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The Lagrangian velocity statistics of dissipative drift-wave turbulence are investigated. For large values
of the adiabaticity (or small collisionality), the probability density function of the Lagrangian acceleration
shows exponential tails, as opposed to the stretched exponential or algebraic tails, generally observed for
the highly intermittent acceleration of Navier-Stokes turbulence. This exponential distribution is shown to
be a robust feature independent of the Reynolds number. For small adiabaticity, algebraic tails are
observed, suggesting the strong influence of point-vortex-like dynamics on the acceleration. A causal
connection is found between the shape of the probability density function and the autocorrelation of the

norm of the acceleration.
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Turbulence is one of the main actors in degrading the
confinement quality of magnetically confined fusion plas-
mas. This so-called micro-turbulence in the edge of plasma
fusion devices, such as tokamaks, is commonly admitted to
be of electrostatic nature [1,2]. A typical instability leading
to this turbulent motion is the drift-wave instability,
present in plasmas with a strong magnetic field and a
temperature or pressure gradient. Turbulence leads to an
enhanced diffusivity and its average influence can be char-
acterized by transport coefficients which represent the
mean influence of turbulent motion as an enhanced fluid
property [3]. Reviews on the use of transport coefficients in
fusion devices are given in [4,5]. Transport coefficients
allow us to describe the mean transport on the level of
second order moments such as the variance of the impurity
density, kinetic energy, and fluxes. The spatial and tempo-
ral fluctuations around these variances are however not
described by such an approach, since they are directly
related to fourth-order moments. These fourth-order mo-
ments will give a rough description of the intermittent
properties of the turbulence: is the transport bursty, corre-
sponding to non-Gaussian fluctuations or diffusive so that
it could be modeled by a Gaussian process? Indeed, if the
turbulent transport is dominated by rare but strong events,
the impact on the confinement quality will be different
from the case where a Gaussian process governs the trans-
port. In three-dimensional fluid turbulence it is now well
established that the velocity displays near Gaussian statis-
tics but that the velocity gradients and acceleration are
characterized by probability density functions (PDFs) with
strongly non-Gaussian tails [6,7]. In two dimensions it was
shown that Lagrangian statistics can be strongly non-
Gaussian even when the Eulerian statistics are perfectly
Gaussian [8]. The present investigation is dedicated to the
characterization of Lagrangian intermittency in the close-
to-two-dimensional dynamics of electrostatic plasma
turbulence.
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Intermittency can be investigated through the statistical
properties of velocity increments du, which can be defined
both in an Eulerian and in a Lagrangian reference frame.
Lagrangian velocity increments are defined as du(z, 7) =
u(r + 7) — u(t), where u() is the Lagrangian velocity, i.e.,
the velocity of a passive tracer monitored on its trajectory
as a function of time. When the shape of the PDF of the
velocity increments varies as a function of 7, the statistics
are usually said to be intermittent, even though this
definition can be criticized [9]. At smallest 7, the PDFs
approach the shape of the acceleration PDF, which is
generally non-Gaussian in turbulent flows.

The study of the Lagrangian dynamics of fluid turbulence
is now possible in controlled turbulence experiments in
which small solid tracer particles are followed in the flow
(e.g., [10-12]) and numerical simulations of the Navier-
Stokes equations [6]. Whereas the experimental tracing of
particles in fusion reactors introduces problems related to
the extreme conditions in controlled fusion, tracing of
particles in numerical simulations of drift-wave turbulence
is perfectly possible. In a recent study [9], we presented
detailed results on the Lagrangian statistics obtained in
simulations of drift-wave turbulence, within the context of
the Hasegawa-Wakatani model [13,14]. In the present
Letter we will focus on the non-Gaussianity of the accel-
eration statistics. In particular, we will investigate the influ-
ence of the Reynolds number and the collisionality on the
statistics and we will propose explanations for the observed
behavior.

