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This study is based on a series of nine direct numerical simulations of homogeneous turbulence, in
which the rotation ratio f /S of Coriolis parameter to shear rate is varied. The presence of rotation
stabilizes the flow, except for a narrow range of rotation ratios 0� f /S�1. The main mechanism for
the flow’s destabilization is an increased turbulence production due to increased anisotropy.
Reynolds stress and the dissipation rate anisotropy tensors have been evaluated and provide a
reference for newly defined anisotropy measures. Wavelet-based directional energies capture the
properties of velocity gradients. The intermittency of the flow in different directions is quantified
with scale-dependent directional flatness. Scale-dependent helicity probability distribution functions
allow one to statistically characterize the geometry of the motion at different scales. Small scales are
found locally to be predominantly helical, while large scales are not since they tend to
two-dimensionalization for cases with growing turbulent kinetic energy. Joint probability
distribution functions show that the signs of velocity helicity and vorticity helicity are strongly
correlated. This indicates that vorticity helicity tends to diminish velocity helicity. © 2010 American
Institute of Physics. �doi:10.1063/1.3457167�

I. INTRODUCTION

Rotation and shear are important features of many geo-
physical and engineering flows �see, for example, Ref. 1�.
Direct numerical simulations with constant vertical shear S
=�U1 /�x2 and system rotation with constant Coriolis param-
eter f =2� are considered in this study. The rotation axis is
perpendicular to the plane of shear and points in the span-
wise direction x3. It is therefore parallel or antiparallel to the
mean flow vorticity. The Cartesian coordinates x= �x ,y ,z�
= �x1 ,x2 ,x3� refer to the streamwise, vertical, and spanwise
directions, respectively. A schematic of the mean flow con-
figuration is shown in Fig. 1.

In the previous studies of Bradshaw2 and Tritton,3 the
effect of rotation was found to be destabilizing in the anti-
parallel configuration with 0� f /S�1 and stabilizing other-
wise. A detailed discussion of the roles of the rotation ratio
f /S and the Bradshaw number B= f /S�f /S−1� �sometimes
called “rotational Richardson number”� can be found in
Cambon et al.4 and Leblanc and Cambon.5 It was found that
B is not sufficient to characterize the dynamics of the flow.6

The neutral cases with f /S=0 �pure shear� and f /S=1 �zero
absolute vorticity� are described by the same Bradshaw num-
ber B=0, but their dynamics show important differences.
Comprehensive investigations of this flow include the works
by Salhi and Cambon,6 Brethouwer,7 and Jacobitz et al.8 The

studies are complementary as different techniques are em-
ployed and a variety of parameter regimes are considered.
Rotating sheared turbulence has also been investigated in the
context of stratification and magnetohydrodynamics. Linear
theory has been used by Salhi9 and Kassinos et al.10 to com-
pare the effects of rotation and stratification in such flows.
Kassinos et al.11 investigated passive scalar transport in ro-
tating sheared magnetohydrodynamic turbulence. An over-
view on homogeneous turbulence dynamics including shear
flows can be found in a recent monograph by Sagaut and
Cambon.12

The aim of this study is an investigation of the aniso-
tropy properties of homogeneous turbulence with shear and
rotation. In particular, well-established anisotropy measures,
such as the Reynolds stress and dissipation rate anisotropy
tensors �see, for example, Ref. 13�, are compared to wavelet-
based measures of anisotropy recently introduced by Bos
et al.14 �for a recent review of wavelet methods, see Ref. 15�.
Directional energies and the corresponding spatial fluctua-
tions can be quantified using the orthogonal wavelet decom-
position. The conventional anisotropy measures are widely
used in the community and provide a reference point for the
interpretation of newly defined quantities.

In addition, decompositions of the Reynolds stress aniso-
tropy tensor are considered in this study. Based on the en-
ergy, helicity, and polarization decomposition of the three-
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dimensional energy spectrum tensor developed in Cambon
and Jacquin,16 a decomposition of the Reynolds stress aniso-
tropy tensor into directional anisotropy and polarization an-
isotropy was introduced, first for rotating homogeneous
turbulence17 and then for general anisotropic turbulence.18 In
Refs. 19 and 20, Kassinos et al. proposed single-point turbu-
lence structure tensors. The structure dimensionality aniso-
tropy tensor and circulicity anisotropy tensor also decompose
the Reynolds stress anisotropy tensor. The measures devel-
oped by Kassinos et al.20 and Cambon et al.18 can be ex-
pressed as linear combinations of each other.

