover, when the filter
sizes are in between (medium sized radii), a maximum of the averaged angle should be expected.
This is because, larger angle blocks tend to have higher probability of being valid due to the effect
of the confinement. It can be easily understood by imagining fluid particles hitting a solid wall. The
particle would bounce back instead of penetrating through the wall. Thus, a large deflection angle
is generated, which is essentially the defined curvature angle. As a result, a maximum value of the
ensemble averaged curvature angle should be expected for a medium size filter function.

These intuitive understandings can be confirmed in Fig. 10, where the ensemble averaged curvature
angle 〈θS〉 is plotted against the diameter of the filter function (DS) normalized by the width of the
channel. The curvature angles for the mask functions with the smallest and largest sizes are indeed
approaching π/2. And a peak was indeed observed in between.

2. Three-dimensional, triple periodic porous unit cell

The stochastic model is designed to test the mask functions with sizes from DS/DH ≈ 0.025
to DS/DH ≈ 5, when the filter function is about as the same size as the porous unit cell. The
reasons for such a setting are explained in the following. First, the smallest size of the mask function
(DS/DH ≈ 0.025) is chosen to make the confinement effect almost negligible so that all the angles
ought to have equal possibilities. And this is consistent with what is observed from Fig. 11. Second,
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FIG. 10. Two-dimensional periodic channel: ensemble averaged curvature angle 〈θS〉 as a function of mask
function diameter DS normalized by the channel width Ly .

if the size of the filter function exceeds the porous unit cell, the stochastic model may not be relevant.
Due to the extreme compactness of the bed, the void space between each pore is connected in a
meandering way. That is to say, almost no blocks are valid under this circumstance, and there is no
physical meaning of using the size of the mask function larger than the porous unit cell. Besides, in
the real scenario, the flow structures tend to be restricted inside of a single pore and thus restricting
to mask functions smaller than the size of the unit cell is appropriate.

Figure 11 shows the ensemble averaged angle 〈θS〉 computed from the stochastic model for
different diameters, DS , of mask functions, where DS is normalized with DH . It can be seen that the
mean angle starts with π/2 with very small diameter, indicating all directions in the three-dimensional
domain are equally probable for small size masking functions. The geometric confinement does
not have any effect on the curvature angle at this point. After that, 〈θS〉 increases with lager DS ,
meaning the solid boundary of the beads is starting to limit the possibilities of valid blocks. This
also means that the larger angles would have higher probabilities than the smaller angles. Then it
reaches the maximum angle to be 1.724 radian at about DS/DH = 2, which implies that now the
porous geometry has the greatest influence on the trajectories of the fluid. This influence can be
qualitatively measured by the possibility of filter functions in contact with sphere boundaries. In
other words, the more filter functions are interrupted by the beads, the higher impact confinement

FIG. 11. Three-dimensional, triple periodic porous unit cell: ensemble averaged curvature angle θS as a
function of mask function radius DS normalized by the hydraulic diameter DH .
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can make to the fluid trajectories. At this moment, the porous geometry is playing the most important
role. Reference [47] reported a different value ( 2

3π ) for a two-dimensional confined domains (circle,
rectangles of different aspect ratio), suggesting this maximum angle is geometric dependent. After
it hits the maximum, 〈θS〉 starts to decrease, resulting from that the pore size is limiting the angle of
the blocks. That is to say, with the larger filter function sizes, some trajectory angles are preferred
because of the limited pore size. This is the reason why the mean angle 〈θS〉 decreases.

More importantly, it is confirmed that the maximum mean angle, 〈θS〉max = 1.724 radian, is very
close to the asymptotic limit of the mean absolute angle, θ (τ → ∞) = 1.72 radian, obtained at large
time lags for particles advanced by fluctuating fluid velocity only, as shown in Fig. 7(a). Such a good
agreement comes from the fact that the stochastic model does not consider the influence of the mean
flow. In other words, the mean angle is solely dependent on the pore geometry. Hence, matching of
the asymptotic angle obtained from the fluctuation velocity field is to be expected. Again, that this
value is different from π/2, as observed in isotropic turbulence, indicates the confinement effect of
porous geometry on the flow structures.

