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The influence of rotation on the structure and dynamics of sheared turbulence is investigated using
a series of direct numerical simulations. Five cases are considered: turbulent shear flow without
rotation, with moderate rotation, and with strong rotation, where the rotation configuration is either
parallel or antiparallel. For moderate rotation rates an antiparallel configuration increases the growth
of the turbulent kinetic energy, while the parallel case reduces the growth as compared to the
nonrotating case. For strong rotation rates decay of the energy is observed, linear effects dominate
the flow, and the vorticity probability density functions tend to become Gaussian. Visualizations of
vorticity show that the inclination angle of the vortical structures depends on the rotation rate and
orientation. Coherent vortex extraction, based on the orthogonal wavelet decomposition of vorticity,
is applied to split the flow into coherent and incoherent parts. It was found that the coherent part
preserves the vortical structures using only a few percent of the degrees of freedom. The incoherent
part was found to be structureless and of mainly dissipative nature. With increasing rotation rates,
the number of wavelet modes representing the coherent vortices decreases, indicating an increased
coherency of the flow. Restarting the direct numerical simulation with the filtered fields confirms
that the coherent component preserves the temporal dynamics of the total flow, while the incoherent
component is of dissipative nature. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2896284�

I. INTRODUCTION

Shear and rotation affect the structure formation and dy-
namics of turbulent flows. This study considers turbulence
with uniform vertical shear S=�U /�y and constant system
rotation f =2�. The rotation axis is perpendicular to the
plane of shear, and a schematic of the geometry is shown in
Fig. 1. In such a flow two main configurations are possible:
system rotation can be parallel or antiparallel to the vorticity
of the mean shear. Theoretical investigations have shown
that the parallel case always has a stabilizing effect, while
the antiparallel case has a destabilizing effect for low rota-
tion rates and is again stabilizing for high rotation rates.1,2

These results are confirmed by a comprehensive study
by Brethouwer.3 In this work, the results from direct numeri-
cal simulations �DNS� are compared with computations
based on rapid distortion theory �RDT�. In order to obtain
conditions similar to those in the high shear region of a tur-
bulent boundary layer, the simulations are characterized by a
high shear rate. Such high shear rates lead to the predomi-
nance of linear effects and make a comparison with RDT
possible. Further theoretical RDT results have been pre-
sented in Refs. 4 and 5.

Simple shear flows have been considered in many previ-
ous studies. For example, stratified shear flows have been
studied using DNS by Gerz et al.6 Holt et al.7 as well as
Jacobitz et al.8 Schumann and Gerz9 used stratified shear

flows to estimate turbulent mixing with applications in atmo-
spheric turbulence. Itsweire et al.10 considered anisotropy
properties of such flows and show that estimates of the dis-
sipation rate �, based on oceanographic measurements of a
few components, may be poor. Miesch11 related the simula-
tion results of Holt et al.,7 Jacobitz,12 and others to large-
scale processes in the convection zone and tachocline on the
sun.

Wavelet techniques have been introduced in the early
nineties to analyze turbulent flows.13,14 Since then different
directions for wavelets and turbulence have been exploited,
e.g., signal processing approaches, interpretations in the mul-
tifractal community, cospectra, analysis, and eduction of co-
herent structures using experimental data.

In Refs. 15 and 16 the coherent vortex simulation �CVS�
approach has been introduced to compute and to model tur-
bulent flows. Further developments have been presented in
Refs. 17–19. The idea of CVS is to combine nonlinear ap-
proximation with denoising and, additionally, to exploit the
properties of wavelets for numerical analysis. Wavelets yield
attractive discretizations for operator equations. They allow
autoadaptive discretizations by estimating the local regular-
ity of the solution. Furthermore, many integral and differen-
tial operators have a sparse representation in a wavelet basis
and can furthermore efficiently be preconditioned using di-
agonal scaling. For a review, we refer to the book of
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Cohen.20 The idea of CVS is based on filtering turbulent
flows using adaptive multiresolution techniques. Therewith
the flow is split into two parts, a coherent flow, whose evo-
lution is deterministically computed in an adaptive basis, and
an incoherent flow, which is noiselike and whose effect on
the coherent flow is modeled.

The aim of the paper is twofold. First, we study structure
formation and the fully nonlinear dynamics of uniformly
sheared and rotating turbulence. Hence a series of DNS is
performed with a lower shear rate compared to a previous
study of this flow.3 Second, to check the potential of CVS,
we apply coherent vortex extraction �CVE� to the DNS data.
Using a variety of analysis tools, such as low-order and
higher-order statistics, spectra, probability density functions,
and volume visualization, we aim to both validate the appli-
cability of the CVE approach as well as collect information
about the physics of turbulence in rotating shear flows.