Another goal is the study of scale-dependent statistics,
such as flatness, and geometrical quantities, such as helicity
probability distribution functions. Directional flatness allows
one to quantify the influence of the rotation rate on the flow
intermittency. Helicity measures the alignment between the
velocity and vorticity vectors and thus characterizes the pres-
ence or absence of helical motion. The local scale-dependent
helicity has recently been analyzed for forced isotropic tur-
bulence by Yoshimatsu et al.21

In the next section, governing equations and numerical
approach are introduced. Then results from a series of simu-
lations of rotating and sheared homogeneous turbulence are
presented including the turbulence evolution, a comparison
of conventional and novel wavelet-based anisotropy mea-
sures, turbulence structure tensors, and scale-dependent geo-

metrical statistics. In particular, we will assess which char-
acteristics distinguish the flows in which the kinetic energy
grows from those in which it decays. Finally, conclusions of
the present work are given.

II. GOVERNING EQUATIONS
AND NUMERICAL APPROACH

The direct numerical simulations performed here are
based on the continuity equation for an incompressible fluid
and the unsteady three-dimensional Navier–Stokes equation.
The following equations are used to determine the fluctuat-
ing velocities u= �u ,v ,w�= �u1 ,u2 ,u3�:

� · u = 0, �1�

�u

�t
+ u · �u + Sx2

�u

�x1
+ Su2e1 + 2� � u

= −
1

�0
� p + ��2u . �2�

Here p contains the pressure and centrifugal force, �0 is the
density, � is the kinematic viscosity, and e1 is the unit vector
in the downstream direction.

In the direct numerical approach, all dynamically active
scales of the velocity field are resolved. The above equations
are solved in a frame of reference moving with the mean
sheared flow �see Ref. 22�. This approach allows the appli-
cation of periodic boundary conditions for the fluctuating
components of the velocity field. A spectral collocation
method is used for the spatial discretization and the solution
is advanced in time with a fourth-order Runge–Kutta
scheme. The simulations are performed on a parallel com-
puter using 256�256�256 grid points. The simulations
analyzed in this study are identical to the ones reported in
Jacobitz et al.8

In the following, results of nine simulations of rotating
sheared turbulence are presented and the rotation ratio f /S is
varied from �10 to 10. Negative values of f /S correspond to
a parallel configuration and positive values correspond to an
antiparallel configuration between the system rotation and
the mean flow vorticity. Isotropic turbulence fields are used
to initialize all simulations. The values of the initial Taylor
microscale Reynolds number Re�=45 and the initial shear
number SK /	=2 are identical for all cases. The evolution of
the Taylor microscale Reynolds number depends on the fate
of the turbulence and reaches values as high as Re�=120.
The shear number varies only weakly with f /S and assumes
a value of about SK /	=6 in the simulations. This suggests

TABLE I. Properties of the simulations at nondimensional time St=5.

Case Configuration Re� SK /	 
 Fate

f /S=−5 Parallel 37.22 5.846 �0.2176 Decay

f /S=−0.5 Parallel 42.52 4.094 �0.1406 Decay

f /S=0 Shear only 72.15 4.817 0.1338 Growth

f /S=+0.5 Antiparallel 100.43 6.036 0.3523 Growth

f /S=+5 Antiparallel 35.49 5.901 �0.2161 Decay

f

x

x

x

1

2

3

1
U

FIG. 1. Schematic of the mean flow configuration with uniform vertical
shear S=�U1 /�x2 and rotation f =2 �. Note that this schematic shows a
parallel configuration with negative rotation ratio f /S.
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that shear has a more direct influence on the time scale of the
overturning turbulent eddies as compared to rotation. Typical
flow parameters are summarized in Table I for five selected
cases taken at nondimensional time St=5.

III. RESULTS

In this section, the turbulence evolution is first discussed.
Then, the anisotropy properties of the turbulence are charac-
terized using well-established measures in order to provide a
reference point for the interpretation of newly defined quan-
tities. Turbulence structure anisotropy tensors are discussed.
Wavelet-based measures are used to obtain further informa-
tion about the anisotropy properties of homogeneous turbu-
lence with mean shear and system rotation. Finally, scale-
dependent statistics are used to quantify the intermittency
and to obtain insight into geometrical features of the flow.

