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a b s t r a c t 

We consider a turbulent flow past periodic hills at Reynolds number 1400 and compare two numerical 

methods: A Fourier pseudo–spectral scheme with volume penalization to model the no-slip boundary 

conditions and a finite volume method with body fitted grids. A detailed comparison of the results is 

presented for mean velocity profiles and Reynolds stress and confronted with those obtained by Breuer 

et al., [1]. In addition higher order statistics are performed and their scale-dependence is analyzed using 

orthogonal wavelets. Moreover, for the Fourier pseudo-spectral scheme, the influence of the Reynolds 

number is investigated. 
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1. Introduction 

Computational fluid dynamics in complex geometries is still a

challenge especially for high Reynolds numbers. The thin bound-

ary layers which destabilize, subsequently detach and thus gener-

ate coherent vortices are a key feature to understand turbulence

generated by walls. Two main approaches have been developed so

far, either body fitted grids using e.g., finite volume or finite ele-

ment discretizations, or immersed boundary methods (IBM) which

are becoming more and more attractive due to their high flexibil-

ity. Indeed, for the latter the complex geometry is typically em-

bedded into a larger computational domain of simple shape, e.g., a

rectangle. Hence classical discretizations, using Cartesian grids, for

which efficient solvers are available, can be employed. The influ-

ence of the geometry and the no-slip boundary conditions is mod-

eled by modifying the underlying Navier–Stokes equations. The ori-

gin of IBM can be traced back to Courant (1943) [2] in the context

of constraint optimization. A large range of immersed boundary

methods can be found since then, for example Lagrangian multi-

pliers [3] , level-set methods [4] , fictitious domain approaches and

surface [5] and volume penalization approaches [6] . For reviews we

refer the reader to [7,8] and [9] . 
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Validation and benchmarking are an essential step in code de-

elopment. Comparing the results of different numerical meth-

ds enables us to know the advantages and drawbacks. Their do-

ain of validity can thus be checked and their precision can be

ssessed. 

In this study, we have chosen the volume penalization method

6] coupled with a Fourier pseudo-spectral method [10] . Investi-

ations on the Gibbs oscillations which appear in Fourier based

chemes can be found in [11] , as well as filtering techniques for re-

oving this Gibbs phenomenon. The code has been bench-marked

n two space dimensions [12] and applied to moving obstacles

13] . To evaluate the performance of this new method in three-

imensional, turbulent fluid flow, it is compared here to that of

 well-established second-order finite-volume method in terms of

ccuracy and efficiency. The latter, called “Fastest” [14] is based on

 finite volume discretization and uses body fitted grids. The flow

onfiguration is a well documented benchmark “flow over periodic

ills” [1] . This benchmark is of interest, since it is a geometrically

imple test case and there is no difficulty to specify inflow/outflow

oundary conditions. Moreover, the physical mechanisms of sepa-

ation on curved surfaces and the stream wise decorrelation en-

anced, by choosing a sufficiently large distance between the two

ills, are attractive features of this test case. An other class of IBM

as investigated recently using this benchmark in [15] . The three-

imensional Fourier pseudo-spectral code including volume penal-

zation (denoted by “Pen4Flow”) to impose non-periodic boundary

http://dx.doi.org/10.1016/j.compfluid.2016.04.028
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
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Fig. 1. Sketch of the 2D hill geometry. The dimension in spanwise z -direction is l z = 4 . 5 H. 
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Table 1 

Numerical parameters, flow domain height y l / H , flow-through times 

( FTT = L/u b ) used for statistical evaluation for Re = 1400 . 

N x N y N z y l / H FTT 

Pen4Flow 256 3 256 256 256 3 .15941 48 .88 

Pen4Flow 512 2 256 512 512 256 3 .09647 14 .69 

Pen4Flow 512 3 512 512 512 3 .09647 29 .19 

Fastest coarse 221 92 100 3 .05 215 

Fastest fine 442 184 200 3 .05 213 
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onditions is thus applied for the first time to compute fully de-

eloped turbulent flows. The aim of the paper is to show a de-

ailed benchmark of the volume penalization method for three-

imensional turbulent flows and to compare the efficiency with

espect to a classical finite volume code, Fastest. 