In the next section, the flow configuration, the direct
numerical simulation method, and the wavelet-based coher-
ent vortex extraction are introduced. In Sec. III, first the tem-
poral evolution of the simulations based on the transport
equation for turbulent kinetic energy is presented and the
influence of the magnitude and orientation of the rotation
ratio f /S is investigated. Then, we apply CVE to the DNS
data and thus split the total flow into coherent and incoherent
contributions at a fixed instant in time. The structure of the
coherent and incoherent fields is discussed by visualization
of vorticity, the corresponding properties of the spectral
transport equation of energy, and higher-order statistics. The
dynamics of the coherent and incoherent components is in-
vestigated by advancing the filtered and unfiltered flow fields
in time using DNS. Finally, conclusions of the present work
are presented.

II. NUMERICAL APPROACH: DNS AND CVE

This section describes the flow configuration, introduces
the direct numerical simulation approach, and summarizes
the coherent vortex extraction method.

A. Flow configuration

This study considers turbulence in a rotating shear flow.
A schematic of the flow is shown in Fig. 1 and the following
coordinates x= �x ,y ,z�= �x1 ,x2 ,x3� are used: The x-axis of
the coordinate system denotes the downstream direction, the
y-axis the vertical direction, and the z-axis the spanwise di-
rection. The mean flow U= �Sy ,0 ,0� is unidirectional in the
downstream direction and has a constant shear S=�U /�y in
the vertical direction. In the case of a positive shear rate this
mean flow results in a negative mean vorticity in the span-
wise direction. The system rotation �= �0,� ,0�, with Cori-
olis parameter f =2�, is directed in the positive spanwise
direction and therefore perpendicular to the plane of shear.
For positive values of the rotation ratio f /S the system rota-
tion axis is antiparallel to the mean vorticity generated by the
mean flow with uniform shear. For negative values of f /S the
axes are parallel. Note that due to our choice of a different
coordinate system the sign of the rotation ratio f /S is in-
verted compared to Brethouwer.3 However, the meaning of
parallel and antiparallel configurations remains the same.

B. Direct numerical simulations

This work is based on the continuity equation for incom-
pressible flow and the Navier–Stokes equations with a Cori-
olis term. A geostrophic balance is assumed to preserve the
mean shear. The following equations are obtained for the
fluctuating velocities u= �u ,v ,w�= �u1 ,u2 ,u3�:

� · u = 0, �1�

�u

�t
+ u · �u + Sx2

�u

�x1
+ Su2e1 + 2� � u = −

1

�0
� p + ��2u .

�2�

Here p contains the pressure and centrifugal force, �0 is the
density, � is the kinematic viscosity, and e1 is the unit vector
in the downstream direction.

Following Rogallo,21 the equations of motion are solved
in a reference frame moving with the mean flow and periodic
boundary conditions can be applied to the fluctuating quan-
tities. The resulting equations of motion in the moving coor-
dinate system can be found in Jacobitz et al.8 The spatial
discretization is accomplished using a classical Fourier col-
location method, and the simulations are advanced in time
with a fourth-order embedded Runge–Kutta scheme.22 Re-
gridding is used periodically to prevent an ongoing distortion
of the numerical grid and aliasing errors are controlled. The
simulation code has been validated for turbulent stratified
shear flows in Jacobitz et al.8 against previous results re-
ported by Holt et al.7 All simulations are performed on a
computational grid of size 2��2��2� with 256�256
�256 grid points.

The initial velocity field is obtained from a separate
simulation of isotropic turbulence with a maximum in the
energy spectrum at wave number k=13. The initial values of
the Taylor-microscale Reynolds number Re�=q� /�=56 and
the shear number SK /�=2 are fixed, but these values evolve
as the simulations progress in time. Here K=uiui /2 is the

f

z

y

x

U

FIG. 1. Schematic of the flow configuration with uniform vertical shear
S=�U /�y and rotation f =2 �. Note that this schematic shows a parallel
configuration with negative rotation ratio f /S.
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turbulent kinetic energy, q=�2K an isotropic fluctuating ve-

locity scale, �=��ui /�xk�ui /�xk the dissipation rate, and

�=�5�q2 /� an isotropic Taylor microscale. Due to the low
initial value of the shear number an equilibrium state is ob-
tained in the nonrotating case. Due to the isotropic initial
conditions, an initial decrease of the Reynolds number to
values Re��45 is observed before shear or rotation effects
determine its further evolution. This choice is different from
the previous work by Brethouwer.3 His work is characterized
by a high initial value of the shear number SK /�=18 to
resemble the conditions in a high shear region of a turbulent
boundary layer. The high shear rate prevents an initial decay
of the turbulent kinetic energy, and the initial value of the
Reynolds number Re�=39 is chosen to be lower. Note that a
different definition of the Reynolds number and Taylor mi-
croscale is used, where our Re� is equal to �1.5Re� of the
previous study.3 A more detailed discussion of shear number
effects in turbulent nonrotating stratified shear flows can be
found in Jacobitz and Sarkar23 and Shih et al..24

The rotation number f /S is varied and five cases are
considered here with f /S=0, for nonrotating shear flow,
f /S= 	0.5, for moderate rotation, and f /S= 	5, for strong
rotation. A positive sign of f /S corresponds to an antiparallel
configuration and a negative sign to a parallel one. Properties
of the simulations are given in Table I. Four more cases with
f /S= 	1 and f /S= 	10 have been computed but are not
discussed here in detail to simplify the discussion.