A. Turbulence evolution

Figure 2 shows the evolution of the turbulent kinetic
energy K for a series of simulations in which the rotation
ratio f /S is varied. Due to the isotropic initial conditions, the
turbulent kinetic energy first decays in order to adjust to the
flow anisotropy. The nonrotating case with f /S=0 shows
eventual exponential growth of K. For moderate rotation ra-
tios, the antiparallel case with f /S=+0.5 leads to a strong
growth of the turbulent kinetic energy, while the parallel case
with f /S=−0.5 results in a decay of K. For strong rotation
ratios, however, both the antiparallel case with f /S=+5 and
the parallel case with f /S=−5 lead to a strong decay of K
due to the importance of linear effects. These observations
are in agreement with previous results �Refs. 2–4 and 7�. A
first rough classification of the different flows can thus be
made by separating flows in which the energy eventually
increases from flows in which the energy decays. One of the
main goals of this paper is to see whether this can be related
to other features of the flow.

A first step is to separately investigate the contributions

of production and dissipation in the transport equation for the
turbulent kinetic energy. This equation can be written in the
following nondimensional form:


 =
1

SK

dK

dt
=

P

SK
−

	

SK
. �3�

Here 
 is the growth rate of the turbulent kinetic energy,
P /SK is the normalized production rate, and 	 /SK is the
normalized dissipation rate. The dependence of the turbu-
lence growth rate 
 on the rotation ratio f /S is shown in Fig.
3 at nondimensional time St=5 �see also Table I�. Positive
values of 
 correspond to growth of turbulent kinetic energy
K and negative values of 
 correspond to its decay. In accor-
dance with the previous works,2–4,7 the antiparallel configu-
ration with 0� f /S�1 results in a destabilization of the flow,
while other parameter ranges of the rotation ratio lead to a
stabilization of the turbulence level. Both normalized pro-
duction P /SK and normalized dissipation 	 /SK contribute to
the growth rate 
. While the normalized dissipation rate re-
mains relatively unaffected by a variation of the rotation ra-
tio, the normalized production rate strongly increases in the
antiparallel case with 0� f /S�1, which leads to a fast
growth of the turbulence. The mechanism that is responsible
for the turbulent kinetic energy growth mainly acts at the
large scales. We will come back to this issue in Secs. III D
and III E, where we will analyze the flows using scale de-
pendent statistics.

In order to investigate the effect of shear and rotation on
the structure of turbulent flows, volume visualizations of the
magnitude of fluctuating vorticity are considered �for details
on volume visualization, see Ref. 23�. Figures 4 and 5 show
vortical structures for two cases with f /S=+0.5 and f /S
=+5, respectively, at nondimensional time St=5. In the fol-
lowing, we will often take these two cases as representative
for the two distinct energy evolution regimes. The vortical
structures are inclined in the vertical direction relative to the
downstream direction by an angle �. This angle is larger for
the strongly growing case with f /S=+0.5 compared to the
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FIG. 2. Evolution of the turbulent kinetic energy K in nondimensional time
St for different rotation ratios f /S.
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FIG. 3. Dependence of the growth rate 
, normalized production P /SK, and
normalized dissipation 	 /SK on the rotation ratio f /S at nondimensional
time St=5.
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decaying case with f /S=+5. The inclination angle � of vor-
tical structures directly influences the strength of turbulence
growth or decay. In the decaying case with f /S=+5, the vor-
tical structures are patchy and somewhat resemble structures
found in stratified flows. The flow seems to be close to a
two-component flow, such as in stably stratified turbulence,
rather than to a two-dimensional flow.24 Using rapid distor-
tion theory, Salhi9 pointed out similarities between rotation
and stratification effects in homogeneous shear flow. Simi-
larly, Kassinos et al.10 provided some insight into the inter-
play of rotation and stratification. In the case f /S=+0.5, the
aligned structures are more elongated, indicating a partial
two-dimensionalization of the flow. A more detailed discus-
sion of the inclination angle � can be found in Jacobitz
et al.8

B. Conventional anisotropy measures

Two conventional measures for the anisotropy properties
of turbulent flow are computed from the direct numerical
simulation data. The Reynolds stress anisotropy tensor bij

describes the large scale anisotropy properties

bij =
uiuj

2K
−

1

3
�ij . �4�

The top left part of Fig. 6 shows the dependence of the
diagonal components of the Reynolds shear stress anisotropy
tensor bij on the rotation ratio f /S at nondimensional time
St=5. The diagonal components of bij correspond to the dis-
tribution of energy among the velocity components. For most
rotation ratios, an ordering b11
b33
b22, i.e., streamwise

spanwise
vertical, is observed. Only in the antiparallel
cases with 0� f /S�1 this ordering is changed into b22


b33
b11, i.e., vertical
spanwise
streamwise. The off-
diagonal components of bij are shown at the bottom left part
of Fig. 6. Due to the symmetry of the flow, the components
b13 and b23 remain small. The magnitude of the component
b12 is largest for f /S=+0.5, corresponding to the strongest
growth of the turbulent kinetic energy K. Note that the nor-
malized turbulence production rate is related to the aniso-
tropy features of the flow since P /SK=−2b12.

