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A volume penalization approach to simulate magnetohydrodynamic (MHD) flows in 
confined domains is presented. Here the incompressible visco-resistive MHD equations 
are solved using parallel pseudo-spectral solvers in Cartesian geometries. The volume 
penalization technique is an immersed boundary method which is characterized by a 
high flexibility for the geometry of the considered flow. In the present case, it allows 
to use other than periodic boundary conditions in a Fourier pseudo-spectral approach. 
The numerical method is validated and its convergence is assessed for two- and three-
dimensional hydrodynamic (HD) and MHD flows, by comparing the numerical results 
with results from literature and analytical solutions. The test cases considered are two-
dimensional Taylor–Couette flow, the z-pinch configuration, three dimensional Orszag–Tang 
flow, Ohmic-decay in a periodic cylinder, three-dimensional Taylor–Couette flow with and 
without axial magnetic field and three-dimensional Hartmann-instabilities in a cylinder 
with an imposed helical magnetic field. Finally, we present a magnetohydrodynamic flow 
simulation in toroidal geometry with non-symmetric cross section and imposing a helical 
magnetic field to illustrate the potential of the method.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Magnetohydrodynamics is the discipline that studies the interaction between conducting fluids and magnetic fields. 
Depending on the topology and the intensity of the magnetic field, as well as on the values of the kinematic viscosity and 
the magnetic diffusivity, numerous different flow behaviors can be observed. As a function of the viscosity the flows can vary 
from a laminar to a highly turbulent state and the magnetic diffusivity allows to change the dynamics from a highly diffusive 
transport to an almost frozen-in advection of the magnetic field. Therefore, in the turbulent state, even in the statistically 
homogeneous case, a large range of dynamically active scales can be observed. Most of the interesting applications of 
MHD are however not statistically homogeneous due to the presence of solid walls. Examples are the planetary dynamo 
mechanism, magnetically confined fusion plasmas and industrial applications involving liquid metals [1,2]. In order to study 
these phenomena, either experiments need to be carried out, or a set of nonlinear differential equations must be solved, 
combined with adequately chosen boundary conditions. In most cases, these equations cannot be solved analytically, so 
that numerical integration is needed in order to describe the dynamics. A wide range of MHD solvers have been developed 
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over the last decades and an exhaustive listing is beyond the scope of this paper. Nevertheless, we will mention several 
approaches which are used to compute MHD in wall-bounded geometry. A review of MHD solvers developed to compute 
fusion-plasma-related flows is given in [3], solvers aiming at a description of dynamo computations are, for example, given 
in [4–6] and computations investigating the magnetorotational instability in bounded domain were reported by Rüdiger and 
Shalybkov [7], Gissinger et al. [8] and Willis and Barenghi [9]. An early numerical approach to study MHD in cylindrical 
geometry was proposed and validated by Shan et al. [10] and more recently applied to spherical geometry by Mininni et 
al. [11]. Most of these solvers are adapted to either a single geometry or a particular application. To change the geometry 
substantial effort must be invested to adapt the numerical mesh or to change the basis functions used in the numerical 
algorithm.

We present in this manuscript the implementation and validation of the volume-penalization method applied to mag-
netohydrodynamics. The strength of this approach is the high flexibility in the geometry and the ease of implementation. 
The volume penalization method is an immersed boundary method [12], in which both the fluid region and the confin-
ing boundaries are part of the same computational domain. The influence of the boundaries is then modeled by adding a 
force or drag term to the dynamical equations in the part of the domain in which the boundaries are to be present. In the 
volume-penalization method, for the hydrodynamic case, the solid bodies are modeled as porous media whose permeability 
tends to zero. This so-called Navier–Stokes/Brinkman model, where the penalization source term in the momentum equation 
corresponds to the Darcy drag, was first proposed by Arquis and Caltagirone [13] in the context of the natural convection 
flow inside a cavity with porous walls. It was then generalized to study fluid–porous wall–solid boundary systems [14]. In 
addition to being physically motivated, this model is mathematically justified, since Angot et al. [15] rigorously proved that 
the method converges to the Navier–Stokes equations combined with no-slip boundaries, when the porosity in the part of 
the domain corresponding to the boundaries is taken infinitesimally small. A first use of the method in combination with 
a pseudo-spectral Navier–Stokes solver was reported in [16]. An extensive validation of the method for three dimensional 
fixed and moving boundaries is reported in [17].

The strength of the combination of a pseudo-spectral Navier–Stokes solver with the penalization method is the compro-
mise between accuracy and ease of implementation while retaining a great flexibility in the choice of the geometry of the 
boundaries. We have already used this method to study two-dimensional MHD [18–20] which allowed to compare square, 
circular and periodic boundaries using the same Cartesian grid and numerical method. In the present paper we will present 
a detailed validation of the method for two and three-dimensional confined HD and MHD flows.

The manuscript is organized as follows. In Sections 2 and 3, we expose the physical model and its numerical dis-
cretization. Section 4 assesses the parallel performance of our implementation. As a first validation, Section 5 presents 
two-dimensional kinematic and magnetic test cases together with a comparison to analytical results. Validation of the three-
dimensional periodic MHD calculations is exposed in Section 6.1. Subsequently Ohmic decay is considered in Section 6.2. 
Sections 6.3 and 6.4 compare our three-dimensional results for 3D Taylor–Couette HD and MHD flows with those available 
in the literature, as further validation. Section 6.5 reports on the flow induced in a conducting fluid by the presence of an 
imposed helical magnetic field, and Section 6.6 demonstrates the capacity of the present method to perform simulations in 
complex geometries. Some conclusions are drawn in Section 7 and Appendices A–D contain some further technical details.

2. MHD equations

The media we study are isothermal, incompressible and we consider constant permeability μ, permittivity ε and con-
ductivity σ of the material. The MHD equations for this case are the Navier–Stokes equation (including the Lorentz force) 
and the induction equation (that combines Ohm’s law, Faraday’s equation and Ampère’s law). Introducing conventional nor-
malization of the velocity by the Alfvén velocity Ca = B0/

√
ρμ, a reference magnetic field B0 and a conveniently chosen 

lengthscale L, the normalized equations read,

∂u

∂t
− ν∇2u = −∇Π + u × ω + j × B, (1)

and

∂ B

∂t
− λ∇2 B = ∇ × [u × B], (2)

where ν is the kinematic viscosity, λ the magnetic diffusivity (λ = (σμ)−1) and ρ = 1 is the density. The vorticity ω and 
current density j are given by

ω = ∇ × u (3)

j = ∇ × B, (4)

and Π = P + 1
2 u2 is the modified pressure. The velocity field u is considered incompressible and the magnetic field B

divergence free,

∇ · u = 0, (5)

∇ · B = 0. (6)
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To complete the problem one needs to specify the initial and the boundary conditions corresponding to the physical sys-
tem that we are interested in. In particular the boundary conditions will be discussed in more detail in the rest of this 
manuscript.

3. The numerical code

The penalization method was introduced into two independently developed pseudo-spectral MHD solvers, the L-code 
from Lyon and the M-code from Marseille. The cross-check of the results obtained by the two codes allowed a careful 
debugging and implementation of the method.

3.1. Pseudo-spectral discretization

A classical Fourier pseudo-spectral method is used for the spatial discretization of a cubic periodic domain Ω of size 
2π [21]. The physical size of the domain can be modified rescaling the box by multiplying by Lx , L y and Lz . Spatial 
derivatives are evaluated in Fourier space and multiplications are computed in physical space. In the following we denote 
the Fourier Transform by the symbol ˆ or F{ }. All fields are represented as truncated Fourier series and here we show this 
representation explicitly for the velocity:

u(x, t) =
Nx/2−1∑

kx=−Nx/2

N y/2−1∑
ky=−N y/2

Nz/2−1∑
kz=−Nz/2

û(k, t)eık·x, (7)

û(k, t) = 8π3

NxN y Nz

Nx−1∑
nx=0

N y−1∑
ny=0

Nz−1∑
nz=0

u(xn, t)e−ık·xn , (8)

with the wave vector k = (kx, ky, kz) where −Nx/2 ≤ kx ≤ Nx/2 − 1, −N y/2 ≤ ky ≤ N y/2 − 1, −Nz/2 ≤ kz ≤ Nz/2 − 1, xn =
(nx2π/Nx, ny2π/N y, nz2π/Nz) ∈ [0, 2π ]3 with nx = 0, ..., Nx − 1, ny = 0, ..., N y − 1, nz = 0, ..., Nz − 1. The number of grid 
points in x, y and z-direction, Nx , N y and Nz , respectively, can be adapted to obtain the accuracy needed in the different 
directions. To avoid aliasing errors, i.e., the production of small scales due to nonlinear terms which are not resolved on the 
grid, the velocity and magnetic fields are dealiased at each time step by truncating its Fourier coefficients using the 2/3
rule [21]. For the transformation between physical and Fourier space two different Fourier transforms were used in the two 
codes, firstly the P3DFFT routine in the M-code, based on the FFTW library, secondly the JMFFT library in the L-code. Both 
Fourier Transforms have an order of complexity of N log2 N with N = NxN y Nz .

The pressure term can be eliminated from the equations in spectral space by using the incompressibility condition of the 
medium. This introduces the projector Pij = δi j − kik j/k2 in front of the nonlinear term. Eqs. (1) and (2) in spectral space 
are then written:

∂ ûi

∂t
+ νk2ûi = Pij

{
(û × ω + ̂j × B) j

}
, (9)

∂ B̂ i

∂t
+ λk2 B̂ i = [

ık × ̂(u × B)
]

i, (10)

where k2 = |k2|.