For the two solvers several grid levels are employed. As the

onsidered flow is turbulent, statistical analyses are performed and

ompared with each other. In addition we also use orthogonal

avelets to decompose the flow into different scales of motion.

tatistical quantities can thus be defined as a function of scale and

irection. 

The manuscript is organized as follows. In Section 2 the “Flow

ver periodic hills” configuration is explained and the two numeri-

al methods are shortly presented. Then in Section 3 , the results

or the different codes are described and the flow statistics are

ompared. Scale dependent analysis of the results are also per-

ormed. Finally, the influence of the Reynolds number is investi-

ated for the pseudo-spectral code with the volume penalization

ethod. Some conclusions and perspectives are exposed at the end

f the manuscript. 

. Flow configuration and numerical methods 

.1. Flow configuration 

The classical benchmark “Flow over periodic hills” [1] , is consid-

red in detail at a Reynolds number of Re = 1400 which is based

n the bulk velocity u b at x = 0 and the bump height H . To check

he influence of the Reynolds number, we also considered Re = 700

nd Re = 2800 . The boundary conditions are periodic along the

tream wise x -direction and the span-wise z -direction. The flow is

onfined by a hill at the bottom and by a wall plane at the top

 y -direction). The flow configuration is illustrated in Fig. 1 . 

.2. Pen4Flow: Fourier pseudo-spectral code with “volume 

enalization” method 

In this subsection, we present the volume penalization method

nd the methodology to include the periodic hill configuration.

ore details on the numerical and mathematical validation of this

ethod can be found [13,16] . 

The Fourier pseudo-spectral code solves the incompressible

avier-Stokes equations in velocity-vorticity formulation. The vol-

me penalization method modifies the Navier-Stokes equations by

dding a penalization term to the right hand side of the momen-
um equation: 

∂u 

∂t 
+ ω 

ω ω × ∇u + ∇� − ν∇ 

2 u − F = − 1 

η
χ(u ) , 

∇ · u = 0 , x ∈ � (1) 

ith 

∇ 

2 � = ∇ ·
(
ω 

ω ω × u + F + 

1 

η
χ(u ) 

)
(2) 

here u = (u x , u y , u z ) is the velocity, ν the kinematic viscosity, �

s the modified pressure, ω 

ω ω the vorticity, F an external force, η the

ermeability (or penalization parameter) and χ the mask func-

ion which equals to 1 in �s (solid domain) and 0 in �f (fluid

omain). Fig. 2 (a) shows the computational domain � = � f ∪ �s 

here �f is the fluid domain (in white) and �s is the solid domain

in black). The solution of the penalized Navier–Stokes equations

oes converge towards the solution of the Navier–Stokes equations

ith no-slip boundary conditions [6] . The difference between the

xact solution of the penalized equation and the exact solution of

he Navier–Stokes equations, called modeling error is proportional

o 
√ 

η and for sufficiently small values of η the solution is precise

nough. 

In space all variables are represented as truncated Fourier se-

ies, product and nonlinear terms are evaluated in physical space

hile derivatives are evaluated in spectral space. For time integra-

ion a second order Adams-Bashforth scheme is used for the non-

inear and the penalization term. The viscous term is integrated

xactly using the semi-group formulation [13] , which means that

he semi-group of the heat kernel is used for time integration. This

orresponds to the exact integration of the linear viscous term.

he numerical study was carried out on three different grids that

iffered in the number of nodes employed, see Table 1 . As the

olume penalization method takes care of generating the bound-

ry layer, the numerical grid has to be chosen sufficiently fine to

e able to resolve these thin layers. For each grid, the size l y in

he y -direction of the computational domain is chosen such that

 = 3 . 036 coincides with a collocation point and that the solid do-

ain on the top contains ten points along the y -direction. In all
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Fig. 2. Numerical grids: (top) Pen4Flow (128 3 for visualization), (bottom) Fastest for the coarsest grid (442 × 184 × 200). 
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simulations, the penalization parameter is η = 10 −3 and the CFL

constant is equal to 0.1. The choice of the penalization parameter

is a compromise which works well for the resolutions considered

here, more details on the influence of the penalization parameter

can be found in [11] . For Pen4Flow, we observe here that the time

step limitation comes from the CFL condition and not for the sta-

bility limit ( 	t < η) imposed by the penalization term. 