The dissipation rate anisotropy tensor eij is defined in a
similar manner to describe the small scale anisotropy prop-
erties of the flow

eij =

�
�ui

�xk

�uj

�xk

2	
−

1

3
�ij . �5�

The top right part of Fig. 6 shows the dependence of the
diagonal components of the dissipation rate anisotropy tensor
eij on the rotation ratio f /S at nondimensional time St=5.
Both the streamwise e11 and spanwise e33 components for
most cases show a surplus, while the vertical component e22

shows a deficit. Only in the strongly growing case with ro-
tation ratio f /S=0.5, the ordering is altered. The off-diagonal
components of eij are shown at the bottom right part of Fig.
6. Again, only the e12 component is nonzero. Overall, the
components of the dissipation rate anisotropy tensor eij

closely follow the components of the Reynolds stress aniso-
tropy tensor bij. The main drawback of the dissipation rate
anisotropy tensor is the summation over all three gradients of
velocity in each component. It is therefore not possible to
capture additional directional information about this flow not
already described in the Reynolds stress anisotropy tensor.

In order to gain more understanding about directional
information contained in the velocity gradients, the contribu-
tion of each gradient to the overall dissipation rate is consid-
ered

	i,j =

�
�ui

�xj

�ui

�xj

2	
. �6�

In contrast to the dissipation rate anisotropy tensor, this al-
ternative quantity does not require any summation over the
spatial derivatives of the velocity components. The top row
in Fig. 9 shows the dependence of 	i,j on the rotation ratio
f /S at nondimensional time St=5. The left figure shows the
three gradients of the streamwise velocity component 	1,j.
For most values of the rotation ratio, the vertical component

x3

x2

x1

FIG. 4. �Color online� Volume visualization of isovorticity for f /S=+0.5 at
nondimensional time St=5. Orientation as in Fig. 1.

x3

x2

x1

FIG. 5. �Color online� Volume visualization of isovorticity for f /S=+5 at
nondimensional time St=5. Orientation as in Fig. 1.
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is the largest. It is, however, strongly reduced for the strongly
growing cases with 0� f /S�1, where the spanwise compo-
nent becomes important. The center figure shows the gradi-
ents of the vertical velocity component 	2,j. Again, the span-
wise gradient is strongly increased for the cases with
strongly growing turbulent kinetic energy. The right figure
shows the gradients of the spanwise velocity component 	3,j.
For most cases, the vertical gradient shows the largest con-
tribution, but it is reduced for the cases with strongly grow-
ing turbulent kinetic energy. In general, by magnitude large
rotation ratios lead to large spanwise gradients of the veloc-
ity components. The cases with growing turbulent kinetic
energy, however, are characterized by strong vertical gradi-
ents of the velocity components.

C. Turbulence structure anisotropy tensors

In order to gain a more complete description of the struc-
ture of turbulence, we consider decompositions of the Rey-
nolds stress anisotropy tensor. For homogeneous turbulence,
following Kassinos et al.,20 the structure dimensionality ten-
sor Dij can be determined from the velocity spectrum tensor
Eij�k�= ûiûj

�,

Dij =� kikj

k2 Enn�k�d3k . �7�

Here, a hat denotes the Fourier transform, a star the complex
conjugate, and k= �k1 ,k2 ,k3� is the wave vector. The struc-
ture dimensionality anisotropy tensor is then defined as
follows:

dij =
Dij

Dkk
−

1

3
�ij . �8�

Another measure introduced by Kassinos et al.20 is the cir-
culicity tensor

Fij =� �̂i�̂ j
�

k2 d3k . �9�

Here, �=��u= ��1 ,�2 ,�3� is the vorticity vector and k is
the magnitude of the wave vector. The circulicity anisotropy
tensor is then defined as follows:
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FIG. 6. Dependence of the diagonal components �top row� and off-diagonal components �bottom row� of the Reynolds stress anisotropy tensor bij �left
column� and the dissipation rate anisotropy tensor eij �right column� on the rotation ratio f /S at nondimensional time St=5.
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f ij =
Fij

Fkk
−

1

3
�ij . �10�

The Reynolds stress anisotropy tensor, structure dimension-
ality anisotropy tensor, and circulicity anisotropy tensors are
related,

bij + dij + f ij = 0. �11�

Note that the circulicity anisotropy tensor is therefore deter-
mined by the Reynolds stress anisotropy tensor and the di-
mensionality anisotropy tensor.

