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Abstract
The influence of the curvature of the imposed magnetic field on reversed field pinch dynamics
is investigated by comparing the flow of a magnetofluid in a torus with aspect ratio 1.83, with
the flow in a periodic cylinder. It is found that an axisymmetric toroidal mode is always
present in the toroidal, but absent in the cylindrical configuration. In particular, in contrast to
the cylinder, the toroidal case presents a double poloidal recirculation cell with a shear
localized at the plasma edge. Quasi-single-helicity states are found to be more persistent in
toroidal than in periodic cylinder geometry.
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1. Introduction

In recent decades research on magnetically controlled fusion
has mainly focused on toroidal devices such as the tokamak,
stellarator or reversed field pinch (RFP). Of these devices the
tokamak has received most interest due to its geometrical
simplicity compared to the stellarator and the stability of
its magnetic field compared to the RFP. This latter device
possesses the technical advantage that the imposed toroidal
magnetic field does not need to be as large as for a tokamak,
since the self-organized state enhances the magnetic field
through a mechanism akin to the dynamo effect often invoked
to explain the origin of the magnetic field of the Earth. This
allows for the use of less sophisticated coils to generate
the toroidal magnetic field. However, it was shown that
RFP devices are plagued by magnetohydrodynamic (MHD)
instabilities, leading to a self-organized turbulent state which
degrades the confinement quality. This chaotic regime is called
a multiple-helicity (MH) state because a multitude of helically
extended modes interact. The term helicity is used here to
indicate the shape of the modes, which have a poloidal and
toroidal spatial frequency both different from zero.

However, in the last two decades quasi-single helicity
(QSH) states were observed in RFP experiments, where the

full turbulent regime is avoided and the energy of one helical
mode predominates above the others [1–5]. In the QSH state
there is a decrease of magnetic chaos and the formation of a
coherent helical structure within the plasma. The reduction of
particle transport was observed in QSH states with respect to
MH states [6–8]. Also it was found that increasing the toroidal
current makes the QSH regime more persistent [9, 10]. The
QSH state is responsible for the creation of internal transport
barriers (ITBs) that improve the confinement time by a factor
of two [11, 12]. Recently it was discovered that external
transport barriers (ETBs) are created for low plasma densities
that increase by 30% the confinement time. The origin of these
barriers is not well understood but it could be related to shear
flows [13]. Given the practical advantages of the RFP design,
the discovery of this QSH state renewed the interest of the
fusion community in the RFP dynamics.

The investigation of a cylinder, periodic in the axial
direction, is analytically more tractable than a torus since a
cylinder contains translational invariance both in axial and
azimuthal direction, whereas in a torus only translational
invariance exists in the toroidal direction. In the case in which
the ratio of the larger to smaller radius of a toroidal plasma
tends to infinity, the effects of curvature become negligible
and the plasma can be locally approximated by a straight
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cylinder. In practice this ratio is however in general not much
larger than four so that such an approximation is, at least,
questionable. Nevertheless, a certain number of important
features are observed both in cylindrical and toroidal geometry.
Due to the conceptual and technical simplicity of the periodic
cylinder, the majority of numerical studies of the RFP, using the
MHD approximation, consider therefore periodic cylindrical
geometries, thereby ignoring the influence of the curvature of
the magnetic field.