The flow is driven by an external force F = f e x ∈ �. In order

to keep the desired mass flow rate constant throughout the whole

simulation, a control function similar to [17] , updates the forcing

term on every time step: 

f n +1 = f n + (u b − 2 ̃

 u n + 

˜ u n −1 ) / (α f 	t) (3)

where ˜ u n is the measured bulk velocity at time level n, αf a damp-

ing factor ( α f = 10 for Pen4Flow and α f = 1 for Fastest). In all

computations the time-step for Pen4Flow is 	t = 10 −3 and for

Fastest 	t = 1 . 5 10 −3 . 

The flow is initialized with u (t = 0) = 0 . To trigger the instabil-

ity, an impulsion is imposed during the first time interval [0, 2],

i.e., the forcing term is extended to F = f e x + f imp e z with f imp =
A sin (2 x 2 π/l x ) ∗ exp (1 − 2(y − l y / 2) 2 ) ∗ sin (2 z2 π/l z ) and A = 1 be-

ing a suitable amplitude. 

2.3. Fastest: Finite volume method 

To solve the transient, incompressible Navier-Stokes equations

with the finite volume method on body-fitted grids, we employ the

solver Fastest [14] . This code is based on a cell-centered finite vol-

ume method on block-structured grids. Discretization of the con-

vective term is carried out using a multi-dimensional Taylor series

expansion which preserves second-order accuracy on strongly dis-

torted grids [18] , while the time is advanced by the Crank-Nicolson

scheme. This numerical procedure is of second order in space and
n time. The SIMPLE procedure is employed for the solution of the

ressure. Velocity and pressure fields are coupled via the Rhie-

how interpolation. The discretized system of equations is implic-

tly solved by Stone’s method. 

Two grids were generated for the finite volume computations,

he first of which, subsequently referred to as fine grid, was con-

tructed to fulfill the requirements of a DNS, while a coarse grid

as derived from that by omitting every second node in each

irection. A precursor RANS simulation employing the ζ - f model

f Hanjali ́c [19] gave an estimate of the Kolmogorov length scale

. Following Pope’s recommendations [20] , a maximum ratio of

x/η = 2 . 1 was ensured over the entire domain for the construc-

ion of the fine grid. For the boundary layer resolution, the nor-

alized wall distance of the first cell center y + 
1 

was kept below 0.1

verywhere. 

The time step size was chosen such that CFL < 1 for all

ime steps. During the computation, the mass flux was kept con-

tant utilizing (3) as external forcing. However, u (t = 0) /u b = 1 . 0

as chosen as initial condition, and during the initial simula-

ion period no additional forcing was necessary to excite the flow

nstabilities. 

. Results 

First we consider the periodic hill configuration at Reynolds

umber Re = 1400 and compare Fastest and Pen4Flow with the re-

ults obtained by Breuer et al., [1] . Second, we focus on Pen4Flow

nd study the influence of the Reynolds number. 

.1. Case Re = 1400 

In the following we present the results at Re = 1400 and study

he influence of the resolution. 
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Fig. 4. Isosurface of the vorticity norm || ω 
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z colored with the horizontal velocity u x computed with the Pen4Flow code at resolution 512 3 for Re = 1400 . 
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Table 2 

Numerical parameters, separation point x sep / H and reattachment 

point x reatt / H . 

N x N y N z x sep / H x reatt / H 

Pen4Flow 512 3 512 512 512 0 .26 5 .26 

Fastest coarse 221 92 100 0 .26 5 .20 

Fastest fine 442 184 200 0 .26 5 .21 

BPRM09 LESOCC N tot = 13 .6 10 6 0 .26 5 .19 

3
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Table 1 summarizes the numerical and physical parameters for

oth codes. Scaling of the CPU time with respect to the number of

rocessors is given in Fig. 3 for both codes using different resolu-

ion, obtained on the HHLR supercomputer (“Hessischer Hochleis-

ungsrechner”). Note that for Pen4Flow, the fluid domain height is

onstant and equal to y f = 3 . 036 and the solid domain height is

hosen such that the solid contains ten grid points and the bound-

ry of the fluid coincides with a grid point. 