The left column of Fig. 7 shows the diagonal �top� and
off-diagonal �bottom� components of the structure dimen-
sionality anisotropy tensor. For the case of homogeneous
shear flow with f /S=0, our results are consistent with those
reported by Kassinos et al.20 In this case, we observe that
d22�d33
d11, which, according to Kassinos et al.,20 sug-
gests that “the dimensionality is close to being axisymmetric
about the x1-axis.” For f /S=+0.5, an ordering d33
d22


d11 is obtained. Otherwise, we observe d11�d33�d22. For
the off-diagonal components, we observe that d13 and d23

vanish, while the component d12 assumes a value of about
�0.08, independent of the rotation ratio f /S. This value
again is in agreement with Kassinos et al.20

The right column of Fig. 7 shows the diagonal �top� and
off-diagonal �bottom� components of the circulicity aniso-
tropy tensor, which “describes the large-scale structure of the
vorticity field.”20 The nonzero values of f12 confirm that the
flow structures are inclined to the streamwise direction. For
growing turbulent kinetic energy, f11 is the dominant compo-
nent. For negative f /S, we find f33
 f11
 f22 and for f /S

5, we observe f11� f33
 f22.

The corresponding wavenumber-dependent quantities
can be defined by shell averaging in Fourier space and yield
insight into the wavenumber distribution of different aniso-
tropy tensors. Figure 8 shows the wavenumber-dependent
components of the Reynolds stress anisotropy tensor bij �left
column�, the structure dimensionality tensor dij �center col-
umn�, and the circulicity anisotropy tensor f ij �right column�
for two values of the rotation ratios f /S=+0.5 �top row� and
f /S=+5 �bottom row� at nondimensional time St=5. Those
two cases were chosen to illustrate both energy-growing and
energy-decaying cases. The main conclusion inspecting these
plots is that the flows show no return to isotropy at large
wavenumber for all quantities and all flows. In addition, we
find a pronounced anisotropy at small wavenumbers and a
strong dependence of the values of the turbulence structure
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FIG. 7. Dependence of the diagonal components �top row� and off-diagonal components �bottom row� of the structure dimensionality anisotropy tensor dij

�left column� and the circulicity anisotropy tensor f ij �right column� on the rotation ratio f /S at nondimensional time St=5.
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anisotropy tensors on the wavenumber. It remains to be veri-
fied if return to isotropy is observed at higher Reynolds
numbers.

Based on an energy, polarization, and helicity decompo-
sition of the three-dimensional energy spectrum tensor Eij,
Cambon et al.18 suggested a decomposition of the Reynolds
stress anisotropy tensor bij into directional anisotropy bij

�e�

and polarization anisotropy bij
�z�,

bij = bij
�e� + bij

�z�. �12�

The structure dimensionality anisotropy tensor dij and the
circulicity anisotropy tensor f ij can be obtained as a linear
combination of bij

�e� and bij
�z�,

dij = − 2bij
�e�, f ij = bij

�e� − bij
�z�. �13�

The authors18 showed that the directional anisotropy tensor is
correctly determined by linear theory.

D. Wavelet-based anisotropy measures

Space-scale decomposition of the flow is obtained by
applying the orthogonal wavelet transform to the velocity
field. Therefore, the velocity field u= �u1 ,u2 ,u3� at a given
time instant is developed into an orthogonal wavelet basis
using Coiflet 12 wavelets.25 Note that the same decomposi-
tion can be applied to the vorticity field �=��u
= ��1 ,�2 ,�3�. The projection of one component u��x� can be
represented by

u��x� = �
�

ũ�
����x� , �14�

with the subscript �= �j , i ,d�, where j represents the scale
index, i the position, and d the direction. The orthogonal
wavelet coefficients are given by ũ�

�= 	u� ,��
, where 	 , 
 de-
notes the L2-inner product. The wavelet coefficients measure
the fluctuations of u� at scale 2−j and around position i /2 j for
each of the seven possible directions d. The contribution of
the velocity component u� at scale 2−j and direction d is
obtained by fixing j and d and summing only over i in Eq.
�14� and it is denoted by u�

j,d. Its contribution u�
j at scale 2−j

is obtained by summation over i and d in Eq. �14� while
fixing j.