V. SUMMARY AND CONCLUSION

Fully resolved direct numerical simulations were performed on a face-centered porous unit cell
using a Cartesian grid-based fictitious domain method for three different pore Reynolds numbers
of 300, 500, and 1000 spanning an unsteady transitional to fully turbulent flow. Flow physics in
the Eulerian frame were explored and discussed first. Emphasis was then placed on multiscale,
Lagrangian statistics of fluid flow as turbulent dispersive transport and mixing are easier to understand
in a Lagrangian frame.

The flow field was visualized by the contours of the mean velocity and turbulent kinetic energy
distributions. It is observed that the mean velocity field, i.e., the large-scale motion, keeps the
same distribution regardless of Reynolds number; while the generation of TKE, representing the
small-scale motions, is greatly enlarged and its distribution is noticeably altered. In addition, the
spatial variances and probability density functions for the instantaneous and temporal fluctuation
velocities were computed. The variances for the fluctuating velocities have larger values than those
for the instantaneous velocities due to the stronger inertial effects. A reasonable agreement is found
comparing the variances for the instantaneous velocities at Rep = 300 with Ref. [22]. For higher
Reynolds numbers, similar trends as in the literature are observed. However, a Reynolds number
dependency was noticed for the decay rate of the PDF for the instantaneous velocities after three
standard deviations. This is specific for the high Reynolds number cases and was not observed by
Hill and Koch [22] at lower Re. This is attributed to the strong inertial influences at higher Re.

The Lagrangian auto-correlations were obtained by tracking a large number of fluid particle
trajectories. It is found that the correlation in the streamwise direction decorrelates at about four
times of the integral timescales regardless of the Reynolds numbers studied. The integral timescales
in the spanwise directions are much smaller than that in streamwise direction. Moreover, the integral
timescales in all directions decrease dramatically with increasing Reynolds number. The Lagrangian
energy spectra were calculated by performing the Fourier transform on the auto-correlations. Even
for the highest Rep flow studied here, a power law with an exponent of −2, representing the inertial
flow regime, was observed only in a very small region. Moreover, a pronounced f −1 trend is followed
for higher frequencies. It is anticipated that the Reynolds number studied here is not high enough to
obtain the inertial scaling in the Lagrangian energy spectrum.

Instantaneous multiscale curvature angles formed by three points with equal time-increments
along a Lagrangian tracer trajectory were computed. The evolution of the mean angle, depending
on time lags, was determined by ensemble averaging of the instantaneous angles. Two power laws
were observed in the evolution. For short time lags, a linear relationship was found, indicating its
dependency on the curvature of the trajectory. The inertial regime was noticeably pronounced with
a trend with respect to the square root of the time lag at intermediate time lags. While at long
time lags, an asymptotic behavior appeared to be 1.72 radian, different from π/2 observed for the
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three-dimensional isotropic turbulence field [46] and 2
3π for the two-dimensional wall-bounded

turbulent flow [47], representing equidistribution of the angle and the confinement effect on the flow
structures, respectively. Consequently, the asymptotic value is conjectured to be geometry dependent.
This shows that multiscale angular statistics yield scaling information for quantifying turbulence in
a confined porous geometry requiring Lagrangian particle positions only.

The probability density functions for the cosine of the instantaneous curvature angles were
predicted as well. A spike near the cos(�) = 1 for short time increments and an equidistribution
for large time lags was detected. After appropriate normalization, the PDFs were fit to a Fisher
distribution. The normalized PDFs for short time lags follow the F2,3 distribution in a fairly good
way, while those for long time lags deviate from it. This results from the fact that the long-time
behavior of the PDFs is decided by the geometry instead of the flow field.

Finally, a Monte Carlo-based stochastic model to predict the long-time behavior of the mean
absolute angle was developed. Filter functions with different blocks representing the possible
curvature angles were constructed and tested inside of the porous bed. The predicted mean angle,
evolving with increasing size of the filter functions, starts from π/2 meaning no confinement effect,
increases to 1.72 radian representing maximum influence of the geometry, then decreases because of
the limited pore size. This angle matching with the asymptotic curvature angle for the fluid particles
moving with the instantaneous velocity fluctuations confirms the geometric confinement effect on
the flow properties. The value of the maximum angle can be used to characterize different pore
geometries and potentially provides an upper limit for angular statistics.
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