3.2. Penalization method

The volume penalization method is based on the idea of modeling solid bodies as porous media whose permeability 
tends to zero. The flow is considered in a domain in which both fluid and solid domains are embedded. The difference 
between the fluid and solid subdomain is the permeability. In the fluid domain the permeability is infinite and in the solid 
domain the permeability tends to zero. The method allows to consider an arbitrary shape and number of obstacles. The 
equations are modified by adding the penalization term:

∂u

∂t
= u × ω − ∇Π + ν∇2u + j × B − χ

η
(u − uwall) (11)

∂ B

∂t
= ∇ × (u × B) + λ∇2 B − χ

η
(B − Bwall), (12)

with uwall and Bwall the imposed values of the velocity and magnetic field in the solid domain and η is the permeability of 
the solid domain, i.e., the penalization parameter, which could be different for each equation, and χ(x, t) the mask function 
(see Fig. 1):

χ(x, t) =
{

0 for x ∈ Ω f , the fluid domain
1 for x ∈ Ω , the solid domain.

(13)

s
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Fig. 1. The computational domain Ω contains both the fluid domain Ω f and the solid domain Ωs .

Note that Bwall can be freely chosen, we are not obliged to penalize all components. For instance choosing Bwall = B‖ with 
B‖ the component of B parallel to the wall, only penalizes the normal component and leaves the parallel component free. 
According to Eqs. (11) and (12), the flow is governed by the Navier–Stokes and induction equations in Ω f , and by Darcy’s 
law in Ωs for small η (for more details see Appendix A). As mentioned in the introduction, the convergence of the velocity 
of the penalized equation in the limit of vanishing η to the solution given by the Navier–Stokes equations with no-slip 
boundary conditions was rigorously proven by Angot et al. [15] for fixed obstacles. The estimates were then refined by 
Carbou and Fabrie [22], who demonstrated that the solution of the penalized equations converges in the L2-norm with √η
towards the solution of the non-penalized equations with Dirichlet boundary conditions. Similar results are anticipated for 
the induction equation.

In the present investigation we focus on Dirichlet boundary conditions for both the velocity field and the magnetic field. 
This gives by no means an account for all possible magnetic boundary conditions. For instance, in the case of a perfect 
conductor surrounding the magnetofluid, only the normal component of the magnetic field is zero at the wall. The further 
boundary conditions involve the current density and therefore necessitate the possibility to impose Neumann boundary 
conditions. A first step towards the implementation of such conditions is given in Appendix C. In several applications in 
the presence of strong imposed magnetic fields, it is in practice enough to impose the magnetic field at the wall. For those 
applications the present method is directly applicable. For the situations in which the magnetic field is determined by 
nonlocal interactions with the exterior domain, more sophisticated methods are needed.

To use a pseudo-spectral solver we need to Fourier-transform Eqs. (11) and (12) and we obtain

∂ ûi

∂t
+ νk2ûi = Pij

{[
û × ω + ̂j × B −F

{
χ

η
(u − uwall)

}]
j

}
. (14)

We stress here that the Riesz projector Pij is also applied to the penalization term. Indeed, this form straightforwardly 
appears in the Fourier-transformed equations when the pressure is eliminated by solving a Poisson equation. The fact that 
the projector also acts on the penalization term is important to ensure incompressibility, since the penalization term is not 
necessarily divergence free at the fluid–solid boundary. This is also the case for the magnetic field. Due to the penalization 
term, the magnetic field is no longer divergence free. One way used in the L-code to cure this is to add an auxiliary pressure 
to the magnetic field

∂ B

∂t
− λ∇2 B = ∇ × [u × B] −∇Ξ︸ ︷︷ ︸

Auxiliary
pressure

−χ

η
(B − Bwall)︸ ︷︷ ︸

Penalization term

. (15)

In the absence of boundaries in the domain, this pressure gradient would be equal to zero, as can be directly seen by solving 
a Poisson equation for Ξ and using the solenoidality constraint, Eq. (6). Indeed the (curl)-term ik × ̂(u × B) is necessarily 
divergence free. Eliminating the pressure from Eq. (15), we find for the Fourier-transformed equation for the magnetic field,

∂ B̂ i

∂t
+ λk2 B̂ i = Pij

{[
ik × ̂(u × B) −F

{
χ

η
(B − Bwall)

}]
j

}
, (16)

which guarantees the incompressibility.
Another way adopted in the M-code to impose the constraint ∇ · B = 0 is the so-called Helmholtz decomposition of a 

vector field, i.e., a decomposition into its rotational and irrotational part B = ∇ × Ψ + ∇Φ . Solving Eq. (12) we obtain a 
field B∗

n+1 which is not divergence free because of the contribution from the penalization term. We take the divergence 
of B∗

n+1 to eliminate the irrotational part and we get ∇ · B = ∇2Φ . We solve the Poisson equation to evaluate Φ and 
to calculate its gradient that we subtract from B∗

n+1. Hence we have the new divergence free magnetic field Bn+1 with 
∇ · Bn+1 = ∇ · (B∗ − ∇Φ) = 0.
n+1
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Fig. 2. Leaving a part of the domain unpenalized at the edges of the computational domain allows to use inhomogeneous Dirichlet conditions at the fluid 
solid interface, without violating the periodicity condition at the edge of the domain (left). Another option is to interpolate the imposed velocity to a zero 
value with a horizontal tangent at the domain frontier with an interpolating Hermite polynomial. The velocity field in the whole computational region 
belongs then to the C1 class (right).

The penalization method allows for a simple implementation of complex geometries, since to change the shape of the 
walls, one only needs to redefine the mask function. This is a huge advantage, because almost no effort is required to modify 
the shape of the flow geometry during an investigation and arbitrarily complex shapes can be considered. Several limitations 
should however be mentioned. First, the dynamical equations are solved in both the fluid domain and the penalized domain, 
so that, if the penalized domain is large, an important part of the numerical resources is used to compute the dynamically 
unimportant flow inside the walls (see for example Section 6.4). Second, the present work considers the implementation 
of the penalization technique into a pseudospectral method. Such methods discretize the numerical domain on a Cartesian 
grid, and therefore it is not straightforward to use mesh refinement near solid walls. This means that if one wants to refine 
the mesh to capture smaller scale dynamics near boundaries, one needs to globally increase the resolution.

Intrinsically, the boundary conditions of the Fourier pseudo-spectral solver are periodic in the three directions. Thus 
in the computational domain this periodicity must be satisfied. This imposes certain constraints on the geometries and 
especially on the boundary conditions that can be considered. If in the geometry sketched in Fig. 1 the solid domain 
corresponds to no-slip walls, i.e. uwall = 0, the periodicity condition is met automatically. However, if the outer-walls are 
chosen to move in solid-body rotation anti-clockwise, the left border of the domain will move downwards whereas the right 
border will move upwards. In that case the periodicity condition is not satisfied. A solution to this problem is to add a third, 
unpenalized, subdomain outside the walls which will allow to respect the periodic boundary conditions of the computational 
domain. This solution is sketched in Fig. 2 (left). However it has an inconvenience which we will describe below.

Discontinuities in the velocity field, or in its gradients, are a source of Gibbs oscillations. These oscillations are an 
unavoidable feature in the present approach, and as long as their amplitude is small compared to physical effects, they do 
not constitute a serious problem in most cases and we have not encountered situations in which these oscillations were 
strong enough to cause numerical instabilities. When discontinuities become strong, the Gibbs-oscillations also increase in 
size. Considering Fig. 2 (left), it is clear that if the solid domain turns and the outer fluid domain is very small, the velocity 
gradient becomes strong in the outer fluid domain and the discontinuity of the velocity gradient will become large on the 
interface between Ωs and the outer Ω f . Gibbs oscillations might get strong in this case. One solution is the following. 
Instead of imposing in Ωs a solid body rotation, we impose a velocity profile which gives the correct boundary condition at 
the solid–fluid interface, and which smoothly tends to zero towards the edges of the computational domain, Fig. 2 (right). 
The latter solution is slightly more complicated since an interpolation needs to be computed, using an interpolating Hermite 
polynomial for instance. Its advantage is that the continuity of the solution and its derivatives between the boundary value 
and zero value can be imposed in a smooth way, which yields an improved order of convergence of the algorithm, as we 
will see in Section 5 (an analytical analysis can be found in Appendix B).

Another drawback of the penalization method is that it is not yet possible to impose inhomogeneous Neumann conditions 
at the boundaries using a Fourier spectral code. In Appendix C a one-dimensional penalization method for taking into 
account non-homogeneous Neumann boundary conditions is presented. The lack of a three-dimensional implementation 
makes it not yet possible to impose arbitrary values of the velocity gradient or magnetic gradient, for example, to impose 
the vorticity and the current density at the walls. This would in particular be important to model the influence of solid 
boundaries with arbitrary magnetic properties on the magnetic field generated in the fluid. A recent investigation by Kadoch 
et al. [23] presents a technique for implementing homogeneous Neumann conditions using the penalization method with a 
spectral method. The extension to three-dimensional inhomogeneous Neumann conditions is an important perspective for 
further research.
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3.3. Time-discretization

Two different implementations of the penalization method in the time-advancing scheme will be compared. The first is 
explicit and constrains the penalization parameter η to be bigger than the time step �t to avoid numerical instabilities. The 
second is a semi-implicit implementation that allows the penalization parameter in principle to be independent of the time 
step. Second and third order time schemes are used. In all approaches an exact integration of the viscous and magnetic 
diffusion term is used. In the following two sections these different methods are detailed.

3.3.1. Explicit implementation of the penalization term
In this section we detail the time integration of the equations using an explicit treatment of the nonlinear and penal-

ization terms. It must be noted that along with its simplicity and robustness this approach has a drawback: the explicit 
treatment of the penalization term imposes a stability condition, in addition to the usual CFL condition. An analytical anal-
ysis of the magnetic part of the method has yet to be done to check if it adds another stability condition. Up to now no 
problem occurred if the same stability criteria were used for the velocity and the magnetic field.