Parseval’s identity allows one to obtain directional en-
ergy contributions as functions of scale j.14 For the direc-
tional scale-dependent energy distribution of a velocity com-
ponent u�, we thus obtain

E�
j,d = 1

2 	u�
j,d,u�

j,d
 . �15�

Summing over all scales, we get the directional energy of the
velocity component u� in the direction d,

E�
d = �

j

E�
j,d. �16�

By construction, we obtain the total kinetic energy as
follows:
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E = �
j,d,�

E�
j,d = �

d,�
E�

d . �17�

The bottom row in Fig. 9 shows the normalized directional
energy components E�

d /E for the x, y, and z components.
These wavelet-based measures exhibit a striking similarity
with the normalized directional dissipation rate components
ei,j /e. This is due to the fact that wavelet coefficients of
velocity are related to its gradients and discriminate the fluc-
tuations of velocity components between the seven possible
directions.

Figures 10 and 11 show the directional energy of the
flow for two cases with f /S=+0.5 and f /S=+5, respectively,
at nondimensional time St=5. For the strongly growing case
with f /S=+0.5, the vertical velocity �v� in the spanwise di-

rection �z� contains most of the energy, followed by the
downstream velocity �u� in the spanwise direction �z�. For
the strongly decaying case with f /S=+5, however, the span-
wise �w� and downstream �u� velocities in the vertical direc-
tion �y� contain most of the energy, while vertical velocity
�v� is reduced. The figures also show that the mixed direc-
tions �xy, xz, yz, and xyz� are less significant. A finer reso-
lution of the anisotropy measures would require the use of
the continuous wavelet transform, which necessitates sub-
stantially more computational resources for three-
dimensional turbulence. Details on this technique applied to
two-dimensional cuts of three-dimensional turbulent flows
can be found in Ruppert-Felsot et al.26

To study higher-order scale-dependent statistics, we de-
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FIG. 10. �Color online� Wavelet-based directional energy for f /S=+0.5 at
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fine the p-th order centered moments of each component u�

of the vector field u at scale j from its wavelet coefficients
�Ref. 27�

Mp,j
� =

1

7 � 23j �
i=0

2j−1

�
d=1

7

�ũ�
� − M̄ j

��p. �18�

Here,

M̄ j
� = �

i=0

2j−1

�
d=1

7

ũ�
�/�7 � 23j� , �19�

denotes the mean value of the moment at scale j. The scale-
dependent flatness of a velocity component u� is defined as
follows:

Fj
� = M4,j

� /�M2,j
� �2. �20�

It is closely related to the standard deviation of the spectral
distribution of energy, which illustrates that Fj

� yields a mea-
sure of the relative spatial fluctuations of the spectral energy
density.14

The scale index j is related to a wavenumber kj by the
following relationship:

kj = k02 j . �21�

Here, k0 is the centroid wavenumber of the mother wavelet,
which is constant for each type of wavelet, e.g., k0�0.77 for
the Coiflet 12 used here. Wavelets have a constant relative
bandwidth, which means that with increasing j, the spectral

support of the wavelet increases, and thus the spectral selec-
tivity of the wavelet decreases. The scale-dependent distribu-
tions of energy or flatness can be related to wavenumber
distributions, in particular, to energy spectra.25