Fig. 4 shows a three-dimensional representation of isosurfaces

f the vorticity norm colored with the stream-wise velocity. The

omputation has been obtained with the volume penalization

ethod at resolution 512 3 . We observe that the flow is turbulent,

haracterized by the presence of many vortices of different size.

e can also identify a recirculation zone corresponding to an up-

tream (negative, blue) velocity. In the following we will consider

tatistical quantities only. Table 2 shows that both codes yield sim-

lar values for the separation and reattachment point. A slight dif-

erence can however be observed for the reattachment point which

ight be due to the penalization method. 
l  
.1.1. Moment statistics 

Table 3 summarizes the first and second order moments to-

ether with the skewness and flatness values of the velocity fields

or both codes at a given time instant in the statistically steady

tate. We can note that averaging the results over time does not

hange the results and slight differences ( ≤2%) appear only for

igh order moment statistics. The flatness reflects the intermit-

ency in a turbulent flow while the skewness factor of velocity

s related to the energy transfer, according to the Kolmogorov 4/5

aw. The results show that all values are in good agreement, even
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Table 3 

Moments of the velocity field (averaged over the three components) for the Pen4Flow 

code (512 3 ) and for the Fastest code, at a given time instant in the statistically steady 

state. The data of the finite volume computed on the fine grid are interpolated onto an 

uniform grid with 512 3 grid points. 

M 1 M 2 Flatness: M 3 /M 

3 / 2 
2 

Skewness: M 4 /M 

2 
2 

Pen4Flow 512 3 0 .218 0 .228 4 .57 2 .025 

Fastest fine grid 512 3 0 .221 0 .233 4 .36 1 .966 
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Fig. 5. Top: PDF of the velocity (averaged over the three components) at a given time instant in the statistically steady state. Bottom: Turbulent kinetic energy spectrum 

versus wavenumber k in the spanwise direction. The codes used are Pen4Flow and Fastest. 
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for the higher order statistics. In all cases the difference is less than

5%. 

Fig. 5 (top) shows the probability density functions (PDF), esti-

mated with a histogram using 50 bins, of the velocity at a given

time instant in the statistically steady state. We find that the PDFs

do almost collapse except for weak negative values where we can

observe a small deviation. Note that the PDFs are plotted in log-lin

representation, hence the difference is negligible. Spectra of tur-

bulent kinetic energy along the span-wise direction are shown in

Fig. 5 (bottom). A small inertial range with a k −5 / 3 behavior can be

identified for k = 3 to 10, followed by a faster decay. The spectra of

both simulations collapse for low wave-numbers up to k = 60 . For

the Fastest code we then find a saturation, while for the spectral

code energy further decays with increasing wave-number. The sat-

uration might be due to the linear interpolation of the finite vol-

ume computation. 
t  
The statistical confidence of the second order moments can be

uantified by the fourth order moments which are of the same or-

er as the second order moments. Statistical convergence is also

eflected by the velocity PDF shown in Fig. 5 (top). The tails do not

how any fluctuations at the extreme values and seem thus well

onverged. 

.1.2. Mean velocity and Reynolds stress profiles 

First we consider the volume penalization code and we study

he influence of the resolution on the statistics. Fig. 6 shows mean

elocity and Reynolds stress profiles at four different stream-wise

ocations, x = 0 . 5 , 2 , 4 and 6 for three different resolutions, 256 3 ,

12 2 × 256 and 512 3 . Note that the profiles are all averaged

ver time (between 30 and 40 flow through times) and over the

pan-wise direction. We observe that the influence of the resolu-

ion is weak for all mean velocity profiles ( Fig. 6 only shows the
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x -component 〈 u x 〉 ) while it is much more sensitive for the second

order moments, illustrated in Fig. 6 (right) for the cross Reynolds

stress 〈 u ′ x u ′ y 〉 . Hence in the following we will consider only the two

higher resolutions for Pen4Flow. 