Numerical MHD simulations became important tools in
the investigation of RFPs in the 1980s, e.g. [14, 15]. In
the 1990s an important body of results was produced using
efficient codes in cylindrical geometry [16, 17]. In particular
the role of the Hartmann number and pinch ratio on the
triggering of helical modes were assessed in some detail in
cylindrical geometry [18–20], and more recently the role
of compressibility [21, 22]. Recent studies in cylindrical
geometry show some agreement with experiments [23–25],
but particularly important features such as the persistence of
the QSH state remain to be elucidated. Indeed the QSH
state seems to become more important in RFPs for increasing
Lundquist number [12]. In simulations this has only been
observed if a particular type of boundary condition is imposed
[25]. Ideal MHD equilibrium solvers allow the reproduction
of QSH equilibria [26], but need experimental input such as
the position of the helical axis, pressure profile and safety-
factor profile. Three-dimensional codes solving the MHD
equations in toroidal geometries without a priori definition of
pressure and safety-factor profiles exist, [24, 27, 28] but there
is not yet, to our knowledge, a study which systematically
investigates the influence of curvature on the dynamics of a
toroidal magnetofluid in the RFP context. This motivates
the present study which compares, using exactly the same
numerical code and governing equations, the dynamics of a
viscoresistive magnetofluid in a toroidal domain to those in a
cylindrical domain. We can thereby disentangle the influence
of the toroidicity from all other influences. By toroidicity we
mean here the curvature of the magnetic field induced by the
toroidal geometry. In particular will we keep the minor radius
of the torus equal to the radius of the cylinder and we will
fix the length of the cylinder to have the same value as the
length of the toroidal axis. The toroidal domain then roughly
corresponds to the cylindrical domain which has been bent to
form a torus.

2. Visco-resistive MHD simulations

We consider non-ideal MHD in which both viscous and
resistive effects are taken into account. An isothermal,
incompressible plasma is considered with uniform and
constant transport coefficients, which simplifies the problem
as far as possible, while retaining the required level of
complexity to study the emergence of helical modes in a
self-consistent manner. Indeed, if we drop the resistive term
and consider ideal MHD, the imposed toroidal electric field
will become independent from the toroidal plasma current,
an assumption which can dramatically change the plasma

Z

R
R0

T

L

r Pa

Z

P

2 R0

a

L

Figure 1. Toroidal (left) and periodic cylinder geometry (right).
The toroidal direction is labeled T and the poloidal P .

dynamics [29]. The Alfvén-normalized viscoresistive MHD
equations are [30],

∂tu − M−1∇2u = −∇p∗ + u × ω + j × B, (1)

∂tB − S−1∇2B = ∇ × (u × B), (2)

with ∇ · u = 0 and ∇ · B = 0, the current density j =
∇ × B, the vorticity ω = ∇ × u and the total pressure
p∗ = p + u2/2. These equations are non-dimensionalized
using the poloidal Alfvén speed CA = Bref/

√
ρµ0, with

Bref the reference poloidal magnetic field, ρ the density
and µ0 the permeability of vacuum. Our choice of an
isothermal incompressible description of the plasma is the
simplest description that satisfies the conservation of mass.
Two distinct geometries are considered: a torus and a periodic
cylinder (see figure 1), both with circular cross-section. The
reference length L is the diameter of these cross-sections. This
normalization introduces two dimensionless quantities, S =
CAL/λ and M = CAL/ν the Lundquist and viscous Lundquist
numbers, respectively, with λ the magnetic diffusivity and ν

the kinematic viscosity. The ratio of these two quantities is
the magnetic Prandtl number Pr = ν/λ. We have chosen
to consider spatially uniform viscosity and resistivity values.
These assumptions should of course be refined if one wants
to approach the behavior of existing machines. We think,
however, that it is not desirable to introduce this refinement in
the present study, since it would impede us in disentangling the
influence of the geometry on the dynamics from the influence
induced by the spatial profile of the transport coefficients.