The basic time-stepping schemes that are implemented are an adaptive second and third order Adams–Bashforth method 
(denoted by AB2 and AB3 respectively). The use of these schemes fits well into our general concept of compromise between 
the ease of implementation and computational efficiency. Exact integration of the diffusion term is feasible because the 
Laplace operator is diagonal in Fourier space and hence no linear system has to be solved. It improves stability of the 
scheme, avoiding the stability condition �t < �x2/ν . The remaining terms are discretized explicitly to avoid the solution of 
nonlinear equations, however it implies a CFL condition on the time step size �t and also a condition due to the explicit 
discretization of the penalization term, i.e., �t < η for AB2 and �t < 6

11 η for AB3, as linear stability analysis shows [17].
For illustration, the equations will be given for the case of the velocity only. The discretization of the magnetic field is 

handled analogously, the only difference is the exact form of the nonlinear and penalization terms. First the Navier–Stokes 
equation is rewritten in the form of a nonlinear evolution equation and transformed into Fourier space,

∂t u − ν∇2u = N(u) (17)

∂t û + νk2û = N̂( û ). (18)

For the initial condition û(k, tn), the above equation has the following solution

û(k, tn+1) = e−ν�tn+1k2
û(k, tn) +

tn+1∫
tn

e−ν(tn+1−s)k2
N̂

(̂
u(k, s)

)
ds, (19)

which can be discretized

AB2 −→ û(k, tn+1) = e−ν�tn+1k2 (̂
u(k, tn) + β10N̂n + β11e−ν�tnk2

N̂n−1) (20)

AB3 −→ û(k, tn+1) = e−ν�tn+1k2 (̂
u(k, tn) + β20N̂n + e−ν�tnk2(

β21N̂n−1 + β22e−ν�tn−1k2
N̂n−2)), (21)

with N̂n denoting the value of the nonlinear term at the time instant tn , the second order Adams–Bashforth coefficients

β10 = 1

2

�tn+1

�tn
(�tn+1 + 2�tn)

β11 = −1

2

�t2
n+1

�tn
, (22)

and the third order Adams–Bashforth coefficients

β20 = �tn+1(2�t2
n+1 + 6�tn�tn+1 + 3�tn−1�tn+1 + 6�t2

n + 6�tn−1�tn)

6�tn(�tn + �tn−1)

β21 = −�t2
n+1(2�tn+1 + 3�tn + 3�tn−1)

6�tn−1�tn

β22 = �t2
n+1(2�tn+1 + 3�tn)

6�tn−1(�tn + �tn−1)
, (23)

where �tn = tn − tn−1 [16]. For start-up a first order scheme is used, as two time steps are required to start a second-order 
scheme. Similarly a first order scheme and a second order scheme are used to start the third order scheme.

The time step size control is based on the CFL stability limit of the explicit discretization of the nonlinear term, with 
addition of the stability criterion due to the penalization. Therefore, at each time step tn , the maximal point-wise velocity 
is computed and the new time step is given by �tn+1 = C�x/Umax where C < 1 is the CFL constant and �x is the minimal 
spatial grid size. Moreover, the time step has to verify the condition �tn+1 < η (AB2) or �tn+1 < 6

11 η (AB3) due to the 
presence of the penalization term. The same method is applied to the magnetic field and the time step is chosen to be 
small enough to verify the stability criteria of both the magnetic field and velocity field discretization.
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Table 1
Summary of the elapsed physical time during simulations for different resolutions and number of processors.

Processors 1024 2048 4096 8192

Resolution 5123 (s) 106 52 28 14
Resolution 10243 (s) 877 438 212 105

Fig. 3. Parallel scaling on Turing for 5123 and 10243 on [1024,2048,4096,8192] processors.

3.3.2. Semi-implicit implementation
As noted in the previous section, the stability condition for a third order time scheme constrains �t < 6

11 η. To avoid 
this limitation, an implicit implementation was introduced by Kolomenskiy and Schneider [17] for Burgers’ equation and 
extended to Navier–Stokes’ equation by Jause-Labert et al. [24]. In this case the penalization term is evaluated at the time 
step tn+1. The penalization is thus no longer treated together with the nonlinear term. The diffusion term, as in the explicit 
method, is exactly integrated.

This method is more time-expensive because two additional Fourier transforms are required. In addition to the projection 
of the nonlinear term, a second projection is realized (that includes the penalization term at tn+1) to ensure the solenoidal 
nature of the two considered fields. The fact that the time step can be adaptive (taking into account the CFL condition) 
makes this technique more suitable for unsteady simulations. The penalization term is introduced using a first order time 
scheme, which does not influence negatively the precision as long as boundaries are fixed.

The magnetic equations being handled analogously we present the new time scheme for the velocity field

ûi(k, tn+1) = Pij

{
F

[F−1{Qn
i } + �t

η χuwalli (x, tn+1)

1 + �t
η χ

]
j

}
. (24)

The third order Adam–Bashforth scheme is retained for the nonlinear terms in this formulation

Qn
i = e−ν�tn+1k2 (̂

u(k, tn) + β20N̂n + e−ν�tnk2(
β21N̂n−1 + β22e−ν�tn−1k2

N̂n−2)). (25)

This numerical scheme for a penalization parameter η being sufficiently small (η 	 �t) converges towards an explicit 
modified scheme where the time step �t replaces the penalization parameter η and where the nonlinear term vanishes in 
the solid region. We therefore call this method semi-implicit. This is further explained in Appendix D. For this case with very 
small penalization parameter, the permeability of the solid media is given by the value of the time step. The asymptotic 
convergence of the porous boundaries towards a solid wall, if η is sufficiently small, is in that case limited by the value 
ηeffective ≈ �t .

4. Parallel performance

The parallelization of the M- and L-codes is based on P3DFFT (based itself on the parallelized FFTW) or JMFFT respec-
tively, and uses MPI libraries. In order to establish the scalability of the numerical method as a function of the number of 
processors, simulations for 100 time-steps of an MHD problem for different grid resolutions were performed on the Turing
calculator of the French high performance computing center IDRIS, with the M-code. The results are summarized in Table 1
and in Fig. 3.

The code fits very well the p−1 scaling law (dashed line), p being the number of processors (and thus processes) used. 
It was expected since our libraries yield that same scaling law.
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Fig. 4. Taylor–Couette flow configuration.

5. Two-dimensional validation

In this section we present a purely HD test-case, the two-dimensional Taylor–Couette flow and a purely magnetic test-
case, the z-pinch configuration. For both cases analytical solutions are known, which allows a careful convergence study and 
which allows to check different ways to introduce the boundary conditions.

5.1. Two-dimensional Taylor–Couette flow

We consider the classical two-dimensional HD problem of a flow between two coaxial rotating cylinders (e.g., Taylor 
[25]). The inner cylinder rotates at constant speed, while the outer cylinder is kept at rest. The steady flow solution of the 
problem is

Uθ (r) = Ω2 R2
2 − Ω1 R2

1

R2
2 − R2

1

r + (Ω1 − Ω2)R2
1 R2

2

R2
2 − R2

1

1

r
, (26)

where Ω(1,2) are the angular velocities of the cylinders, R(1,2) the radii of the cylinders and r the cylindrical coordinate (see 
Fig. 4).

The relative L2 error in the fluid domain ‖ fnumerical − fanalytical‖L2/‖ fanalytical‖L2 with f being the considered field, is 
calculated for different penalization parameters η and number of grid points N , in one direction with N = Nx = N y and 
Nz = 4.

As mentioned above, the present calculation is entirely HD. The simulations are carried out until a steady state is ob-
tained, so that the error is independent of the time discretization. A cubic domain with size-length 2π is considered, the 
time step is fixed to a value �t = 5 · 10−5 and the kinematic viscosity ν = 1. The radii R1, R2 are (0.32π, 0.82π ) respec-
tively. At t = 0 the fluid domain is at rest and the inner-cylinder is set into movement with a fixed velocity Uθ (R1) = 1
while the velocity Uθ (R2) is kept equal to zero. The runs are stopped when the time tmax = 5 is reached. At this time 
instant, the difference in the kinetic energy between two iterations is less than 10−9 (for a kinetic energy of order unity), 
which indicates that a steady state is satisfactorily achieved.

The velocity profile imposed in the mask is chosen in two different ways, corresponding to the discussion in Section 3.2. 
In the first case, the velocity in the inner cylinder is straightforwardly set to a solid-body rotation, Uθ = Ω1r, in the in-
ner cylinder and Uθ = 0 in the outer cylinder. This is the most obvious choice. The component Ur is set to zero at the 
boundaries. The velocity field is hereby continuous, but there exists a discontinuity of the velocity field derivative at the 
fluid boundaries (which is also the case in the real, physical situation). The error evolution with the penalization parameter 
and the convergence of the error with the resolution are shown in Figs. 5 and 6. For these calculations the expected √η
convergence order [22] is found and the convergence is second order in space as a function of the resolution N , confirming 
the results in [17]. We also observe a saturation of the error for large N , corresponding to the penalization error.

A second way to impose the velocity in the mask will now be described. In this particular test-case the analytical solution 
is known (Eq. (26)) and we can use this information to increase the precision of the method. As mentioned in Section 3.2, 
Gibbs oscillations are created due to discontinuities in the fluid variables or their derivatives. The discontinuity in the 
velocity gradient field can here be removed by using a 4th order Hermite interpolation at the boundaries at r = R1, R2. 
Any purely azimuthal, axisymmetric flow is solenoidal so we can freely choose the velocity Uθ (r) in the mask, as long as it 
respects the correct boundary conditions at r = R1, r = R2 and r = π , the latter condition being imposed by the periodicity 
of the pseudo-spectral method. The velocity Uθ (r) in the mask is chosen such that velocity and derivative at the fluid–solid 
boundaries are continuous. Subsequently the velocity field is interpolated to decay smoothly from the analytical solution 
at r = R1, R2 to zero at r = 0 and r = π respectively, using an interpolating Hermite polynomial. Any discontinuity on the 
derivative of the velocity field at the fluid boundaries is thus avoided and the Gibbs oscillations are hereby significantly 
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Fig. 5. Taylor–Couette: convergence of the relative L2 error of uθ with the penalization parameter η, convergence order
√

η.

Fig. 6. Taylor–Couette: convergence of the relative L2 error of uθ with the resolution N which shows a second order convergence.

reduced. In principle even higher order velocity derivatives could be smoothed in this way using higher order Hermite 
interpolation. Note that a similar regularization is used in [26] for the velocity field, where the imposed velocity in the 
mask is called an internal flow.