C. Wavelet-based coherent vortex extraction

In many turbulent flows coherent structures are observed
which seem to be imbedded in a random background sea.
Hence, the aspect of denoising may allow to eliminate the
noise in a given flow realization, and the remaining part can
then be called and defined as coherent structures. In Refs. 15
and 25, a wavelet-based method to extract coherent vortices
out of both two- and three-dimensional turbulent flows
was proposed, which is motivated by denoising. The idea
is to apply the orthogonal wavelet decomposition to the
vorticity field � at a given time instant t with resolution
N=23J=2563.

In the following we first fix the notation for the wavelet
decomposition of a three-dimensional vector field and sum-
marize the main ideas of wavelet-based coherent vortex ex-
traction. For more details on the orthogonal wavelet trans-
form, or its extension to higher dimensions, we refer the

reader to textbooks, e.g., Ref. 26, for more details on the
coherent vortex extraction method we refer to the original
papers.

We consider a vector field u�x� for x� �0,2��3 and de-
compose it into an orthogonal wavelet series

u�x� = �
��


ũ����x� , �3�

where the multi-index �= �j , ix , iy , iz ,d� denotes the scale
j, the position i= �ix , iy , iz�, and the seven directions
d=1, . . . ,7 of the wavelets. The corresponding index set 
 is


 = �� = �j,ix,iy,iz,d�, j = 0, . . . ,J − 1;ix,iy,iz = 0, . . . ,2 j

− 1 and d = 1, . . . ,7� . �4�

Due to orthogonality the coefficients are given ũ�= 	u ,��

where 	·,·
 denotes the L2-inner product, defined by 	f ,g

=��0 , 2��3f�x�g�x�dx. The coefficients measure the fluctua-
tions of u around scale 2−j and around position i /2 j in one of
the seven possible directions. The fast wavelet transform26

yields an efficient algorithm to compute the N wavelet coef-
ficients ũ� from the N grid point values of u and has linear
complexity. In the current paper we have chosen the Coiflet
30 wavelet, which has ten vanishing moments and is well
appropriated to represent the current flow simulations.

The idea of the coherent vortex extraction method can be
summarized in the following three step procedure.

• Decomposition: compute the wavelet coefficients of
vorticity �̃� using the fast wavelet transform.

• Thresholding: apply the thresholding function �� to the
wavelet coefficients �̃�, thus reducing the relative im-
portance of the coefficients with small absolute value.

• Reconstruction: reconstruct the coherent vorticity �C

from the thresholded wavelet coefficients using the
fast inverse wavelet transform. The incoherent vortic-
ity �I is obtained by simple subtraction, �I=�−�C.

The thresholding function � corresponds to

���a� = �a if 
a
 
 �

0 if 
a
 � � ,
� �5�

where � denotes the threshold.
The thresholding parameter � depends on the variance of

the incoherent vorticity �n and on the sample size N. The
threshold

�D = �n
�2 ln N �6�

is motivated from denoising theory.27 However, the variance
of the incoherent vorticity is unknown and has to be esti-
mated from the available total vorticity �. As a first guess
we take the variance of the total vorticity, which overesti-
mates the variance of the incoherent vorticity. Therewith we
split the field into coherent and incoherent parts and then
take the variance of the incoherent vorticity as a new im-
proved estimator. In Ref. 28 we have developed an iterative
algorithm for this task, based on the method presented in
Ref. 15. Here we decided to perform one iteration step only
which can be justified by the fast convergence of the iterative

TABLE I. Properties of the simulations at nondimensional time St=5.

Case Configuration Re� SK /�

f /S=0 Shear only 72.15 4.817

f /S= +0.5 Antiparallel 100.43 6.036

f /S=−0.5 Parallel 42.52 4.094

f /S= +5 Antiparallel 35.49 5.901

f /S=−5 Parallel 37.22 5.846
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procedure and by the fact that the computational effort is
minimized.