We fix the diameter L ≡ 2a = 0.6π , and the axial length
of the cylinder 2πR0, where R0 = 0.55π is the length from
the axis to the center of the toroidal cross-section, so that
the cylinder has the same length as the toroidal axis passing
through the center of the torus’ poloidal cross-section. The
torus then has an aspect ratio ∼1.83. We have not carried
out a systematic study on the influence of the aspect radius
on the dynamics. Rather, we focus on the relatively compact
torus compared to a straight cylinder to identify the influence
of the presence of curvature of the magnetic field lines on the
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dynamics. A systematic study varying the aspect ratio would
indeed constitute an interesting perspective. The reference
poloidal magnetic field Bref = 0.15π , is set such that the
average toroidal or axial current density are 〈jT 〉 = 1. For the
toroidal geometry we impose a magnetic field B0T

(R) ∝ 1/R.
In a real device this field is produced by the toroidal field
coils located at the exterior of the vessel. A toroidal electric
field is also present, in order to induce a toroidal plasma
current. This electric field is chosen E0T

(R) ∝ 1/R [31].
For the present study we consider a constant conductivity,
and therefore the induced toroidal current density field has the
same dependence, j0T

(R) ∝ 1/R. The toroidal magnetic and
current density profiles give the imposed three-dimensional
helical magnetic fieldB0 = B0T

+B0pol . The poloidal magnetic
field is calculated from the current density distribution j0T

(R).
For more details about its numerical generation in general
geometries we refer to [32]. For the cylindrical geometry the
imposed axial magnetic and electric field are uniform. As the
conductivity is considered uniform the induced current density
field will be so as well. For a given geometry, the helical
curvature of the magnetic field is in our system determined
by a single parameter, the pinch ratio �. Together with the
value of the Prandtl number and the Lundquist number this
parameter will determine the behavior of the system. For the
toroidal geometry � is defined as the wall-averaged poloidal
magnetic field over the volume-averaged toroidal (or axial)
magnetic field, � = BP/〈BT〉.

The boundary conditions are no-slip, u|wall = 0, for
the velocity. For the magnetic perturbations around the base
field, the poloidal component and the component normal
to the wall vanish, B ′

Pwall = B ′⊥wall = 0, while the toroidal
(or axial) component is free. The initial conditions for the
simulations are zero magnetic perturbations and zero velocity
for the toroidal geometry. In the cylindrical case the magnetic
perturbations are zero but a small white noise (with rms value
of 10−4) is introduced in the initial velocity field in order
to trigger the instability, a feature which is not necessary
in the toroidal simulations. Equations (1,2) are discretized
with a Fourier pseudo-spectral method on a Cartesian grid.
To impose the boundary conditions we use the volume-
penalization technique. This method is benchmarked in detail
for three-dimensional viscoresistive MHD equations in [33].
The simulations are carried out on a cubic domain with 1283

grid points for all simulations.
For the considered geometry, under our assumptions, the

dynamics are entirely determined by the parameters M, Pr, �.
In the present investigation we keep the magnetic Prandtl
number fixed at Pr = 3 and we consider two different viscous
Lundquist numbers M = 444 and M = 888. The value of the
Prandtl number is chosen as a compromise between physical
considerations and numerical efficiency. Indeed, Pr > 1
is expected to be found in fusion plasmas and was used in
previous numerical studies Pr ∈ [1, 20] [34]. However, high
Pr number studies would limit the simulations to focus on
highly viscous behavior, which is less realistic. Since the
value of the viscosity in fusion plasmas is not well defined, an
investigation of the influence of the Prandtl number constitutes
an interesting perspective. Here we shall focus in particular on

the influence of the pinch ratio on the dynamics. All results are
evaluated once the system has obtained a statistically steady
state.

3. Results of the simulations

In figure 2 it is shown that for a value of � < 1 the
kinetic energy is mostly contained in the zero toroidal mode.
This means that the velocity field for these parameters is
axisymmetric around the major axis of the torus. At higher
values of �, roughly around � = 1, the helical modes with
n �= 0 become more important. But even at the highest values
of � reported in the present investigation, the toroidal zero
mode represents still 20% of the total kinetic energy and thus
importantly affects the dynamics for all cases considered here.
In contrast, in the cylindrical geometry the relative influence of
the axial-invariant mode is negligible for all considered values
of M and �. This marks an important difference: due to the
curvature of the magnetic field, RFP dynamics will always be
governed by a mix of helical modes, and toroidally invariant
modes. These latter are absent in cylindrical geometry.