In Figs. 7 and 8 , the coarse grid computations using Fastest

show a good agreement for mean velocities with the fine grid com-

putations, similar to what has been observed for Pen4Flow. Con-

cerning the Reynolds stresses the differences are less pronounced

than for Pen4Flow, but are still slightly more visible, in particular

for the 〈 u ′ x u ′ y 〉 (see Fig. 7 , bottom, right). 

Now, we compare the statistics for the two codes for different

resolutions and different stream-wise positions. We also plot the

results from [1] and we use the notation: BPRM09 for LES (adapted

grid) and DNS (MGLET: non uniform spatial grid). 
〈

The comparison of the statistics for the two codes is shown for

he mean velocity and Reynolds stress profiles at location x = 0 . 5

nd x = 4 in Figs. 7 and 8 , respectively. The profiles are aver-

ged over time and over the span-wise direction. We observe that,

he mean velocities 〈 u x 〉 are the same, the mean velocities 〈 u y 〉 ,
he Reynolds stress 〈 u ′ x u ′ x 〉 and 〈 u ′ y u ′ y 〉 almost coincide, except at

 = 0 . 5 where we observe a small deviation for 〈 u ′ y u ′ y 〉 . The profiles

f the Reynolds stress 〈 u ′ x u ′ y 〉 exhibit slight differences for x = 2

nd x = 4 . Significant differences in 〈 u ′ z u ′ z 〉 are observed if we com-

are with the results from [1] , however Pen4Flow and Fastest do

till match. The difference is probably due to the fact that, in [1] ,

reuer et al., plotted the turbulent kinetic energy k instead of the

eynolds stress 〈 u ′ z u ′ z 〉 . We checked the turbulent kinetic energy

omputed from our data and found a good agreement with the

 u ′ z u ′ z 〉 obtained in [1] . 
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We can note also that for the mean vertical velocity 〈 u y 〉 , at

 = 6 some fluctuations and an overestimation around y = 1 are

bserved for Pen4Flow. However, the fluctuations tend to disap-

ear for increasing the resolution. The higher moments are more

ensitive when we change the methods, but we can conclude that

he two codes yield similar results which are in reasonable agree-

ent. 

.1.3. Wavelet analysis for the velocity fields 

Wavelet decomposition of flow fields yields information on

cale, position and direction. Scale-dependent statistical analysis of

urbulent flows can thus be performed by considering the wavelet

oefficients for example of velocity or vorticity, see, e.g., [21] .

avelet-based directional energies can be defined which capture

he properties of velocity gradients. The intermittency of the flow

n different directions can be quantified with scale-dependent di-

ectional flatness. The scale-dependent velocity flatness was shown

o quantify the spatial variability of the energy spectrum [22] . Here

e will present applications of scale dependent statistics of the ve-

ocity field for the periodic hill flow computed with both methods

resented above. 

The velocity field, u (x ) = (u x , u y , u z ) , is decomposed into an or-

hogonal wavelet series: with x = (x, y, z) ∈ [0 , x l ] × [0 , y l ] × [0 , z l ]

escaled onto [0 , 2 π ] and given at resolution N = 2 3 J , where J is

he number of octaves in each spatial direction. The decomposition

f u into an orthogonal wavelet series yields: 

 (x ) = 

∑ 

λε�

˜ u λψ λ(x ) , (4) 

here the multi-index λ = ( j, i x , i y , i z , d) denotes the scale j , the

osition i = (i x , i y , i z ) , and the directions d = 1 , 2 , ..., 7 of the

avelets. Indeed, the wavelet decomposition in three dimensions

ields seven directions due to the tensor product construction [23] .

he corresponding index set � is 

= { λ = ( j, i x , i y , i z , d) , j = 0 , ..., J − 1 ; i x , i y , i z = 0 , ..., 2 

J − 1 

and d = 1 , ..., 7 } . (5) 