The Hasegawa-Wakatani model can be derived from the
Braginskii two-fluid description [15], considering an ion
fluid and an electron fluid in the presence of a fixed
magnetic field, assuming isothermal inertialess electrons
and cold ions. For details on the derivation of the 2D slab
version of Hasegawa-Wakatani equation, we refer, e.g., to
[16]. The model assumptions yield eventually a closed
set of equations, describing the vorticity @ = V?¢ of the
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E X B motion (with ¢ the electrostatic potential) and the
advection of the plasma density fluctuations n:

(% - sz)v2¢ =[V2p. ¢+ c(¢p—n). (1)

(% — DVz)n =[n¢]l—u-Vin(n) + c(dp —n), 2
in which all quantities are suitably normalized as in
[17]. The model equations closely resemble the two-
dimensional Navier-Stokes equations combined with the
advection equation for a scalar n, representing here the
fluctuations of the plasma density around a mean profile.
Small-scale damping is introduced through the Laplacians,
with v and D denoting viscosity and diffusivity, respec-
tively. Nonlinearities are written as Poisson brackets
[a,b] =& g—f - ‘;—;* 80 The source term in the above equa-
tion is the mean plasma-density profile {n), which is as-
sumed to be exponentially decaying in the x direction and
homogeneous in the y direction, so that Eq. (2) reduces to
the advection of a scalar fluctuation with respect to an
imposed uniform mean scalar gradient. The electrostatic
potential ¢ plays for the E X B velocity the role of a
stream-function, u = V| ¢, i.e.,, u, = —d¢/dy and u, =
d¢/0x. The Lagrangian acceleration of tracer particles,
advected by the £ X B velocity is then

— Vb 1, 6]

4L ot
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=—Vp+vVu - v—é[t(n — 9], 3)

where p is the pressure. The adiabaticity c is given by
2
S
0T Wi

with T, the electron-temperature, k, the effective parallel
wave number, e the electron charge, n, the reference
plasma density, n the electron resistivity and w,; the ion-
gyro-frequency. The adiabaticity is therefore determined
by the electron resistivity, which is strongest in the edge of
fusion devices, where the temperature drops. The propor-
tionality to k2, the square of the dominant wave number in
the parallel direction, is a simplification which allows us to
reduce the model towards a two-dimensional system. Since
the strong magnetic field homogenizes the parallel dynam-
ics, the perpendicular £ X B velocity field is close to two-
dimensional. This, in combination with the incompressi-
bility of the E X B velocity and the assumption that the
parallel dynamics is governed by a narrow spectrum
peaked around a constant value k_, allows us to use the
above set of equations for the scalars @ and n.

The coupling term ¢(¢ — n) permits the system to access
a saturated turbulent state even in the absence of external
forcing. This is the main difference with the equations
describing the two-dimensional mixing of a scalar in fluid
turbulence. It is related to the presence of the parallel
current density, which couples the two equations and gives

c =

rise to an electrostatic plasma instability leading to a satu-
rated turbulent state in which the energy is drawn from the
imposed mean plasma-density profile. The collisionality of
the ions and electrons plays a key role in the model. If the
collisionality tends to a large value, hence ¢ becomes small,
the equations tend to a hydrodynamic 2D limit in which
long-living vortices are observed. It was found in [9] that the
Lagrangian acceleration in this case showed a very inter-
mittent behavior, reflected by probability density functions
with heavy tails. For intermediate values of ¢ the flow is
called quasiadiabatic. The PDFs of the acceleration in this
regime tend to exponential distributions.

One remaining open question is whether this intermit-
tent behavior is a Reynolds number effect. Indeed in three-
dimensional Navier-Stokes turbulence [12,18] the flatness
of the acceleration PDF increases as a function of the
Reynolds number for the Reynolds numbers currently
available. In the present investigation this Reynolds-
number dependence is analyzed by exploiting the results
of a set of direct numerical simulations of the Hasegawa-
Wakatani model for varying Reynolds number.

Another issue is the relation between the time-
correlation of the norm of the acceleration and the mani-
festation of intermittency as proposed by Mordant et al.
[19]. The present study will allow us to assess this relation
for the different regimes.