The dominant helical modes at the higher pinch ratios
are n or kz = 3, 4 for the toroidal and cylindrical geometry
(see figures 2 and 3). This result is in good agreement
with experimental data from the RFP RELAX [35], which
possesses an aspect ratio ∼2 close to the one used in the present
simulations. The dominant modes measured in this device
are n = 4 and n = 5 [35]. For the simulations performed
with M = 888 there is an equipartition of the kinetic energy
between more modes in the cylindrical geometry and the state
is in a multiple-helicity state [1]. The toroidal simulations
have a mode n = 4 which continues to be significantly more
energetic than the others. The toroidal geometry displays thus
a state closer to a single-helicity state than the cylinder.

In figure 4(a), an instantaneous plot of the velocity field
in a poloidal cross-section is presented for the simulation
with M = 444 and � = 1.83 in the toroidal configuration.
Figure 4(b) shows the toroidally averaged poloidal flow,
corresponding to the n = 0 mode. This field is composed of
two counter-rotating vortices, and is characterized by peaked
poloidal velocities located in the external region where a shear
zone exists. The kinetic energy of the zero mode is mainly
localized at the plasma edge. The flow topology is similar in
the torus at low pinch ratio (� < 1). Such flow-fields were
obtained analytically for large transport coefficients in [36] and
numerically for relatively high Lundquist numbers in [30, 37].
In more realistic tokamak-like configurations with X-point
geometries using the MHD model with a bootstrap contribution
a similar field was observed [38] as well as using the reduced
MHD model [39]. Our results give some evidence that this
axisymmetric field persists in the presence of the helical modes.
In figure 4(c) we show the flow corresponding to the helical
modes n �= 0. The dominant mode is n = 3. Hence this
poloidal flow structure rotates three times around the toroidal
axis for one toroidal loop. If the total poloidal flow is compared
to the poloidal flow in the cylindrical geometry, figure 4(d),
an important difference is observed. The double vortex flow
pattern appearing in the torus is completely absent in the
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Figure 2. Ratio of the kinetic energy of the dominant toroidal modes over the total kinetic energy for the torus geometry, M = 444 (top) and
M = 888 (bottom) as a function of �. Visualization of the modes: toroidal velocity isosurfaces +0.007 (blue) and −0.007 (orange).

cylindrical geometry. This poloidal flow pattern is relevant
because the steep gradients induced by these vortices can be
responsible for the generation of ITBs. A link between the
presence of such ITBs and the magnetic topology of the QSH
state was recently suggested through an energy minimization
argument [40].

4. Comparison with experimental results

The comparison of numerical simulations with experimental
results is a rather complicated exercise in the field of fusion
plasmas. The assumption of scalar and uniform transport
coefficients is a bold approximation. Furthermore, the
Lundquist numbers in realistic machines is orders of magnitude
larger than what we have used in the present simulations. A
detailed comparison with respect to local flow and magnetic
field measurements seems thus not appropriate and we will
therefore focus on two global parameters: the pinch ratio and
the field-reversal parameter.

Quantitatively our numerical results are compared to
experimental data of three different RFP devices. The first set

of experimental data comes from the REPUTE experiment,
described in [41, 42], the second set of data is the RFP ZT-
40M [41, 43] and the third is from the device RELAX [35]. We
recall that this last experiment has a low aspect ratio ∼2, close
to the aspect ratio used in the present simulations. This device
has the particularity to allow � to be greater than two, whereas
for the majority of RFP experiments the pinch ratio is around
1.5. In figure 5 our numerical and the experimental results
are presented in the � − F plane. F is the reversal parameter
defined as the wall-averaged toroidal magnetic field over the
volume-averaged toroidal magnetic field, F = BT/〈BT〉. We
also show the theoretical curve found by Taylor [44] that has
been recently critically reviewed in [45] with respect to its
relevance to the RFP dynamics.