With the above algorithm the flow is split into two parts:
a coherent flow, corresponding to the coherent vortices, and
an incoherent flow, corresponding to the background noise.15

This decomposition yields �=�C+�I. Due to orthogonality
we have 	�C ,�I
=0, and hence it follows that enstrophy is
conserved, i.e., Z=ZC+ZI, where Z= 1

2 	� ,�
. Inverting the
curl operator we obtain the corresponding velocity fields,
i.e., v=vC+vI. As the Biot–Savart operator is not diagonal in
wavelet space for the decomposition of the turbulent kinetic
energy, we have K=KC+KI+�, where � is small �cf. Ref. 15�
and with K= 1

2 	u ,u
.

III. RESULTS

In this section, the evolution of the turbulent kinetic en-
ergy K is discussed first. Then the decomposition of the flow
into coherent and incoherent contributions is studied. Differ-
ent analysis methods, such as volume visualization, spectra,
and probability density functions, are used to evaluate both
the properties of the decomposition as well as the physics of
turbulence in rotating shear flows. Finally, the dynamics of
the flow is investigated by advancing the total, coherent, and
incoherent components in time using DNS.

A. Evolution of the turbulent kinetic energy

The evolution of the turbulent kinetic energy K in non-
dimensional time St is shown in Fig. 2. All five cases have an
initial decay of the turbulent kinetic energy due to the isotro-
pic initial conditions. The nonrotating case with f /S=0 de-
velops shear production of turbulence at about St=2 and
eventually shows an exponential growth of the turbulent ki-
netic energy. The moderately rotating cases, with f /S
= 	0.5, exhibit different behaviors. The antiparallel configu-
ration, with f /S= +0.5, shows the strongest eventual growth

of K, while the parallel configuration, with f /S=−0.5, leads
to a decay. The strongly rotating cases with f /S= 	5, how-
ever, both result in a strong decay of the turbulent kinetic
energy. These findings are consistent with previous theoreti-
cal work1,2 and direct numerical simulations.3

To obtain insight into the process of the turbulent kinetic
energy evolution, a nondimensional form of the transport
equation of K is considered,

� =
1

SK

dK

dt
=

P

SK
−

�

SK
. �7�

Here P=−Su1u2 is the production rate, �=2�Z the viscous
dissipation rate, and � the growth rate of the turbulent kinetic
energy.
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FIG. 3. Evolution of the normalized production rate P /SK with nondimen-
sional time St. The thin lines correspond to the evolution of the total flow
and the thick lines correspond to the evolution of the coherent flows started
after CVE at St=5.
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FIG. 4. Evolution of the normalized dissipation rate � /SK with nondimen-
sional time St. The thin lines correspond to the evolution of the total flow
and the thick lines correspond to the evolution of the coherent flows started
after CVE at St=5.
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FIG. 2. Evolution of the turbulent kinetic energy K with nondimensional
time St. The thin lines correspond to the evolution of the total flow and the
thick lines correspond to the evolution of the coherent flows started after
CVE at St=5.
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The two right-hand-side terms are shown in Figs. 3 and
4, respectively. The results for the nonrotating case with
f /S=0 agree well with previous results: Both the normalized
production P /SK and normalized dissipation � /SK reach
asymptotic states. The normalized production P /SK=−2b12

=0.32 assumes negative two times the generally reported
value for the off-diagonal component of the Reynolds shear
stress anisotropy tensor b12=u1u2 /uiui=−0.16. Similarly, the
shear number SK /�=5.5, which is the inverse of the normal-
ized dissipation rate, assumes a typical value.

The increased kinetic energy growth in the moderately
rotating case with f /S= +0.5 is due to a strong increase of
the normalized production rate P /SK as well as a decrease of
the normalized dissipation rate � /SK, as compared to the
nonrotating case with f /S=0. The decay of the kinetic en-
ergy in the moderately rotating case with f /S=−0.5 is due to
a decrease of the normalized production rate and an un-
changed normalized dissipation rate, as compared to the non-
rotating case. In the strongly rotating cases with f /S= 	5,
the normalized production rate P /SK has collapsed and the
turbulent kinetic energy growth is diminished.

The dependence of the growth rate � of the turbulent
kinetic energy on the rotation ratio f /S is shown in Fig. 5 for
nondimensional time St=5. Positive values of the growth
rate correspond to growth of the turbulent kinetic energy,
while negative values are obtained for decay of the turbulent
kinetic energy. The results show a narrow regime of growth

with a sharp maximum growth rate for f /S= +0.5. These
observations again are in accordance with previous theoreti-
cal work1,2 and also with direct numerical simulations.3

B. Coherent vortex extraction

The CVE method has been applied to the vorticity field
of the five cases at nondimensional time St=5. This time was
chosen far enough in the simulations such that shear and
rotation effects are developed. The total vorticity �tot is de-
composed into a coherent vorticity �coh and an incoherent
vorticity �inc. The results of the decomposition are shown in
Table II.