Equations (1) and (2) were solved in a double-periodic
domain of size 642 using a fully dealiased pseudospectral
method at a resolution of 1024? gridpoints, starting from
Gaussian random initial conditions. In the saturated, fully
developed turbulent flow 10* particles were injected,
equally spaced, and their velocity and acceleration were
monitored during a large number of large-scale turnover
times (~ 4007,). The eddy turnover time 7, obtained in

the different regimes, defined as 1/ VW where W is the
rms vorticity, is of the same order of magnitude, ~0.4.
Details on the simulations of Egs. (1) and (2) can be found
in [9] and on the Lagrangian part of the study in [20] in
which a similar investigation was performed for Navier-
Stokes turbulence. The adiabaticity is varied between ¢ =
0.01 and ¢ =2, to obtain different flow regimes.
Visualizations of the vorticity field for two flow regimes
are shown in Fig. 1.

In Fig. 2, the PDFs of the Lagrangian acceleration are
shown for different values of c. It is observed that the PDF
evolves from a close to exponential shape for large ¢ to an
algebraic shape for ¢ = 0.01. To check if this is merely an
effect of the Reynolds number, we performed simulations at
different Reynolds numbers, which is here defined as R, =
AU/ v, with ‘U the rms velocity and A = U/ W, an in-
trinsic scale of the turbulence. This Reynolds number was
varied by a factor 6. The Prandtl number was chosen equal
to one for all simulations. The results are shown in Fig. 3,
where it is observed that the Reynolds number only slightly
influences the shape of the PDFs. Therefore we need to find
an alternative explanation for the difference in shapes of the
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FIG. 1 (color online). Visualizations of the vorticity field for two
different values of the adiabaticity. Left: ¢ = 0.01, right: ¢ = 0.7.

accelerations for the two different flow regimes. The ex-
ponential distributions can be explained as follows: it was
argued in [21] that an exponential distribution for the pres-
sure gradient PDF can be obtained from random Gaussian
(nonintermittent) velocity fields by simply solving a
Poisson-equation to obtain the pressure and subsequently
computing the gradient, without considering the nonlinear
dynamics of the Navier-Stokes equations. It can be seen
from Eq. (3) that the pressure gradient is directly related to
the Lagrangian acceleration. The shape of the PDFs for the
cases for moderate and large ¢ simply shows that the flow is
not intermittent from a Lagrangian point of view, but gov-
erned by a Gaussian-like diffusion process.

More puzzling are the algebraic tails, found for small c.
In the inset of Fig. 3 we show that the tails show a close to
algebraic behavior of the form p(a) ~ 1/a® with 8 of the
order 2. It is interesting to note that the shape of the PDFs
obtained in the hydrodynamic case closely resembles the
results obtained for point-vortices. Indeed, in Ref. [22] the
point-vortex model, introduced by Onsager [23] and
Townsend [24], was used to study the influence of point
vortices on the Lagrangian acceleration of passive tracers.
In their work, the acceleration PDF was to leading order
given by p(a) ~ 1/a°/3. In this light the results for the
quasihydrodynamic flow seem to be at least partially
explained by the presence of vortical structures as observed
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FIG. 2 (color online). PDFs of the Lagrangian acceleration (x
component) for different values of c¢. PDFs are normalized by
04, the rms value of the acceleration. Graphs for different ¢ are
shifted vertically for clarity.

in Fig. 1. The exponent of the power-law tails of the accel-
eration PDF is close to the value —5/3 as in the point-vortex
study. Even better agreement might be obtained by compar-
ing with vortex-interaction models using vortices with a
finite extension [25] (such as the Burger’s vortex).