The error as a function of the penalization parameter and the convergence of the error with the resolution are shown 
respectively in Figs. 7 and 8. The numerical error is only calculated in the fluid domain. It is observed that the convergence 
of the error with the penalization parameter is close to third order. An optimum for the penalization parameter depending 
on the resolution appears, when the gridscale becomes of order √νη. At this scale the viscous term becomes of the order 
of the penalization term. In Figs. 7 and 8 results for both explicit and semi-implicit methods are presented.

The regularization of the boundary conditions using an interpolation clearly improves the numerical convergence of 
the solution with the penalization parameter. Also the convergence with the grid resolution is improved. If the Hermite 
interpolation is used, a fourth order convergence with N is found for both the explicit (dashed line) and semi-implicit 
(solid line) implementations (see Fig. 8). We recall that if no regularization of the velocity field is introduced, second order 
convergence is recovered (see Fig. 6).

5.2. The z-pinch

The second validation test is the reproduction of the z-pinch phenomenon, a well-known textbook example of a confined 
plasma situation [27]. This configuration is illustrated in Fig. 9. Two ideal electrodes drive an axial current in the z-direction 
producing a purely azimuthal magnetic field (in the θ -direction). The current density in the z-direction, which together with 
the induced azimuthal magnetic field yield a radially pinching Lorentz force, is the motivation for the name z-pinch. In this 
configuration we set the velocity to zero so the code is entirely magnetic. We impose the boundary conditions Bθ = BC and 
Br = 0 at r = R1 the radius of the fluid domain. The component Bz is not penalized and can freely evolve.

Periodic conditions are set in the axial direction. In this configuration the governing equations reduce to

∂t B = λ∇2 B (27)
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Fig. 7. Taylor–Couette: convergence of the relative L2 error with the penalization parameter η, semi-implicit (solid line) and explicit (dashed line) methods.

Fig. 8. Taylor–Couette: convergence of the relative L2 error with the resolution N , semi-implicit (solid line) and explicit (dashed line) methods.

In cylindrical coordinates, the steady state solution is a linear evolution of the azimuthal magnetic field

Bθ (r) = BC r

R1
. (28)

The quantity BC /R1 is linked to the constant axial current density, using Ampère’s law,

jz = 2BC

R1
. (29)

The computational domain is chosen similar to Fig. 2 (left). The mask is chosen to be annular, leaving the outer domain 
free to adapt to the periodic boundary conditions of the computational domain. If a uniform azimuthal magnetic field is 
imposed inside the mask, the discontinuity in the profile of the radial derivative of the azimuthal magnetic field at the 
boundary causes Gibbs’ oscillations in the current density, analogously to what was observed in the Taylor–Couette case. To 
avoid this, a linear profile of Bθ (r) = BC r

R1
is imposed inside the mask to ensure a continuity with the analytical solution. This 

feature eliminates the discontinuity at r = R1 in the derivative of the magnetic field and thus greatly reduces the oscillations 
for jz . The convergence of the method can be further enhanced by using a Hermite polynomial to smoothly interpolate the 
magnetic field in the mask to zero at the outer boundaries of the computational domain. With this method, the continuity 
of the derivative of the magnetic field is assured through the entire domain (see Fig. 2 (right)).

For these simulations the number of grid points are the same as for the Taylor–Couette case (N ∈ {64, 128, 256, 512}). The 
parameters are a cubic domain with size-length 2π with magnetic diffusivity λ = 1, the time step is fixed to �t = 5 · 10−5

and tmax = 5. For t = tmax the difference in the magnetic energy between two iterations is less than 10−9 so we have 
reached the steady state. The inner radius of the annulus is R1 = 0.65π and the outer radius is R2 = 0.78π . If the Hermite 
polynomial is used, the radius where it reaches the value 0 is R3 = 0.94π . The boundary condition is BC = 1.

In Fig. 10 the convergence of the method is shown as a function of the penalization parameter η and the resolution N . 
An improved convergence, proportional to η4 or N−4 is observed. The relative importance of the smoothing of the magnetic 
field in the mask is illustrated in Fig. 10 where the results of these computations with and without regularization are 
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Fig. 9. z-pinch configuration.

Fig. 10. z-pinch: convergence of the relative L2 error with the penalization parameter η (left) and with the resolution N (right) for the magnetic field in 
the z-pinch geometry. Comparison of the results with and without Hermite polynomial interpolation.

compared. Without the regularization technique, the convergence reduces to second order in N and order √
η for the 

penalization parameter.

5.3. Assessment of the regularization method to enhance the performance of the penalization method

For these two-dimensional test cases, either Taylor–Couette or z-pinch, the error of convergence as a function of the 
penalization parameter and the resolution are determined. The regularization of the different fields in the solid domain (or 
mask) allows an enhancement of the accuracy of the numerical solution in the fluid region. The fact that the continuity 
of the velocity derivative field inside the solid domain affects the error inside the fluid domain is an intrinsic feature of 
the pseudo-spectral method. Such methods use periodic trial functions and the Gibbs oscillations introduced in one point 
of the domain decay only inversely proportional to the distance from the discontinuity. The Hermite interpolation method 
regularizes and yields fields which are C1 in the whole domain (see Appendix B for an analytical analysis of the Hermite 
regularization). Gibbs oscillations are thus reduced and consequently the numerical errors are also decreased considerably. 
The limitation of this method is that an analytical solution must be known, or a baseflow, which is not far from the 
expected developed flow. Without such regularization the convergence is reduced to second order in resolution, which can 
be sufficient for many applications, as illustrated in the following sections.

6. Three-dimensional validation

In this section the code will be validated by considering three-dimensional test-cases. First a periodic MHD case is 
considered, without using the penalization method, subsequently the magnetic part of the code is validated by studying 
the Ohmic decay in a cylindrical cavity. Then the three-dimensional Taylor–Couette flow is studied with and without the 
presence of a magnetic field and to conclude we investigate the instabilities in a cylinder with helical magnetic boundary 
conditions.

6.1. Periodic MHD validation

To validate the capacity of the numerical code to simulate the three-dimensional nonlinear MHD equations, we reproduce 
first a classical test-case with periodic boundary conditions. This case is the generalization of the Orszag–Tang vortex to 
three dimensions. The results are compared with those of Mininni et al. [28].

The initial condition used for the simulation is given analytically and yields:
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Fig. 11. Comparison of the solution of the numerical code for the time evolution of the maximum of the current (left) and total dissipation rate (right) 
using second (dashed line) and third order time-schemes (solid line). The inset (left) shows the evolution at early times in log-lin units.

u(x, y, z, t = 0) = [−2 sin(y),2 sin(x),0
]

for x, y, z ∈ [0,2π ]3 (30)

and

B(x, y, z, t = 0) = β
[−2 sin(2y) + sin(z),2 sin(x) + sin(z), sin(x) + sin(y)

]
(31)

with β = 0.8, the initial kinetic energy, Ek = 2, and the corresponding magnetic energy, Em = 1.92. The energies are eval-
uated by Ek = 1

2 〈u2〉 and Em = 1
2 〈B2〉 with 〈..〉 the volume average. The maximum of the current density is calculated 

by

max| j| = max
√

j2
x + j2

y + j2
z (32)

and the total dissipation rate is

ε(t) = ν
〈
ω2〉 + λ

〈
j2〉, (33)

where ν and λ are respectively the kinematic viscosity and the magnetic diffusivity. Three runs are performed: the first with 
N3 = 643 and ν = λ = 0.01, the second with N3 = 1283 and ν = λ = 0.005 and the third N3 = 2563 with ν = λ = 0.001.

The evolution of the maximum of the current density and total dissipation rate in the domain are shown in Fig. 11. Re-
sults are compared using a second- and third-order Adams–Bashforth time advancing scheme described in Section 3.3. Both 
schemes give the same results. The results agree well with the computations presented in Ref. [28]. The same exponential 
growth followed by a self similar growth ∼t3 is found in our calculations for the evolution of the maximum current density 
(see Fig. 11 (left)). With an increasing Reynolds number Re the maximum of | j| is also found to be reached at later times. 
The evolution of the total dissipation rate (see Fig. 11 (right)) shows the same delay in the onset of the formation of small 
scales with increasing Re as exposed in the cited article. This test allows us to evaluate the full MHD code and validate the 
numerical results for relatively high Reynolds numbers (up to Re = 3000).

6.2. Ohmic decay in a periodic cylinder

In this test case we compute the evolution of the magnetic field in a periodic three dimensional cylinder imposing 
Dirichlet boundary conditions [29,30]. In the induction equation we set the velocity to zero so the equation for the magnetic 
field reduces to the diffusion equation:

∂ B

∂t
= ∇2 B. (34)

We consider an axisymmetric case, z-independent and the magnetic field has no r component. This case is not completely 
three-dimensional since we use the three components of the magnetic field (Bx, B y, Bz), but the derivatives are zero in the 
z direction. In cylindrical coordinates the set of equations is:⎧⎪⎪⎨⎪⎪⎩

∂ Bθ

∂t
= ∂2 Bθ

∂r2
+ 1

r

∂ Bθ

∂r
− Bθ

r2

∂ Bz

∂t
= ∂2 Bz

∂r2
+ 1

r

∂ Bz

∂r
.

(35)

Using separable elementary solutions, the magnetic field can be written in the following form:
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Fig. 12. Azimuthal magnetic energy decay for different time steps in a periodic cylinder.

Fig. 13. Axial magnetic energy decay for different time steps in a periodic cylinder.{
Bθ (r, t) = A f (r)e−ω2

θ t

Bz(r, t) = Bg(r)e−ω2
z t .

(36)

Introducing the following change of parameter: s = ωr the system of equations writes:{
s2
θ f ′′ + sθ f ′ + (s2

θ − 1) f = 0

s2
z g′′ + sz g′ + s2

z g = 0.
(37)

The solutions of these equations are Bessel functions. At the radius R0 of the cylinder the azimuthal and axial fields are set 
to zero. Therefore the general solution is:⎧⎪⎪⎨⎪⎪⎩

Bθ (r, t) = J1

(
j1

R0
r

)
e
−(

j1
R0

)2t

Bz(r, t) = J0

(
j0

R0
r

)
e
−(

j0
R0

)2t
.