The percentage of wavelet modes used to represent the
coherent component of the vorticity field, a measure for the
compression rate, decreases from 3.388% for f /S=0 to
3.312% for f /S= +0.5 �3.347 for f /S=−0.5� and then to
2.504% for f /S=5 �2.486% for f /S=−5�. Therefore, in the
latter case, only 420�103 modes instead of 16.8�106

modes are used to represent the coherent part of the flow
field. Note that the above compression rates would corre-
spond to Fourier cutoff wavenumbers of only kc=41 and
kc=37 using low-pass filtering.

To gain further insight we now consider the percentage
of retained wavelet coefficients at different scale indices j.
The scale index j is related to a mean wavenumber kj =k02 j,
where k0 is the centroid wavenumber of the chosen
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FIG. 6. Dependence of the fraction of retained wavelet coefficients on the
scale index j for different rotation rates f /S.
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FIG. 5. Dependence of the growth rate � of the turbulent kinetic energy on
the rotation ratio f /S at nondimensional time St=5.

TABLE II. Properties of the decomposition of the total fields into coherent and incoherent components.

Case Compression rate Ztot Zcoh �%� Zinc �%� Ktot Kcoh �%� Kinc �%�

f /S=0 3.388 117.33 95.95 4.046 0.771 54 99.69 0.1527

f /S= +0.5 3.312 144.76 95.88 4.124 1.192 8 99.76 0.1231

f /S=−0.5 3.347 56.423 96.85 3.148 0.315 31 99.69 0.1487

f /S= +5 2.504 18.914 99.10 0.9058 0.152 36 99.91 0.0384

f /S=−5 2.486 21.202 99.20 0.7967 0.169 19 99.91 0.0350
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wavelet.13 The wavelet representation implies that there are
7�23j wavelet coefficients at a given scale j. Figure 6 shows
the fraction of retained wavelet coefficients on the scale in-
dex j for different rotation rates f /S. At large scales, i.e., for
j�4, almost all coefficients are retained and correspond to
the coherent part. At smaller scales, where the total number
of coefficients vastly increases, the fraction of retained coef-
ficients decreases strongly. This effect is more pronounced
for rapidly rotating flows.

Despite an increase of the compression rate with increas-
ing f /S, the energy contained in the coherent component
increases from 99.69% to 99.9%, for both parallel and anti-
parallel configurations �see Table II�. Hence, virtually all of
the turbulent kinetic energy is retained in the coherent com-
ponent. The enstrophy contained in the coherent component
increases dramatically from 95.95% to 99.20%. This indi-

cates that the coherency of the flow increases with increasing
rotation, which holds for both parallel and antiparallel con-
figurations.

C. Volume visualization

Figure 7 shows isosurfaces of vorticity at nondimen-
sional time St=5 for the moderate rotation case, with f /S
= +0.5. The total vorticity �top� is characterized by well de-
veloped vortical structures, and these structures are retained
in the coherent field �bottom left�. In contrast, the incoherent
field �bottom right� contains no organized vortical structures
and resembles noise with low amplitude. However, noise is
only present in regions of active turbulence. Therefore, qui-
escent regions remain quiescent in the incoherent fields, as
the sum of coherent and incoherent fields must yield the

FIG. 7. Isosurfaces of total �top�, coherent �bottom left�, and incoherent �bottom right� vorticities at nondimensional time St=5 for the antiparallel
f /S=0.5 case. The isosurfaces are shown in an isometric view. The values of the isosurfaces are 
�
=4�tot for the total and coherent vorticities and
4�inc� 4

5�tot for the incoherent one.
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total. The same observation has been made for the other four
cases, with f /S=0, f /S=−0.5, and f /S= 	5. We will there-
fore restrict the visualization of the other cases to the coher-
ent vorticity only.

Note that the isovalues of the total and coherent part are
identical, corresponding to four times the standard deviation
of the total vorticity, while the isovalue of the incoherent
component is chosen as four times the standard deviation of
the incoherent part, and it is about a factor of 5 smaller than
the above value. Those values were chosen to effectively
represent the spatial features of the total, coherent, and inco-
herent parts.

In order to investigate the effect of shear and rotation
on the turbulence structure, we show front and top views of
the vorticity field for the five cases with f /S=0 �Fig. 8�,
f /S= +0.5, +5 �Fig. 9�, and f /S=−0.5,−5 �Fig. 10�. The
front views �x-y plane� in the left columns illustrate the ef-
fect of shear and rotation. In all cases the vortical structures
are inclined in the y-direction by an angle � to the
x-direction. The angle is observed to be dependent on both
the magnitude and the sign of the rotation ratio f /S. As a
visual aid a black box inclined at the angle � has been added
to the figures.