The directional scale-dependent flatness of the three ve-
locity components is shown in Fig. 12. Here, we focus only
on two cases, one for f /S=+0.5 �top row�, which is repre-
sentative of a flow with strongly growing turbulent kinetic
energy, and one for f /S=+5 �bottom row�, which represents
cases with decaying turbulent kinetic energy. A general ob-
servation is a strong increase of the flatness with wavenum-
ber, which reflects the flow intermittency. The intermittency
here is related to the dissipation range28 and the resolution of
the simulations does not allow to observe a possible inertial
range intermittency. In Ref. 14, it was shown that an aniso-
tropy of the small spatial scales can cause an anisotropy of
the directional flatness which is increased in certain direc-
tions due to the depletion of energy, affecting particular re-
gions in Fourier space. Here, it is also observed that the
small-scale intermittency is anisotropic. The growth of flat-
ness of all velocity components is the strongest in the
streamwise direction, except for the case f /S=+0.5 where
the flatness of the u1 velocity component behaves similarly
in all directions due to the strong shear production. At mod-
erate wavenumbers 2�k�10, a flatness value around 3 is
obtained in all cases, indicating a Gaussian-like behavior.
Even though the flatness is slightly different for the two
cases, it does not seem straightforward to relate the large-
scale production of kinetic energy directly to the directional
intermittency of the flow.
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FIG. 12. Directional scale-dependent flatness for f /S=+0.5 �top row� and f /S=+5 �bottom row�. The u1-component �left column�, u2-component �center
column� and u3-component �right column� are shown.
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E. Wavelet-based scale-dependent
geometrical measures

Additional geometrical information about the flow can
be obtained from the velocity helicity Hu and vorticity helic-
ity H�,

Hu = u · �� � u�, H� = � · �� � �� . �22�

After averaging over space, both quantities can be related by
the helicity transport equation d	Hu
 /dt=−2�	H�
+2	F
.
The term F= f ·� accounts for any forcing terms f in the
momentum equation, and it vanishes for linear effects, such
as shear and rotation. A corresponding evolution equation for
three-dimensional helicity spectrum was first given in Cam-
bon and Jacquin.16 This equation also includes a transfer
term, describing redistribution of helicity, determined by
triple correlations. As in the case of the turbulent kinetic
energy equation, the transfer term vanishes after averaging.

The present flow initially does not contain mean helicity
and it will thus remain free from it. However, this does not
concern the local helicity and regions with strong helicity
can exist in a flow free from mean helicity. In the following,
we will concentrate on this local helicity and its statistics.

The relative helicities of velocity and vorticity measure
the cosine of the angle between the two vector quantities and
are defined as follows:

hu =
u · �� � u�
�u��� � u�

, h� =
� · �� � ��
����� � ��

. �23�

The relative velocity helicity hu allows one to distinguish
between helical structures �swirling motion� and nonhelical
structures. For helical structures, hu has values of �1, which
correspond to alignment or antialignment of vorticity and
velocity, respectively. For nonhelical structures, two-
dimensionalization of the flow occurs, vorticity is perpen-
dicular to velocity, and the velocity helicity hu assumes a
value hu=0. Using the vector identity ���=−�u, the rela-
tive vorticity helicity h� measures the cosine of the angle
between vorticity and the negative Laplacian of velocity,
which is related to dissipation. The velocity helicity hu and
vorticity helicity h� can also be interpreted as the correlation
coefficients between u with � and � with ���, respec-
tively.

Scale-dependent helicities huj and h�j can be defined by
replacing u and � in Eq. �23� by u j and � j, respectively, as
recently introduced in Ref. 21. Thus, geometrical statistics
can be obtained at different scales of the flow.

Figures 13 and 14 show the probability distribution func-
tions �PDFs� of the relative helicities of velocity and vortic-
ity, respectively. The PDFs of hu show a maximum for hu

=0 for cases with growing turbulent kinetic energy �f /S=0
and f /S=+0.5�, indicating a higher probability for two-
dimensional motion. For decaying cases, a maximum for
hu�1 is observed, corresponding to a higher probability for
helical motion. The PDFs of h� show a maximum for h��1
for all cases and the alignment or antialignment of vorticity
with the negative Laplacian of velocity is particularly pro-
nounced in the case of strong rotation �f /S= �5�.

Figure 15 shows the scale-dependent velocity helicity
PDF �left column� and vorticity helicity PDF �right column�
for cases with f /S=+0.5 �top row� and f /S=+5 �bottom row�
at nondimensional time St=5. The scale-dependent velocity
helicity PDFs confirm the significant difference between the
two cases f /S=+0.5 and +5, representing turbulence growth
and decay, respectively, that we have mentioned above. For
the former case, the PDFs show a pronounced two-
dimensional behavior at large scales �j=3,4 ,5�, while for
the latter no peak around huj =0 can be observed. The prob-
ability to have swirling motion at small scales is also more
pronounced for f /S=+5. Similar conclusions hold for the
scale-dependent distributions of vorticity helicity. These re-
sults clearly show that the mechanism which distinguishes
the cases f /S=+0.5 and +5 is related to the large scales, as
we have conjectured in Sec. III A. Apparently, in the f /S
=+0.5 case, the large scale flow shares some features with
two-dimensional turbulence and the energy cascade is thus
less efficient in transporting energy toward the small scales
compared to three-dimensional turbulence.