(38)

Here j0 = 2.4048... and j1 = 3.8314... are the first zeros of the Bessel functions J0 and J1 respectively. The initial condition 
is Bθ (r, 0) = J1(

j1
R0

r) and Bz(r, 0) = J0(
j0
R0

r).
In our simulation we set R0 = 1. The decay rate is determined doing a least square fitting of the azimuthal and axial 

magnetic energy time evolutions (Figs. 12 and 13). In Table 2 we present our results for the decay rate of the azimuthal and 
axial fields and we compare them to the analytical values (see Eq. (38)). All the simulations are done with 963 grid points, 
the penalization parameter η = 5 · 10−4 and the computational domain size is Lx = L y = Lz = 2π . We calculate the error for 
different fixed time steps. In none of these calculations the regularization of the magnetic field in the solid region (mask) is 
used.
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Table 2
Comparison of analytical (see Eq. (38)) and numerical calculation of the decay rate for the Ohmic diffusion in an infinite cylinder.

Time step Theory ω2
θ Numerical ω2

θ Error ω2
θ Theory ω2

z Numerical ω2
z Error ω2

z

1 · 10−2

14.68

12.68 14%

5.78

4.99 14%
1 · 10−3 13.99 5% 5.51 5%
5 · 10−4 14.13 4% 5.57 4%
1 · 10−4 14.28 3% 5.62 3%

Fig. 14. Evolution of the axial kinetic energy for different Re numbers.

For these calculations of the diffusion of a magnetic field in a periodic cylinder the decay rate of the azimuthal and 
axial component of the magnetic field agree quite well with the analytical values. We find the same relative error in the 
azimuthal and in the axial direction at each considered time discretization.

This test-case yields a validation of the magnetic part of the numerical code and shows that the magnetic boundary 
conditions are well taken into account via the penalization method. Also we note that the time scheme is well implemented 
as it allows to recover the analytical decay rates for the considered components of the magnetic field with good accuracy. 
The numerical solution converges towards the analytical solution if the time step is decreased.

6.3. Three-dimensional Taylor–Couette flow

In this test case we aim to determine the critical Reynolds number for the first instability of the Taylor–Couette flow with 
periodic boundaries in the axial direction. Different values of the Reynolds number are explored with several calculations 
with a resolution of 1283 grid-points, the penalization parameter η = 5 · 10−4 and the computational domain size is Lx =
L y = 5π/2 and Lz = 2π . To assess the influence of the Hermite interpolation method, in one of these calculations the 
regularization of the velocity in the solid region (mask) is used (for the case with Re = 120). The reference length scale 
is the gap between the inner and outer cylinder L = Rext − Rint and the reference velocity is the inner rotation speed 
U = Ωint Rint . The outer cylinder is fixed. We define the Reynolds number and also a radius ratio ζ and an aspect ratio Γ as 
follows:

Re = UL
ν

, ζ = Rint

Rext
, Γ = Lz

L
, (39)

where Lz is the axial length. To be able to compare with the literature we take the same values as in [31] for the dimen-
sionless values, radius ratio and aspect ratio, ζ = 0.5 and Γ = 4. The base flow consists of an azimuthal velocity only, as in 
the two-dimensional case (Section 5.1). The first Taylor–Couette instability is centrifugal and is characterized by vortices that 
appear and break the axial invariance. Velocities in the radial and axial directions thereby appear. To determine the critical 
Reynolds number we analyze the evolution of the axial kinetic energy. The analysis of the evolution of the axial kinetic 
energy allows us to assess the critical Reynolds number (when the instability is triggered). The value of the critical Reynolds 
is compared with a theoretical value of Re = 68.23 that has been determined by Chandrasekhar [32]. We present in Fig. 14
the axial kinetic energy evolution for Reynolds numbers varying from Re = 65.7 to Re = 69.7. We start the simulations with 
a small random perturbation so the initial axial kinetic energy is non-zero. The axial energy either grows or decays expo-
nentially. The critical Reynolds number can be determined from Fig. 14. Increasing the Reynolds number from Re = 67.3
to Re = 68.1 the axial kinetic energy changes from decaying to increasing. A simple linear interpolation of the growth and 
decay rates (that are determined with a least square method fitting) gives the value of the critical Reynolds Rec ≈ 67.9. The 
estimated error compared with the theoretical result is ∼0.44%. The theoretical estimate is thus well approached by our 
numerical simulations.
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Fig. 15. Evolution of the axial kinetic energy for Re = 120, with and without the regularization technique.

Fig. 16. Axial velocity uz (color) for Re = 120. (For interpretation of colors in this figure, the reader is referred to the web version of this article.)

The Taylor vortices appear early in the simulation and they grow or decay in strength depending on the Reynolds number. 
Fig. 15 presents the axial kinetic energy evolution of a Taylor–Couette flow for Re = 120 comparing two simulations, one 
with Hermite regularization and one without. The difference between the two considered methods is the onset of the 
instability, which occurs slightly earlier if the Hermite regularization is used. Nevertheless the growth rates are similar and, 
when the nonlinear saturation is reached, a steady state is obtained that almost coincides for both methods. In Figs. 16 to 
19 we visualize the Taylor vortices in the steady state. Two pairs of counter-rotating vortices appear. The aspect ratio is 
Γ = 4 so that four vortices form. In Fig. 17 we distinguish the boundary layer, in which the azimuthal vorticity is contrary 
to the vorticity of the Taylor-vortices. The above results have been obtained with the L-code. Those of the M-code are almost 
identical and are therefore not shown.

The flow structure of Figs. 16 to 19 can be compared with the one presented by Guermond et al. (Fig. 5 in [31]). The 
same flow topology with four vortices is found. In Figs. 18 and 19 we note that there is a transport of azimuthal momentum 
by the radial flow. The azimuthal velocity isosurfaces are not axial invariant but they are dragged in- and outwards by the 
radial flow. A positive radial velocity increases the azimuthal velocity near the inner cylinder.

To compare quantitatively both simulations, in Table 3 the maxima of the three velocity components at the steady state 
are compared with those of Guermond et al. [31].

The azimuthal velocity is not exactly unity because with the penalization method the precise value at the boundary is 
not necessarily coinciding with the numerical grid as is the case in [31]. Nevertheless the numerical method yields good 
agreement for all three components of the velocity with the results of the code described in [31]. The three numerical 
methods yield similar relative variations, and there is an improvement in the error with the regularization for the radial 
component of the velocity field. The improvement is limited because the tangent imposed with the Hermite polynomial is 
calculated using the analytical base flow, which is known in this case. Since the development of the instability makes the 
flow change, discontinuities appear at the fluid–solid interface and the Gibbs oscillations can grow. The improvement can 
be substantial if the saturated state is not far from the calculated analytical base flow.
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Fig. 17. Azimuthal vorticity ωθ (color) for Re = 120. (For interpretation of colors in this figure, the reader is referred to the web version of this article.)

Fig. 18. Azimuthal velocity uθ (color) for Re = 120. (For interpretation of colors in this figure, the reader is referred to the web version of this article.)

Fig. 19. Radial velocity ur (color) for Re = 120. (For interpretation of colors in this figure, the reader is referred to the web version of this article.)
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Table 3
Maximum velocity components comparison and relative errors for Re = 120 in a periodic cylinder.

Guermond et al. [31] 3rd order semi-implicit 
no regularization

2nd order explicit 
no regularization

3rd order semi-implicit 
with regularization

max ur 0.1935 0.19434 (∼0.43%) 0.1969 (∼1.75%) 0.19355 (∼0.03%)
max uθ 1 0.99693 (∼0.31%) 0.9980 (∼0.20%) 0.99669 (∼0.33%)
max uz 0.1454 0.14639 (∼0.68%) 0.1506 (∼3.57%) 0.14632 (∼0.63%)

With this test-case the well known linear first instability threshold of the Taylor–Couette flow is found. Also the nonlinear 
saturation is comparable to what is reported in the literature. The same topology of the flow is observed and quantitatively 
similar velocity magnitudes at the steady state are established. This makes us confident about the accuracy of the method 
in taking into account centrifugal, pressure and nonlinear effects in a bounded domain.

6.4. Magnetohydrodynamic Taylor–Couette flow

We now extend our validation to the test-case of the instability of an axisymmetric MHD Taylor–Couette flow with 
periodic boundary conditions in the axial direction. In this case the instability studied in the previous section is modified 
due to the presence of an axial magnetic field. An imposed constant axial field B0 is added to the magnetic field. It is well 
known that such an axial magnetic field has a significant stabilizing effect. This phenomenon of delay in the appearance 
of the first Taylor–Couette instability was found by Chandrasekhar [32], confirmed by linear numerical calculations in [7]
and by spectral numerical simulations [9,33]. The fluid flow will try to bend the axial magnetic field lines but the restoring 
Lorentz force will prevent the fluid motion, which stabilizes the flow profile.

To assess our numerical codes in this context, we evaluate the evolution of the axial kinetic energy as a function of 
the Hartmann number Ha, which measures the ratio between electrodynamic forces and viscous forces. The presence of a 
uniform magnetic field in the axial direction does not affect the profile of the stable azimuthal velocity that exists without 
the magnetic field, Eq. (26), which we choose as initial condition. The dimensionless geometric parameters, radius ratio ζ
and aspect ratio Γ are the same as in the previous section. We introduce here the magnetic Prandtl number which is the 
ratio of viscosity and magnetic diffusivity. The dimensionless numbers describing the problem are then

Pr = ν

λ
, Re = UL

ν
, Ha = B0L√

μ0ρνλ
, ζ = Rint

Rext
, Γ = Lz

L
, (40)

where μ0 is the magnetic constant and ρ is the fluid density. The simulations are performed for Pr = 1, Re = 100, ζ = 0.5
and Γ = 4. The resolution used is N3 = 1283, the penalization parameter η = 5 · 10−4 and the computational domain 
size is Lx = L y = 5π/2 and Lz = 2π . For none of these calculations regularization of the velocity or magnetic field in 
the solid region (or mask) is used. The boundary conditions described in [7] are a fixed azimuthal velocity on the inner 
cylinder (U = Ωint Rint = 1), no-slip on the outer cylinder and perfectly conducting walls, so that the normal magnetic field 
at the wall and the axial and azimuthal current density vanish (br = 0 and jz = jθ = 0) [7]. With these parameters the 
Taylor–Couette flow is hydrodynamically unstable, as was observed in the previous section. With the penalization method 
we can impose the vanishing radial magnetic field but the current density is not constrained.