The dependence on the angle � on the rotation ratio f /S
is given in Fig. 11. The largest angle �=25° is found for the
antiparallel f /S= +0.5 case, which also was observed to have
the strongest turbulence growth. For both the parallel and
antiparallel cases, an increase of the rotation ratio f /S leads
to a decrease of the observed angle �. For a given magnitude
of the rotation ratio, the angle is always smaller for the par-
allel configurations. There is a striking similarity between the
dependence of the growth rate � �Fig. 5� and the dependence
of the inclination angle � �Fig. 11� on the rotation ratio f /S.
For both graphs, there is a sharp increase to the maximum
values as the rotation ratio is increased from f /S=−10 to
f /S= +0.5. A further increase from f /S= +0.5 to f /S= +10,
however, results in a more gradual decrease of both quanti-

ties. We conjecture that the inclination angle of vortical
structures is directly related to the turbulent kinetic energy
evolution.

In addition, with increasing rotation ratio, the vortical
structures also become more pronounced and exhibit a stron-
ger alignment, resulting in a sparser appearance of structures.

The top views �x-z plane� in the right column of Figs.
8–10 show the vortical structures aligned with the down-
stream direction. In the strongly rotating cases, the vortical
structures are flatter and somewhat resemble structures found
in stratified flows. Salhi4 pointed out similarities between
rotation and stratification effects in homogeneous shear flow
using RDT.

D. Spectra

The spectral distribution of the total, coherent, and inco-
herent turbulent kinetic energies is compared in Fig. 12 at
nondimensional time St=5 for the moderately rotating case
with f /S= +0.5. The spectra of the total and coherent fields
coincide up to a wave number k�30, and a faster decay of
the spectrum is observed for the coherent field in the dissi-
pative range with wave numbers k
30. The spectrum of the
incoherent field contains contributions at all wave numbers
but is significant only in the dissipative range.

More understanding of the flow dynamics can be gained
from the spectral transport equation

dE�k�
dt

= P�k� + T�k� + ��k� . �8�

The different terms of the right hand side of the spectral
transport equation are shown in Fig. 13, for the total and
coherent flows. The production term P�k� adds energy to the
smallest wavenumber modes of the flow. The spectral energy
transfer term T�k� redistributes energy from small wave
numbers to large wave numbers. Finally, the dissipation term
��k� removes energy from the modes. The results for the total

FIG. 8. Isosurfaces of coherent vorticity 
�
=4�tot. Shear without rotation, f /S=0. Front view, x-y plane �left� and top view, x-z plane �right�. The black
rectangle has an inclination angle �=23°.
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and coherent flows are identical for the production term P�k�
and show only slight differences for the transfer term T�k�
for wave numbers of 25�k�35 and for the dissipation term
��k� for wave numbers k
35. The results suggest that the
nonlinear transfer is fully retained by the coherent flow.

The corresponding spectral transport terms for the inco-
herent flow are shown in Fig. 14. Their character is mainly of
dissipative nature. The transfer term almost vanishes across
all wave numbers. The production term remains small and is
nonzero only for wave numbers much larger than those ob-
served for the total or coherent contributions. The dissipation
term, already reduced by a factor of 10 in the figure for
comparison purposes, is much larger than the production or
transfer terms and contributes almost equally for a wave-
number range of 40�k�80.

E. Probability density functions

A study of the probability density functions �PDFs� of
velocity or vorticity yields information about the higher or-
der statistics of the flow. The PDF of total, coherent, and
incoherent velocities is shown in Fig. 15 for the antiparallel

configuration, with f /S= +0.5. The findings for total and co-
herent velocity are almost identical and only slightly differ
from a Gaussian distribution. The incoherent velocity almost
perfectly follows a Gaussian distribution. The PDFs of total,
coherent, and incoherent vorticities are shown in Fig. 16 for
the antiparallel configuration with f /S= +0.5. The results for
total and coherent vorticities are again almost identical but
they have exponential tails. The incoherent vorticity has a
strongly reduced variance and it has also exponential tails.

To obtain insight into the geometrical statistics of the
different flow components we consider the relative helicity,
which is defined as follows:

h =
u · �

�u � � ��
. �9�

The helicity corresponds to the cosine of the angle between
velocity and vorticity. It hence permits us to distinguish be-
tween helical structures �swirling motion� for which h has
values of 	1 and that correspond to alignment or antialign-
ment of vorticity and velocity, respectively. Two dimension-
alization of the flow, i.e., vorticity is perpendicular to veloc-

FIG. 9. Isosurfaces of coherent vorticity 
�
=4�tot. Antiparallel rotation with f /S= +0.5 �top� and f /S= +5 �bottom�. Front views �left� and top views �right�.
The black rectangles have an inclination angle �=25° �top� and �=20° �bottom�.
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ity, results in h=0. The PDF of relative helicity is plotted in
Fig. 17 for the total, coherent, and incoherent flows for the
antiparallel configuration, with f /S= +0.5. The PDFs of total
and coherent flow superimpose perfectly and exhibit a maxi-
mum at h=0, which shows two dimensionalization of the
flow due to rotation. In contrast the PDF of the incoherent
flow is almost flat and shows no preferred alignment, which
confirms the noiselike character of the incoherent part.