Due to the orthogonality the wavelet coefficients are given by

˜ 
 λ = 〈 u , ψ λ〉 where 〈 ·, ·〉 denotes the L 2 -inner product, defined by

 f, g〉 = 

∫ 
[0 , 2 π ] 3 f (x ) g(x ) dx , for each velocity component. The coef-

cients measure fluctuations of u around scale 2 − j and around po-

ition 2 π i /2 j in one of the seven possible directions. The N wavelet

oefficients ˜ u λ are efficiently computed from the N grid point val-

es of u using the fast wavelet transform, which has linear com-

lexity [24] . In this study, we have chosen the Coiflet 30 wavelet,

hich has 10 vanishing moments ( 
∫ 

x p ψ(x ) dx = 0 , p = 0 , ..., 9 ) and

hich is well adapted to represent the current flow simulations. 
The a -order moments dependent on the scale index j and the

irection d are defined as: 

 

a 
( j,d) (u i ) = 〈 ̃  u i 

a 〉 ( j,d) , where i = i x , i y , i z and a ∈ N . (6) 

〉 ( j, d ) is the average over all positions i of the wavelet coefficients

or a given direction d and a given scale j . 

At a given time instant in the statistically steady state, we ap-

lied the wavelet based multi-scale analysis. Scale-dependent mo-

ents are shown in Fig. 9 for Pen4Flow with 512 3 collocation grid

oints and for the finite volume code with a fine grid interpolated

n an uniform Cartesian grid 512 3 . Large scale corresponds to J = 0

nd small scale to J = 8 . The second order moments show the dis-

ribution of turbulent kinetic energy at different scales and yield

imilar results for both codes. The scale-dependent flatness, which

s a measure for intermittency of the flow, obeys to the same be-

avior, and the difference between the two curves is small. The

kewness (not shown here) gives for both cases similar values.

oth codes show thus the same behavior for the scale dependent

tatistics from the largest to the smallest scale. 

To get further insight into the scale dependence of the

en4Flow and the Fastest computations, we consider in Fig. 10

cale dependent moments of the velocity fields in different spa-

ial directions, defined in Eq. (6) using an orthogonal wavelet de-

omposition. In Fig. 10 (top) the second order moment of the three

elocity components in the longitudinal and transverse directions,

.e. , for u x the longitudinal direction corresponds to x while y and

 are the transverse directions, is shown. Large scale corresponds

o J = 0 and small scale to J = 8 . For clarity, we decided to omit

he mixed directions xy, xz, yz, xyz . The scale dependent first (not

hown here) and second order moments, are almost the same for

oth codes. The behaviors of the scale-dependent flatness are also

imilar; indeed the difference between the two curves is small for

ll scales, except for the smallest scale J = 8 where the deviation is

ore pronounced. 

.2. Influence of the Reynolds number 

In the following, we investigate the influence of the Reynolds

umber using the Pen4Flow code and compare the results again

ith those obtained by Breuer et al., [1] . In Table 4 , the sepa-

ation and reattachment points are compared for three Reynolds

umbers, Re = 70 0 , 140 0 and 2800. Slight differences are observed

or the separation point, while the discrepancies are larger for the

eattachment by comparison with those obtained with the BPRM09

ESOCC code. 

As example in Fig. 11 , we selected the position x/h = 4 as

he comparison of the results for the other positions shows
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Fig. 10. Scale-dependent second order moments (top) and scale dependent flatness (bottom) for the three velocity components in the three main directions. The codes used 

are Pen4Flow with 512 3 collocation grid points and Fastest with a fine grid interpolated on a Cartesian uniform grid 512 3 . 