The evolution of the axial kinetic energy varies as a function of the imposed magnetic field (or Hartmann number), for 
a fixed Reynolds number, as is shown in Fig. 20. These calculations allow us to determine the threshold for the instability. 
For Re = 100 the critical Hartmann number found is Hac ≈ 7.9. Like in the previous section the threshold is determined by 
linear interpolation of the growth and decay rates. For Re = 100 the flow is hydrodynamically unstable and Taylor vortices 
should appear, but for Ha > 7.9, the instability is suppressed by the magnetic field.

In Fig. 21 we show the topology of the flow resulting of our simulation (cut in the r–z plane). This figure could be 
compared to Fig. 1 in [9]. This comparison is merely qualitative, since the ratio of the radii is ζ = 0.95 in the cited reference 
and here we have used ζ = 0.5. We have not tried to quantitatively study the same geometry, since our method is not 
particularly adapted for the case ζ = 0.95, because a very large part of the computational domain would correspond to 
the mask. To obtain a reasonable number of grid-points in the fluid domain, extremely large resolutions would be needed. 
Immersed boundary methods with uniform space discretization are clearly not the most adapted tool for this aspect ratio. 
The parameters chosen in our simulation are Pr = 1, Ha = 7, Re = 100, ζ = 0.5 and Γ = 4. Despite the different parameters 
for the two computations, the resulting hydromagnetic flow has a similar topology. We note how the magnetic lines are 
advected by the flow. The resulting restoring Lorentz force stabilizes the fluid.

With this test-case we therefore found the well known stabilizing effect of an axial magnetic field on the Taylor–Couette 
flow. Qualitatively the flow behavior is very similar to what is found in other investigations. We were not able to quantita-
tively compare with the literature since our boundary conditions on the magnetic field are not the same as in [9], where 
insulating boundaries are considered and also because, in this reference, the parameter ζ is larger. To compare with more 
accuracy our codes with the literature we treat in the following section a test case with boundary conditions and geometry 
which are adapted to our numerical method.
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Fig. 20. Evolution of the axial kinetic energy for different Hartmann numbers.

Fig. 21. Hydromagnetic flow. Cut in the r–z plane of velocity u (left) and magnetic (B) field (right) for Pr = 1, Ha = 7, Re = 100, ζ = 0.5 and Γ = 4.

6.5. Flow induced by a helical magnetic field

Shan, Montgomery and Chen [34] studied numerically a conductive fluid confined in a periodic cylinder where an axial 
electric and magnetic field are imposed, which results in a helical magnetic field (see Fig. 22). They used a spectral code 
which decomposed the fields into Chandrasekhar–Kendall orthonormal eigenfunctions of the curl. In that study they discov-
ered a transition between an axisymmetric state with a zero velocity to a laminar helical state where a dynamic equilibrium 
appears, i.e., a steady state with non-zero velocity.

The parameters chosen for the numerical study are selected to closely reproduce the simulations in [34]. A fixed axial 
magnetic field B0 = 4.5 is imposed and the fluid has a constant magnetic diffusivity and kinematic viscosity λ = ν = 0.045. 
The computational domain size is Lx = L y = 0.8π and Lz = 8. The typical length scale is the cylinder radius, L = R0 = 1, the 
axial length is Lz = 8R0, the resolution used for the simulations is N3 = 1283 grid-points and the penalization parameter 
η = 5 · 10−4. Three dimensionless numbers characterize the system: the Lundquist number (S), the Hartmann number (Ha) 
and the pinch ratio for the axisymmetric zero flow state (Θ0):

S = C AL
, Ha = B0L√ , Θ0 = Bθ

, (41)

λ ρμ0λν 〈Bz〉
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Fig. 22. Helical magnetic field scheme.

with C A the axial Alfvén velocity C A = B0/
√

ρμ0, Bθ is the wall-averaged poloidal magnetic field and 〈Bz〉 is the volume-
averaged axial magnetic field.

The transition between states is determined as a function of one of these dimensionless numbers, the pinch ratio Θ0, 
which is varied by adjusting the imposed average axial electric field E0 and which is directly linked to the poloidal magnetic 
field. The other dimensionless numbers are maintained constant, S = Ha = 100. For the parameters given above, the linear 
theory predicts a transition for an imposed electric field, E0 = 0.33 [34,35].

To compare with Shan et al. we impose the same boundary conditions. The walls are treated as perfect conductors and 
are coated with a thin layer of insulator. Hereby both the radial magnetic and current density field vanish (Br = jr = 0). For 
the velocity field only the radial component vanishes at the wall. The penalization method is used to impose a vanishing 
normal component of the velocity (u · n = 0) without any regularization technique. Also an azimuthal magnetic field Bθ0

is imposed via the penalization term. In this case the vanishing radial current density ( jr = 0) is automatically satisfied 
because the azimuthal magnetic field does not generate a radial current density (the r-component of the curl of the imposed 
magnetic field is zero). The boundary conditions are thus satisfied.

The way the electric field is imposed in our simulations differs from the simulations by Shan et al. In their simulations 
the electric field explicitly appears in the discretized equations, whereas in our case the electric field is indirectly imposed 
through the magnetic field at the wall (which can be related to the electric field using Stokes’ theorem). This can lead to 
small differences in the transients, but is not expected to greatly affect the steady state solutions.

The azimuthal magnetic field Bθ0 (r) is imposed with the volume penalization method in the solid region using the 
regularization technique, like for the z-pinch case (see Section 5.2). The azimuthal magnetic field increases linearly with 
r from r = R0 (the fluid–solid frontier) to r = 0.34π and then smoothly tends to zero using an interpolating Hermite 
polynomial from r = 0.34π to r = 0.385π . The periodicity of the computational region is hereby satisfied and the magnetic 
derivative of the base-field is continuous at the wall.

To validate the code we perform the same calculations done by Shan et al. We vary the axial current density ( jz) and 
we calculate E0 when the simulation reaches a steady state using Ohm’s law

E0 = (−u × B)z + jz

σ
. (42)

We find (see Fig. 24) that the instability threshold between the axisymmetric and helical state is situated between E0 =
0.302 and E0 = 0.355 as found in [34]. The kinetic energy starts to grow when the imposed electric current is E0 = 0.355. 
The growth rate of the energy is calculated using Alfvén time units (t A = tnumC A/Lz). A least-square fitting gives the growth 
rate of the kinetic energy as 0.54, corresponding to a growth rate of 0.27. This can be compared to the analytical value 0.279
calculated for an applied electric field E0 = 0.35. Taking into account that our imposed magnetic field is slightly different 
(since the electric field is imposed indirectly in our case), the two different growth rates match in good order. In Fig. 23
the excited mode is visualized, which is a helical mode with azimuthal and axial mode numbers m = n = 1, respectively, as 
in [34].

Increasing the pinch ratio to E0 = 0.402 the flow returns to its axisymmetric copper-wire solution, which is also observed 
for certain values in [34]. An explanation for this behavior is the shape of the instability curves in the Θ0–Ha plane. By 
increasing the pinch ratio, different m, n helical modes appear at a fixed Ha, but they can disappear by increasing Θ0 to 
even higher values. This was investigated in [36].

In the next figures, 25 to 28, we compare our different simulations with the ones performed by Shan et al. We find 
quantitatively the same evolution of the average current density and the total dissipation rate (εT = λ〈 j2〉 + ν〈ω2〉). These 
quantities are time averaged during the dynamical steady state, since the flow becomes chaotic, if the pinch ratio (or E0) is 
large.

Some quantitative differences are observed in Figs. 25 and 26 for values around E0 = 0.6. At that point both methods 
might not trigger exactly the same helical modes, since the electric field is imposed in a slightly different way. Both methods 
might therefore give results corresponding to different multi-mode states. When the pinch ratio is increased further, the 
deviations become smaller, as can be seen in Figs. 27 and 28.
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Fig. 23. First helical mode, velocity streamlines colored with the axial velocity uz . (For interpretation of colors in this figure, the reader is referred to the 
web version of this article.)

Fig. 24. Evolution of the kinetic energy for different imposed axial electric fields.

Fig. 25. Zoom: average axial current as a function of the average electric field.

This test-case allows us to validate the nonlinear MHD code with boundary conditions imposed on both the velocity and 
magnetic field. A linear analytical result is confirmed. The “multi-mode” and turbulent states that are observed in literature 
also appear in our simulations. Further simulations with varying Hartmann number to complete our picture of the nonlinear 
behavior of the system constitute an interesting perspective.
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Fig. 26. Zoom: total energy dissipation rate as a function of the average electric field.

Fig. 27. Average axial current as a function of the average electric field.

Fig. 28. Total energy dissipation rate as a function of the average electric field.

6.6. Magnetohydrodynamic simulation in an asymmetric toroidal geometry

To illustrate the potential of the volume penalization method to deal with complex geometries we perform an MHD 
simulation in a torus with a ‘D’ shape cross section (Fig. 29(a)). This shape is given by a parametric equation that is a 
modified version of the formula given by Manickam [37],
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Fig. 29. (a) Asymmetric toroidal geometry, (b) toroidal velocity field component isocontours (blue +9 · 10−4, orange −9 · 10−4) and (c) perturbed toroidal 
magnetic field component isocontours (red +0.025, orange +0.04, yellow +0.05). (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.)

Fig. 30. Kinetic and perturbed magnetic energy time evolutions (in toroidal Alfvén unit times) for the magnetohydrodynamic toroidal simulation.