Figure 18 shows the PDF of the coherent vorticity for
the five cases, with no rotation, moderate rotation, and strong
rotation, for both parallel and antiparallel configurations. An
exponential decay of the PDFs is found for the simulations
with no rotation and with moderate rotation. The variance is
increased for f /S= +0.5 and decreased for f /S=−0.5 with
respect to the nonrotating case f /S=0. For the cases with
strong rotation, the PDFs of the coherent vorticity tend to-
ward a Gaussian distribution, indicating that linear processes
increasingly dominate the evolution of the flow. This is re-
flected in the decrease of the flatness, from about 5 for the
nonrotating and moderately rotating cases, down to about 3.7
for the strongly rotating cases �see Table III�. The skewness

of the nonrotating case is negative, about −0.2, and a similar
value is observed for f /S=−0.5. A moderate rotation in the
antiparallel configuration changes the skewness to about
−0.14. Strong rotation in the parallel configurations yields a
similar value of about −0.13, while the antiparallel case
shows a slightly positive value of about 0.087.

F. Evolution of DNS versus CVE

The previous analyses of vorticity structures, energy
spectra and spectral transfer, and higher-order statistics sug-
gest that the dynamical information of the total field is re-
tained by the coherent field. It can be anticipated that a tem-
poral integration of the coherent field will result in an
evolution similar to that of the total flow field. For the inco-
herent flow field a viscous decay of the fluctuations can be
anticipated.

To better understand the effect of the CVE filtering on
the dynamics of the flow, the coherent and incoherent flows
have been advanced in time using the DNS code, as was
previously done for two-dimensional turbulence in Ref. 29

FIG. 10. Isosurfaces of coherent vorticity 
�
=4�tot. Parallel rotation with f /S=−0.5 �top� and f /S=−5 �bottom�. Front views �left� and top views �right�. The
black rectangles have an inclination angle �=20° �top� and �=17° �bottom�.

045103-9 Structure and dynamics of sheared and rotating turbulence Phys. Fluids 20, 045103 �2008�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://phf.aip.org/phf/copyright.jsp



and for three-dimensional mixing layers in Ref. 30. The evo-
lution of the coherent fields is then compared to the evolu-
tion of the original DNS simulation. This will yield addi-
tional information about their dynamical behavior. At
nondimensional time St=5 the total vorticity field is com-
puted from the total velocity field and then decomposed into
coherent and incoherent components, as discussed in the pre-
vious section. The corresponding coherent and incoherent
velocity fields are reconstructed using the Biot–Savart law,
and original total and computed coherent and incoherent
fields are then advanced using the DNS code to a final non-
dimensional time St=10.

The evolution of the turbulent kinetic energy K of the
total and coherent flows is shown in Fig. 2, for the nonrotat-
ing, moderately rotating, and strongly rotating cases. The
evolution of the total field is shown as a thin line from the
initial nondimensional time St=0 to the final nondimensional

time St=10. Note that its evolution remains unaffected by
CVE at nondimensional time St=5. The evolution of the
coherent field is shown as a thicker line from the time of
decomposition St=5 to the same final nondimensional time
St=10. In all the five cases the evolution of the total and
coherent fields cannot be distinguished. Similarly, the evolu-
tion of the total and coherent normalized production rates is
identical, as shown in Fig. 3.

The corresponding total and coherent normalized dissi-
pation rates are shown in Fig. 4. Immediately after the de-
composition performed at time St=5, a small reduction is
visible in the coherent field for the nonrotating and the two
moderately rotating cases. This reduction is due to the CVE
filtering of the vorticity field which has discarded the inco-
herent component. This leads to a loss of enstrophy which is,
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FIG. 11. Dependence of the inclination angle � of the vortical structures to
the downstream direction on the rotation ratio f /S.
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for incompressible flow, directly proportional to dissipation
by twice the viscosity. This difference is rapidly recovered
within less than one-half nondimensional St time. The simu-
lations demonstrate that the nonlinear dynamics of rotating
and sheared turbulence is preserved by the coherent compo-
nent with only a small number of modes.

The corresponding incoherent terms are several orders of
magnitude smaller and are hence shown in separate figures.
The evolution of the turbulent kinetic energy of the incoher-
ent part is shown in Fig. 19. Depending on the coherence of
the original velocity fields, increasing coherence with in-
creasing f /S, different levels of energy are found in the in-
coherent flows at the time of decomposition St=5. Despite a
shear forcing, all five cases show a strong decay with ad-
vancing nondimensional time St.