Sanada29 conjectured that 	Hu
 and 	H�
 have a tendency
to have the same sign. This tendency also holds for the cor-
responding pointwise quantities Hu and H� �Ref. 30�. If this
conjecture holds, H� acts as a “kind of viscous dissipation”
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for Hu, independent of its sign. To verify Sanada’s conjecture
that both velocity helicity and vorticity helicity have the
same sign, we show in Fig. 16 the joint probability distribu-
tion function p�hu ,h��. For all flows, the joint PDFs of hu

and h� are not statistically independent. We find a higher
probability in the two quadrants in which hu and h� have the
same sign as in those with opposite signs. The highest prob-
ability is observed in lower left and upper right corners, cor-
responding to a high probability to find alignment or anti-
alignment of u with � and � with ���. This result
supports the conjecture reported by Sanada29 and Galanti and
Tsinober.30 For comparison, we also added the joint PDF for
independently uniformly distributed velocity helicity and
vorticity helicity fields, which results in a uniform joint PDF
with mean value 1/4.

IV. CONCLUSIONS

Nine direct numerical simulations of homogeneous tur-
bulence with shear and rotation have been performed and
analyzed for this study. The turbulent kinetic energy was
found to grow strongly in the antiparallel configuration with
0� f /S�1 and to decay otherwise. The growth is due to an
increased normalized turbulence production P /SK=−2b12

that is directly related to the only nonzero off-diagonal com-
ponent of the Reynolds stress anisotropy tensor. It was also

observed that the growth rate of the turbulence is related to
the inclination angle of vortical structures relative to the
downstream direction.8

The anisotropy of the flows is investigated with conven-
tional measures, such as the Reynolds stress anisotropy ten-
sor, the dissipation rate anisotropy tensor, and the normalized
components of the dissipation rate. In addition, turbulence
structure anisotropy tensors are considered and results for
sheared turbulence are in agreement with Kassinos et al.20

The wavenumber-dependent tensors showed no return to
isotropy at large wavenumbers. The directional energy of the
flow, obtained from orthogonal wavelet decomposition of the
velocity field, allows one to give an alternative measure of
the anisotropy of the flow. Wavelets, such as structure func-
tions, are sensitive to velocity differences in the different
directions and allow to characterize streamwise, vertical, and
spanwise anisotropy. Furthermore, orthogonal wavelets have
the advantage that, due to their orthogonality, the energies
contained in the different directions sum up to the total en-
ergy, unlike structure functions or one-dimensional spectra.
It has been shown in this paper that these directional energies
capture the properties of velocity gradients in rotating shear
turbulence. For the strongly growing case with f /S=+0.5,
the spanwise differences of vertical velocity contain most of
the energy, followed by the spanwise differences of down-
stream velocity. For the strongly decaying case with f /S
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=+5, however, the vertical differences of spanwise and
downstream velocities contain most of the energy, while ver-
tical velocity is strongly reduced. It has thus been confirmed
that wavelet-based directional energy measures agree with
conventional measures.

The intermittency of the different flows studied here has
been quantified using scale-dependent flatness in the differ-
ent flow directions. Small-scale intermittency has been ob-
served in most cases with an increased level of intermittency
in the streamwise direction. At intermediate scales, a
Gaussian-like behavior has been found. These observations
confirm that the scale-dependent flatness is well suited to
quantify the flow intermittency in different directions.

The geometrical statistics of the flows have been ana-
lyzed by considering PDFs of velocity helicity and of vortic-
ity helicity. For the cases with growing turbulent kinetic en-
ergy, the local relative helicity indicates a tendency toward
two-dimensional motion. However, for the decaying cases,
helical motion �reflected by an alignment or antialignment of
velocity and vorticity� is mainly observed. A scale-dependent
study of helicity shows that for all cases small scales exhibit
helical motion, while two-dimensionalization is observed at
larger scales. It has thus been shown that the helicity of the
flow strongly depends on the scale.

Joint PDFs of velocity helicity and vorticity helicity in-
dicate a strong correlation of the signs of these quantities.
This observation supports the conjectures reported by
Sanada29 and Galanti and Tsinober.30 The results suggest that
vorticity helicity tends to diminish velocity helicity for rotat-
ing and sheared turbulence.
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