R(t) = L

2

[
cos

(
t − α + δ sin(t)

)
cos(ζ ) − κ sin(t) sin(ζ )

]
, (43)

Z(t) = L

2

[
cos

(
t − α + δ sin(t)

)
sin(ζ ) + κ sin(t) cos(ζ )

]
, (44)

with t ∈ [0, 2π ], δ the triangularity, κ the ellipticity, α the asymmetry and ζ the rotation angle. For the considered asym-
metric cross section the following values of these parameters are chosen: δ = 0.5, κ = 2.1, α = 0.4 and ζ = 0.15.

The initial condition for the simulations are zero magnetic perturbations and zero velocity. The simulation is carried out 
for a cubic domain of size (2π)3 consisting of 2563 grid points. We fix the penalization parameter to η = 5 · 10−4. The time 
step is adaptive and the chosen CFL coefficient is 0.1.

A helical magnetic field is imposed inside the torus. We take into account an imposed curl free toroidal magnetic field 
and an irrotational toroidal electric field. These two fields generate a Lorentz force that makes the magnetofluid move within 
the torus. In Fig. 29 ((b) and (c)) we present the velocity and the perturbed magnetic toroidal component isocontours at the 
steady state for a toroidal geometry with asymmetric cross section. The perturbed toroidal magnetic field is created by the 
velocities in the poloidal plane. This component of the magnetic field is important because it generates a toroidal Lorentz 
force that induces the toroidal velocities [38].

In Fig. 30 the evolution of the kinetic and perturbed magnetic energy is visualized. A steady state is obtained where the 
velocity field possesses a small fraction of the total energy. In real magnetic toroidal devices where the total energy is very 
important this small fraction is translated by a velocity of several kilometers per second. These velocities need to be taken 
into account to describe correctly the particle transport in such devices.

It was shown in [39] that a dominant toroidal velocity appears for decreasing dissipation. Also, breaking the up–down 
symmetry of the torus induces the development of a net toroidal flow.

The numerical method presented in this manuscript allows to easily modify the shape of a torus and to compare different 
geometries without remeshing. The magnetohydrodynamic results in a toroidal geometry change significantly depending on 
the boundary shape. This case, which is further discussed in [39], shows the flexibility of the present method for studies 
where the influence of the shape of the domain on the dynamics is investigated.



86 J.A. Morales et al. / Journal of Computational Physics 274 (2014) 64–94
7. Conclusion

An extension and implementation of the penalization method into a pseudo-spectral Fourier code solving the MHD equa-
tions are presented. This penalization method, which allows the introduction of obstacles and walls in the computational 
domain, is implemented in different ways with respect to the numerical scheme and definition of the fields within the solid 
domains.

The numerical code is validated by comparison with several test-cases and theory. First in two dimensions the conver-
gence of the results towards an analytical solution by decreasing the penalization parameter and increasing the resolution 
are shown. The method converges faster than second order if a regularization technique in the solid domain is applied 
which removes the discontinuities in the derivatives of the velocity and magnetic field at the solid–fluid boundary.

Then in three dimensions the first instability threshold of the hydrodynamic Taylor–Couette flow is found with good ac-
curacy. Also the nonlinear saturation of this flow is compared and validated with the literature. For the MHD Taylor–Couette 
flow the current inability to impose non-homogeneous Neumann boundary conditions using the penalization method, makes 
the comparison of our numerical results with the literature difficult. A more appropriate test-case to validate the three-
dimensional implementation of the penalization method to compute MHD flows is the flow induced by a helical magnetic 
field. This case is correctly reproduced. The linear threshold of the transition between an axisymmetric and a helical state is 
found. Also the evolution of the average axial current and the total dissipation rate as a function of the average electric field 
are compared with the literature and are in good agreement. Finally the computation of the MHD dynamics in a toroidal 
domain illustrates the flexibility of the numerical method.

All these test-cases allow us to validate the numerical method to solve correctly the MHD equations in a confined do-
main. The limitation are the restricted magnetic boundary conditions that can be applied. Presently, the current density can 
be only be imposed indirectly via the magnetic field. A modified volume penalization method that allows the introduction 
of non-homogeneous three-dimensional Neumann boundary conditions is currently being developed. We note that such a 
method is relevant to a wider domain of applications than MHD, e.g. in heat transfer to impose a given heat flux at the 
wall. One-dimensional results are presented in Appendix C.
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Appendix A. Asymptotic analysis of the penalized momentum and induction equations

This section follows the method used by Angot et al. [15] for the momentum equation in the hydrodynamic version. An 
asymptotic development of u and B with the small parameter η is done first and gives

u = u0 + ηu1 + η2u2 + η3u3 + · · · , (A.1)

B = B0 + ηB1 + η2B2 + η3B3 + · · · . (A.2)

Then these expressions are inserted into the governing equations (Eqs. (11) and (12))

∂tu = −u · ∇u − ∇Π + ν∇2u + j × B − χ

η
(u − uwall), (A.3)

∂tB = ∇ × (u × B) + λ∇2B − χ

η
(B − Bwall) (A.4)

and we identify the terms of the same order in η.
order -1⎧⎪⎨⎪⎩

0 = −χ

η
(u0 − uwall)

0 = −χ

η
(B0 − Bwall)

⇒ if χ = 1
{u0 = uwall

B0 = Bwall
(A.5)

At this order, in the solid domain the fields are equal to the boundary conditions.
order 0

∂tu0 = −u0 · ∇u0 − ∇Π0 + ν∇2u0 + ∇ × B0 × B0 − χ

η
u1, (A.6)

∂tB0 = ∇ × (u0 × B0) + λ∇2B0 − χ
B1. (A.7)
η
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At this order, the Navier–Stokes and induction equations are found in the fluid (χ = 0). In the solid domain (χ = 1), the 
hypothesis that the fields of the order 0 are in a stationary state and homogeneous in space is made. In this case the 
equations reduce to

∇Π0 = χ

η
u1, 0 = −χ

η
B1. (A.8)

The first equation is Darcy’s law. It is easily deduced that the penalization parameter η must tend to zero for the velocity 
field to converge to the boundary condition value. The equation for the magnetic field remains not interpreted at the time.
order 1

∂tu1 = −u0 · ∇u1 − ∇Π1 + ν∇2u1 + ∇ × B1 × B0 − χ

η
u2, (A.9)

∂tB1 = ∇ × (u1 × B0) + ∇ × (u0 × B1) + λ∇2B1 − χ

η
B2. (A.10)

Here the same hypothesis about the order 0 fields is made. There is no interpretation for this system, but we see that the 
system cannot be closed and we should truncate the series to do so.

Appendix B. Analysis of the Hermite regularization

In this section an analysis of the one-dimensional penalized Poisson equation imposing Dirichlet boundary condition is 
conducted, and the order of convergence yielded by the Hermite regularization method will be characterized and compared 
to the classical penalization.

The unpenalized problem in [−1; 0] reads:⎧⎨⎩−u′′ = 0

u(−1) = 0, u(0) = 1

2
The penalized problem is solved in the interval [−1; 1]:⎧⎨⎩−u′′ = −χ

η
(u − uwall)

u(−1) = 0, u(1) = uwall(1)

with χ =
{

0 in Ω f = [−1;0[
1 in Ωs = [0;1] (B.1)

At the fluid–solid interface we impose the continuity condition us(x) = u f (x), u′
s(x) = u′

f (x) for x = 0.

For the classical penalization, we set uwall = 1
2 and thus uwall(1) = 1

2 . The solutions are⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

u f (x) = a(x + 1), us(x) = K1e
x√
η + K2e

−x√
η + 1

2

with a = α(e2∗ − 1)

2(α − 1 − e2∗ − e2∗α)
+ 1

2

and K1 = −α

2(α − 1 − e2∗ − e2∗α)
, K2 = αe2∗

2(α − 1 − e2∗ − e2∗α)

where α = √
η and e∗ = e

1√
η . The subscripts ‘s’ and ‘ f ’ stand for the solid and the fluid domain, respectively.

For the penalization with the regularization method, the interpolating polynomial must be defined first. An Hermite 
interpolation consists in finding a polynomial which fits two separate points where the values of the function and of a 
chosen number of derivatives are imposed. In our case the Hermite polynomial H(x) must match the values of u and its 
first derivative at x = 0 and yields H(1) = H ′(1) = 0 at x = 1. As the exact solution of the unpenalized problem is u(x) = x+1

2 , 
the expression of the third degree Hermite polynomial can be easily derived:⎧⎪⎪⎨⎪⎪⎩

H(0) = 1

2
, H ′(0) = 1

2
, H(1) = 0, H ′(1) = 0

H(x) = 3x3

2
− 5x2

2
+ x

2
+ 1

2
In Eq. (B.1), H(x) is set as uwall and, with the same notations as before, the solutions are⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

u f (x) = a(x + 1), us(x) = K1e
x√
η + K2e

−x√
η + H(x) + (9x − 5)η

with a = 14α3(1 − e2∗) + 8α2e

α − 1 − e2∗ − e2∗α
+ 1

2
− 5α2

and K1 = 14α3 + 4α2e∗(α + 1)

2 2
, K2 = −14α3e2∗ − 4α2e∗(α − 1)

2 2
α − 1 − e∗ − e∗α α − 1 − e∗ − e∗α
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Fig. B.31. Exact solution with the different penalization methods. With the regularization method, the solution is C1 on the whole domain.

Fig. B.32. Solutions of the penalized problem for various values of η for the classical (left) and regularized penalization method (right).

Fig. B.31 shows the exact profiles of the solution of the Poisson equation in [−1, 0[ and the penalization term in [0, 1]. 
The solution of the penalized problem should converge to these profiles when η → 0.

These solutions are compared to the exact solutions u f = x+1
2 and us = 1

2 in Fig. B.32 for different values of the penal-
ization parameter η. It can be seen that both converge rapidly to the theoretical solutions when η becomes smaller.

From Fig. B.33, the same can be observed for the first derivative (top). The second derivatives (bottom) do not fit very 
well but the results are smoother in the case of the Hermite interpolation. Eventually the class of the function is increased 
with the second method, as expected.