From figure 5 we can see that the simulations give results
in the � − F plane comparable to those obtained in the RFP
experiments: the reversal of the toroidal magnetic field BT for
the considered experiments occurs around the same value, for
� ≈ 1.5. The set of simulations that fits best the experiments
is the one performed for a toroidal geometry with viscous
Lundquist number M = 888. In this figure we note that both
the geometry and the Lundquist number play an important role
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Figure 3. Ratio of the kinetic energy of the dominant axial modes over the total kinetic energy for the cylindrical geometry, M = 444 (top)
and M = 888 (bottom) as a function of �. Visualization of the modes: axial velocity isosurfaces +0.008 (blue) and −0.008 (orange).
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Figure 4. Poloidal velocity vector norm and poloidal streamlines in the toroidal geometry (a)–(c) and cylinder (d). (a) Total poloidal
velocity field in a poloidal cut. (b) The azimuthally averaged poloidal field (mode n = 0). (c) The total field (a) minus the azimuthally
averaged field (b). For M = 444 and � = 1.83. (d) Total poloidal velocity field in a poloidal cut in the cylinder for M = 444 and � = 2.16.

in the evolution of the reversal parameter F with �. Using
the toroidal geometry and increasing sufficiently the viscous
Lundquist number, we fit better the experimental data. It is
not yet clear whether we can get a magnetic surface averaged
toroidal reversal at the torus edge for high enough values of M .
In this study the computational resources where not sufficient
to carry out higher resolution computations enabling higher
viscous Lundquist and Prandtl number simulations. It seems
that a reversed magnetic field is more easily obtained in the
constant pressure description adopted in, for instance [34].
This explains, perhaps, that those results compare better to

experiments. A drawback of such an MHD description is that
it severely violates the conservation of mass of the system.
We have therefore preferred to stay within the incompressible
description of the plasma, which is the simplest description
that satisfies the mass-conservation principle. Further studies
are needed to investigate to what extent one must take into
account the conservation of mass and compressibility effects
in order to more realistically approach the behavior of an RFP
plasma.

In the present work, within the MHD description that
we have adopted and in the parameter range that we have
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Figure 5. Field-reversal parameter F as a function of the pinch parameter � for the toroidal and cylindrical simulations and experimental
data of three RFP devices.

considered, the agreement of the �−F value with experiment
seems to be closer for the toroidal than for the cylindrical RFP
simulations.

5. Conclusions

The toroidal and cylindrical simulations carried out in the
present study help our understanding of the role of toroidicity
in the RFP dynamics. The helical instability appearing for
increasing pinch ratio is quite similar for both cases. Generally,
if the viscous Lundquist number is not too important a single
helical mode dominates the system, so that we are close
to the QSH state found in experiments. For increasing
viscous Lundquist number a turbulent state appears at large
pinch ratio, showing equipartition of the energy between the
helical modes in the cylindrical geometry, whereas, for the
parameters considered in the present case, a single helical mode
remains dominant in the toroidal geometry. It seems that the
QSH state is more persistent in toroidal than in cylindrical
configuration. Another fundamental qualitative difference
between the cylinder and the torus is the axisymmetric flow
that disappears in the cylindrical case. The toroidally invariant
poloidal flow is composed of two counter-rotating vortices. In
a straight cylinder this characteristic of the plasma dynamics
does not appear. Quantitatively, better agreement of the F(�)

dependence is observed for toroidal simulations.
An important perspective is the study of the influence

of more sophisticated resistivity profiles on the dynamics.
This is currently under investigation. Since we have shown
that the toroidicity influences the dynamics, a refined study
of the influence of the aspect ratio on RFP dynamics would
be a valuable contribution to the field. Further desirable
refinements are the implementation of an equation of state and,
of course, higher resolution simulations in order to reach more
realistic values of the Lundquist and magnetic Prandtl number.
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