It remains to be explained why this is not the case for the
quasiadiabatic case. As observed in Fig. 1, in this case the
drift-waves also seem to organize into vortical structures.
However the lifetime of these structures is shorter [26].
The parallel dynamics are thus responsible for the change
in lifetime of the vortices. For higher adiabaticity, electro-
static fluctuations are rapidly smoothed out through the
parallel current. Vortices do then not exist long enough to
influence the acceleration statistics intermittently. In this
sense the long-time correlations seem to be essential to
obtain the algebraic tails in the acceleration PDF. The
centripetal component of the acceleration is constant in a
purely circular orbit, and this is captured by the autocorre-
lation of the norm of the acceleration, which can therefore
be directly related to the lifetime of the vortical structures.
This is checked in Fig. 4. For all curves, time is normalized
by the time at which the autocorrelation of the x compo-
nent of the acceleration is minimum. This timescale can be
qualitatively related to the timescale of the average circular
motion of fluid particles. The autocorrelation of the accel-
eration components displays a behavior similar to what is
observed in three-dimensional Navier-Stokes turbulence,
with a rapid decrease and a negative dip. This dip becomes
less pronounced for lower values of c. It is observed that in
the cases in which a closer to exponential decay of the
acceleration PDFs is observed, the autocorrelation of
the norm decorrelates faster than in the cases in which
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FIG. 3 (color online). PDFs of Lagrangian acceleration at
different Reynolds numbers for ¢ = 0.01 (top panel) and ¢ =
0.7 (bottom panel). In the inset of the top panel, the power-law
behavior of the tails of the PDF is demonstrated in double-
logarithmic representation.
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FIG. 4 (color online).  Autocorrelations of the acceleration C,,
and autocorrelation of the norm of the acceleration C),, | for the
five cases. Inset: Autocorrelations of the acceleration in lin-lin.
For each curve, time is normalized by 7*, the time at which the
correlation component reaches its minimum value.

the PDFs are algebraically decaying. Indeed the time cor-
relations of the norm become longer for small adiabatic-
ities. This constitutes a proof of the direct relation between
the time-correlation of the norm of the acceleration and
Lagrangian intermittency as proposed in [19]. A way to
numerically check the assumption of the role played by
time correlations of the norm of the acceleration within a
point-vortex model would be to vary the lifetime of the
vortices. If short enough lifetimes are imposed, exponen-
tial tails are probably obtained.

The main conclusion of the present work is that the
electrostatic turbulence studied here is not intermittent
once the adiabaticity is large enough. This corresponds to
the case in which the parallel structures have a short enough
wavelength (or high parallel wave number) or small colli-
sionality. Intermittency due to electrostatic vortex structures
is therefore expected to be stronger near the edge of fusion
plasmas, where the collisionality becomes more important.

In the present Letter, the transition between long-living
structures and short-lived wavy structures takes place some-
where in between ¢ = 0.1 and ¢ = 0.7. Inreality the parallel
spectrum is broadband and we assumed its peak around a
certain frequency to obtain the simplified two-dimensional
model. If the full three-dimensional model is considered, the
dynamics will probably be a mixture between the different
cases, dominated by a certain peak-wave number. Also the
conclusions of this Letter relate to the dynamics captured
within the present model, i.e., homogeneous electrostatic
turbulence fed by a strong plasma-density gradient.

For larger adiabaticity (¢ > 0.7), which is expected to
correspond to a situation further away from the edge or for
colder plasmas, the statistics of this kind of turbulence are
close to what would be expected from a Gaussian system.
This study suggests that with respect to transport coeffi-
cients, microturbulence can be modeled by a Gaussian
diffusion process with some additional rare point vortices
if the adiabaticity is small enough (¢ < 0.7). This does not
imply that plasma turbulence is not intermittent, only that
its origin is not due to the mechanism contained in the

present slab geometry if the adiabaticity is large enough. It
could be interesting to carry out a similar study in a more
complete geometry, such as in the study by Holland et al.
[27]. In their work, dynamic regimes containing long-
living vortices were observed, directly related to the
large-scale zonal flows. However, no fully developed tur-
bulent state was considered. Studying the turbulent
Lagrangian dynamics in such a geometry constitutes an
interesting perspective.
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