B.1. Evaluation of the error

The penalization error in the L2 norm can be computed directly as

‖ε‖2
2 =

0∫
−1

(uη − uexact)
2dx =

0∫
−1

(
a(x + 1) − x + 1

2

)2

dx = (1 − 2a)2

12

Then the coefficient a is replaced by the corresponding expressions obtained above in the two cases and the error becomes:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

‖ε‖2 =
∣∣∣∣ (1 − 2a)√

12

∣∣∣∣
classical penalization : ‖ε‖2 =

√
η√

12

Hermite penalization : ‖ε‖2 = 10η√
12

The convergence results are confirmed by the numerical experiments shown in Fig. B.34. The penalized solutions are 
plotted for several values of η = [10−1, 10−2, 10−3, 10−4, 10−5] and the errors with respect to the exact profiles are com-
puted in the L2 and L∞ norms. The order of convergence is indeed improved to η for the regularization method instead of √

η with the classical penalization.
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Fig. B.33. First (top) and second derivative (bottom) of the solution of the penalized problem for the classical (left) and regularized penalization method 
(right).

Fig. B.34. Penalization errors of uη as a function of η for classical (left) and regularized penalization method (right).

The errors are also presented for the first and second derivative (Fig. B.35). It must be noticed that the error for the 
second derivative in the case of the regularized penalization method still improves when η decreases, whereas it increases 
for the classical method.

The order of convergence obtained in Sections 5.1 and 5.2 is higher than the one obtained here. This could result from 
the dissipative terms in the Navier–Stokes and induction equations, which are not present here. This term smoothens the 
remaining discontinuities and improves the order of convergence. The principal drawback of this method is that a baseflow 
must be known to precompute the regularization term. Moreover, it is possible that this baseflow is not continuous if in 
the numerical solution instabilities appear. As further perspective, this method should be implemented actively so that the 
regularization term fits the numerical solution as closely as possible at each time-step.
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Fig. B.35. Penalization errors of u′
η (top) and u′′

η (bottom) as a function of η for classical (left) and regularized penalization method (right).

Appendix C. Imposing non-homogeneous Neumann conditions with a penalization method

A generalization of the volume penalization method to impose non-homogeneous Neumann boundary conditions will be 
explained in the following.

The advection–diffusion equation of a scalar field θ(t, x) is considered in a domain Ω ,

∂θ

∂t
+ u j∂ jθ = α�θ, (C.1)

∇θ |∂Ω = γwall, θ(t = 0, x) = f0(x). (C.2)

Taking the gradient of this equation we can obtain a system of advection–diffusion equations for the different components 
of the gradient of θ , denoted by γi = ∂iθ . The penalization term is added and inhomogeneous Dirichlet conditions are 
imposed on γi ,

∂γi

∂t
+ ∂i(u j∂ jθ) = α�γi − χ(x)

η
(γi − γiwall). (C.3)

We use a Fourier pseudo-spectral method and thus periodic boundary conditions are applied in the computational domain.
The next step is to integrate this last equation in space to recover the equation for θ . To do so we apply the divergence 

operator to the system of Eqs. (C.3). Using the relation ∇ · (∇ f ) = � f , the Laplace operator appears in the equation. Thus 
to recover the equation for θ a Poisson equation has to be solved. In spectral space this is equivalent to multiply Eq. (C.3)
by the operator −ıki/k2,

θ̂ (k) = −ıki

k2
γ̂i(k), (C.4)

with k �= 0. In consequence, in physical space, the advection–diffusion equation with the penalization term for the gradient, 
can be written:
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Fig. C.36. Scheme of the one dimensional diffusion problem for positive heat fluxes at the boundaries.

∂θ

∂t
+ u j∂ jθ = α�θ +F−1

[
ıki

k2
F

{
χ(x)

η
(γi − γiwall)

}]
. (C.5)

This last equation can be solved numerically with a pseudo-spectral method and the solution of the advection–diffusion 
equation with non-homogeneous Neumann boundary conditions can thus be obtained.

To verify this numerical method a one-dimensional test case is presented in the next section considering an instationary 
diffusion problem with non-homogeneous Neumann boundary conditions. A different numerical method to take into account 
homogeneous boundary conditions using spectral methods is presented in [23].

C.1. Test case: one-dimensional instationary diffusion problem

We consider the instationary diffusion equation for the temperature θ(x, t), with a positive heat flux on the left and right 
boundaries (see Fig. C.36). The equation to be solved is the following,

∂θ(x, t)

∂t
= ∇2θ(x, t), (C.6)

completed with non-homogeneous Neumann boundary conditions at x = a and x = b,

∂θ

∂x

∣∣∣∣
x=a

= −q and
∂θ

∂x

∣∣∣∣
x=b

= q. (C.7)

The solution of this system is a combination of a parabolic function in space and a linear time evolution,

θ(x, t) = q(x − a)

(
(x − a)

(b − a)
− 1

)
+ 2q

(b − a)
t. (C.8)

The initial condition chosen for the simulation is the parabolic function that respects the inhomogeneous boundary condi-
tions,

θ(x,0) = q(x − a)

(
(x − a)

(b − a)
− 1

)
. (C.9)

Numerically the diffusion equation is advanced in time and the two non-homogeneous Neumann boundary conditions 
are taken into account with a penalization term,

∂θ(x, t)

∂t
= �θ(x, t) +F−1

[
ıki

k2
F

{
χ(x)

η

(
γi(x) − γiwall(x)

)}]
︸ ︷︷ ︸

Non-homogeneous Neumann BC term

. (C.10)

In Fig. C.36 the external region (small rectangles) and the internal region (black line) are visualized. On the border of the 
domain the periodicity must be ensured and therefore a zero gradient of θ is imposed at x = 0 and x = L. For this reason 
we impose a linear evolution of the gradient (γiwall (x)) in the solid region,

γiwall(x)
∣∣
x∈[0,a] = −q

a
x, γiwall(x)

∣∣
x∈[b,L] = q

L − b
(L − x). (C.11)

Hence we verify the Neumann boundary conditions at x = a and x = b, as well as the periodicity at the boundary of the 
computational domain.

We obtain numerically the solution of the diffusion equation (C.6) with the imposed Neumann boundary conditions. 
The computations are performed in a domain size L = 2π taking into account different resolutions N and penalization 
parameters η. The numerical error for the gradient of the temperature ∇θ is calculated. The time evolution of the L2-norm 
error is presented, for different values of N and η, in Fig. C.37. The error remains constant for t > 4. A series of computations 
has been carried out either for fixed values of η = 4 · 10−4 and varying N or for fixed N = 128 and varying η.

At the steady state (when the error between the numerical results and the exact solution is constant in time) we can 
evaluate the different error norm and compute their convergence as a function of the penalization parameter and the 
resolution. Fig. C.38 presents the convergence of two error norms with η. Second order convergence of the L2 error and a 
first order of the L∞ norm are obtained when the penalization tends to zero. With the resolution (Fig. C.39) we observe a 
fourth order convergence for L2 and a second order for the L∞ error.
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Fig. C.37. Time evolution of the L2 error for the gradient of θ , between the numerical results and the exact solution, for different resolutions, N (left) and 
penalization parameters, η (right).

Fig. C.38. Evolution of the L∞ and L2 errors for the gradient of θ as a function of the penalization parameters (η).

Fig. C.39. Evolution of the L∞ and L2 errors for the gradient of θ as a function of the grid points (N).

Appendix D. Corresponding explicit scheme of the semi-implicit penalization method

Jause-Labert et al. [24] extended an implicit formulation for the time-integration scheme for Dirichlet conditions, orig-
inally proposed by Kolomenskiy and Schneider [17] for Burgers’ equation, to relax the constraint on the choice of the 
time-step. Their approach is discussed in some detail in this section. We use the following form of the penalized Navier–
Stokes equation:

∂t u = ξ − ∂x P − χ
u, (D.1)
η
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in this equation uwall = 0, P + u2/2 → P and ξ represents the nonlinear term. The viscous term can simply be added in the 
integral form, u exp(−νk2t) → u. In Fourier space we can write

∂t û = P⊥
(

ξ̂ − 1

η
χ̂u

)
, (D.2)

with P⊥ the Riesz projection-operator. The implicit treatment for the penalization term at the first order implies

ûn+1 − ûn

�t
= P⊥

(
ξ̂n − 1

η
χ̂un+1

)
, (D.3)

the fact that in the last term the χ̂ is convoluted with ûn+1 makes it non-trivial to write the implicit formulation. The 
following formulation is proposed [24]:

ûn+1 = P⊥F
(

un + �t F−1[P⊥ξ̂n]
1 + χn+1

η �t

)
. (D.4)

We know that the χ function takes only the values 0 and 1 depending if we are in the fluid or in the solid region 
respectively,

χ(x, t) =
{

0 for x ∈ Ω f , the fluid domain
1 for x ∈ Ωs, the solid domain.

(D.5)

An equivalent form of Eq. (D.4) can be written as follows

ûn+1 = P⊥F
[(

un + �t F−1[P⊥ξ̂n])(1 − χn+1 �t

η + �t

)]
. (D.6)

We recover the Navier–Stokes equation in the fluid domain and the implicit penalized equation (D.4) in the solid region. 
Using the following relations

P⊥ P⊥â = P⊥â

P⊥û = û, (D.7)

the differential form of Eq. (D.6) can be written

∂t û = P⊥
(

P⊥ξ̂ − χ̂u

η + �t
− �t

η + �t
F

{
χ F−1[P⊥ξ̂ ]}). (D.8)

Here we can identify two extreme cases. If �t 	 η Eq. (D.8) converges towards Eq. (D.2), we recover the classical penalized 
Navier–Stokes equation. On the other hand if η 	 �t we recover the following equation:

∂t û = P⊥
(
F

{
(1 − χ)F−1[P⊥ξ̂ ]} − χ̂u

�t

)
. (D.9)

This equation is very close to the classical penalized Navier–Stokes equation. Here the time step �t replaces the penalization 
parameter (η) and the nonlinear term vanishes in the solid region.

The semi-implicit penalization method is in this limit analogous to an explicit formulation. The difference is that, if the 
penalization parameter is small enough, the porosity of the solid walls is given by the value of the time step.
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