Table 4 

Reynolds numbers, separation point x sep / H 

and reattachment point x reatt / H . The results 

from [1] are also plotted and denoted by 

BPRM09 for LES (adapted grid). 

x sep / H x reatt / H 

Re = 700 

Pen4Flow N = 256 3 0 .30 5 .30 

BPRM09 LESOCC 0 .29 5 .24 

Re = 1400 

Pen4Flow N = 512 3 0 .26 5 .26 

BPRM09 LESOCC 0 .26 5 .19 

Re = 2800 

Pen4Flow N = 512 3 0 .24 5 .44 

BPRM09 LESOCC 0 .21 5 .41 
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similar tendencies. Again we start with the mean velocity profile

for 〈 u x 〉 and 〈 u y 〉 , we observe that for the three Reynolds num-

bers all curves agree reasonably well. The Reynolds stress profiles,

Fig. 11 middle and bottom, reflect the same tendency, however for

〈 u ′ x u ′ x 〉 we observe larger differences com pared to the mean veloc-

ity. Nevertheless, for the worst case, Re = 2800 , the differences are

below 10%. 

4. Conclusion 

The flow over a periodic hill configuration has been revisited

using a Fourier pseudo-spectral code with volume penalization and

a finite volume code with body fitted grids. This classical bench-

mark involves complex, non-Cartesian geometries and turbulent
ow conditions. The presence of a recirculation zone caused by

he presence of the hill constitutes an additional difficulty. This

etailed study showed that the volume penalization code and the

nite volume code reproduce well the physics of this flow and pro-

uce similar results. Wavelet analysis enabled us to show that the

ulti-scale physics is almost the same for both codes. The volume

enalization method is a powerful technique to impose Dirichlet

oundary conditions in complex geometries using still a Fourier

seudo-spectral method, which has been confronted here for three

ifferent Reynolds numbers. 

The pros and the cons for Pen4Flow and Fastest can be summa-

ized as follows. Due to the volume penalization method, Pen4Flow

s very flexible for changing the geometry and the convergence

f the method is mathematically justified and proved in [6] . The

enalization method becomes more efficient for higher Re num-

ers [25] because the penalization boundary layer is proportional

o 
√ 

ην . Moreover for this code, no linear system has to be solved

differential operators are diagonal) and most computational cost is

ue to the FFT, for which highly efficient parallel implementations

re available. We can note also that the Gibbs oscillations are not

mplified [11] and the method does not show numerical diffusion

nd dispersion. However, the penalization term models boundary

onditions with first order accuracy only which is also the case for

he geometrical errors due to the mask function (staircase effect).

quidistant grids are required in Pen4Flow, which is less efficient

s fine grid size is required close to the boundary. Furthermore,

he volume penalization technique requires more grid points as

he governing equations have to be solved in the whole domain,

ncluding both solid and fluid domains. Finally, the time step is
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Fig. 11. Mean velocity (top) and Reynolds stress profiles (middle and bottom) at x = 4 for Reynolds number Re = 70 0 , 140 0 , 280 0 . The profiles are averaged over time and 

over the spanwise direction. The code used is Pen4Flow with fine and coarse grids. The results from [1] are also plotted and denoted by BPRM09 for LES (adapted grid). 
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imited due to stability restrictions imposed by the penalization

erm in addition to the classical CFL limit. In conclusion, con-

idering these latter points, the volume penalization method is

n attractive alternative to simulate turbulent flows in complex

eometries. 

Fastest takes advantage of body fitted grids which are well

dapted to the geometry and involves no interpolation error. As a

onsequence less grid points are required compared to Pen4Flow.

he curvilinear grid with block-structured grids enables to have

oundary conditions fulfilled exactly. Nevertheless, Fastest adopts

he SIMPLE projection scheme for imposing the incompressibility,

hich is thus not exactly fullfilled. The finite volume scheme, used

n this code, is second order accurate in space and time, and an al-

ebraic system has to be solved in each time step. The paralleliza-

ion is also less efficient, as shown in Fig. 3 . Finally, Fastest is less

exible compared to Pen4Flow since the grid has to be generated

or a given geometry. 

Interesting perspectives of Pen4Flow are the application to

ompute turbulent flows in complex geometries which are simply

efined by the mask function and which may even vary in time,

s it is the case in fluid-structure interaction problems. The imple-

entation of additional transport equations, e.g. for passive scalars,
r the Boussinesq approximation is another promising direction.

he necessary Neumann boundary conditions can be implemented

sing the technique proposed in [16] . 
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