Figures 20 and 21 show the evolution of the normalized
production rate P /SK and normalized dissipation rate � /SK
of the incoherent flows, respectively. The production term
adds a slight amount of energy to the incoherent flows. Note
that the terms are normalized with the decaying turbulent
kinetic energy of the incoherent fields. The dissipation rate
however, is about an order of magnitude larger and dissipates
the existing energy far more quickly, except in the antiparal-
lel case f /S= +0.5, where the production slightly increases
toward the end of the simulation. This effect is due to the
starting self-organization of the initially incoherent flow into
developing coherent vortices. These results confirm that the
incoherent flows are of mainly dissipative nature.
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IV. CONCLUSIONS

A series of direct numerical simulations of turbulence in
the presence of rotation and shear has been performed in
order to gain a more complete understanding of processes in
such flows. Five cases are considered: turbulent shear flow
without rotation, with moderate rotation, and with strong ro-
tation, where the rotation configuration is either parallel or
antiparallel. The evolution of integral quantities illustrates
the influence of rotation on the flow dynamics. It was ob-
served that moderate rotation in the antiparallel configuration
leads to an increased growth of the turbulent kinetic energy
compared to the nonrotating case. Strong rotation, however,
results in a rapid decay of turbulent kinetic energy. These
findings are consistent with previous theoretical1,2 and nu-
merical studies.3 As no rotation term appears in the transport
equation for the turbulent kinetic energy, its main impact is
on the turbulence production term. Higher-order statistics
show that strong rotation suppresses nonlinearity, the vortic-
ity PDFs tend to become Gaussian and decay is observed.

A wavelet-based coherent vortex extraction method was
applied to rotating and sheared turbulence simulations for the
first time. This method allows for an efficient extraction and
analysis of vortical structures contained in such flows. It was
found that few �2.5%–3.4%� wavelet coefficients represent
the coherent vortices of the flow. This is an excellent com-
pression rate and even better than for isotropic turbulence at

the same resolution.25 For increasing rotation rate, the num-
ber of retained wavelet coefficients decreases which confirms
the higher coherency of the flow.

Flow visualizations of the coherent vorticity illustrate
the different flow topologies for different rotation rates. In
the presence of nonlinearity, for the nonrotating and moder-
ately rotating cases, there is interaction between vortical
structures themselves. This leads to distortion and scram-
bling of the structures, and hence to turbulent mixing. When
rotation is strong, nonlinearity is inhibited, and we observe
elongated structures produced by strain. Mutual interaction is
then insignificant and turbulent mixing is reduced.

The vortical structures are observed to be inclined in the
vertical direction with respect to the downstream direction.
The inclination angle depends on both the magnitude and
orientation of the rotation ratio. This dependence of the in-
clination angle on the rotation ratio mirrors the dependence
of the growth rate of the turbulent kinetic energy on the
rotation ratio. Both quantities assume a maximum for the
antiparallel case with f /S= +0.5. We conjecture that the in-
clination of vortical structures determines the fate of the tur-
bulence.

In order to characterize the dynamics of the coherent and
incoherent flows, the production, transfer, and dissipation
terms of the spectral transport equation are analyzed. Shear
production is only active in the coherent flow and far less

TABLE III. Skewness and flatness of vorticity.

Case Stot Scoh Sinc Ftot Fcoh Finc

f /S=0 −0.204 20 −0.194 35 −0.006 471 6 4.9044 4.8390 4.4171

f /S= +0.5 −0.138 84 −0.137 07 −0.001 286 6 5.3510 5.2931 4.4290

f /S=−0.5 −0.200 65 −0.190 57 −0.002 917 3 4.7304 4.7081 4.3182

f /S= +5 0.087 479 0.082 019 0.009 280 4 3.8930 3.8739 5.0335

f /S=−5 −0.131 36 −0.125 19 −0.007 125 4 3.6380 3.6252 5.0071
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FIG. 19. Evolution of the incoherent turbulent kinetic energy Kinc with
nondimensional time St.
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important in the incoherent flows. Similarly, spectral transfer
occurs only in the coherent flow. Viscous dissipation is
present in both the coherent and incoherent flows. The spec-
tral transport terms suggest that the dynamics of coherent
and incoherent components are decoupled. The coherent vor-
tices are responsible for the nonlinear dynamics of the flow
and determine the future evolution of the flows. The incoher-
ent part is of dissipative nature and can be modeled as tur-
bulent diffusion.

Restarting the DNS with either the total, coherent, and
incoherent fields confirms these conjectures. The retained
wavelet coefficients to represent the coherent flow corre-
spond to an adaptively refined sparse grid positioned at the
centers of the retained wavelet coefficients. The understand-
ing of the structure of the refined grid could lead to an im-
proved predictability of turbulent flows using far fewer de-
grees of freedom. The results presented here motivate
coherent vortex simulations of rotating and sheared turbu-
lence. First results of such an approach for three-dimensional
mixing layers are presented in Ref. 30 and are promising.
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