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Abstract. Coherent vorticity simulation (CVS) is a multiscale method to compute incompressible tur-
bulent flows based on the wavelet filtered Navier–Stokes equations. At each time step the vorticity field is
decomposed into two orthogonal components using an orthogonal wavelet basis: the coherent vorticity, cor-
responding to the coefficients whose modulus is larger than a threshold, and the remaining incoherent vorticity.
The threshold value only depends on the total enstrophy, which evolves in time, and on the maximal resolution,
which remains constant. The induced coherent velocity is computed from the coherent vorticity using the Biot–
Savart kernel. To compute the flow evolution one only retains the coherent wavelet coefficients and some of
their neighbors in space, scale, and direction, which define the safety zone. Two different strategies are studied
to minimize at each time step the number of degrees of freedom to be computed, either by increasing the
threshold value or by reducing the width of the safety zone. Their efficiency is compared for a three-dimensional
forced homogeneous isotropic turbulent flow at initial Taylor microscale Reynolds numberRλ ¼ 153. The qual-
ity of the results is assessed in comparison to a direct numerical simulation of the same flow. It is found that, as
long as a safety zone is present, CVS well preserves the statistical predictability of the turbulent flow (even the
vorticity and velocity probability distribution functions) with a reduced number of degrees of freedom.
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1. Introduction. Turbulence, ubiquitous in our daily life, is still one of the most
challenging problems in science. Turbulence exhibits an intrinsic multiscale behavior
due to a large number of degrees of freedom interacting nonlinearly. Observations show
its self-organization into vortices, even at large Reynolds’ number [3], superimposed to a
background flow. This motivates us to split turbulent flows into two contributions, i.e.,
coherent vortices and a random background flow. Both contributions are multiscale and
exhibit no scale separation. To reduce the computational load for simulating turbulent
flow we have proposed the coherent vorticity simulation (CVS) method, which retains
only the flow induced by the coherent vortices [7], [8]. This approach differs from the
filtering approach of large-eddy simulation (LES), e.g., [15], [18], which computes only
the large-scale evolution, while modeling the influence of small-scale motion onto the
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large-scale motion. In laboratory experiments and in direct numerical simulation (DNS)
one observes that small-scale contributions are not necessarily slaved by the large scales
since there is some inverse energy transfer, called backscattering, which complicates
modeling in LES.

So far different multiscale decompositions have been applied for modeling and com-
puting turbulent flows [6], [11], [17], [22]. The wavelet representation is an efficient tool
to perform such decompositions since it uses well localized functions in space, scale, and
direction. It has been utilized to extract coherent vorticity with a reduced set of degrees
of freedom from two- [7] and three-dimensional incompressible hydrodynamic turbu-
lence [9], [10] to extract coherent vorticity sheets and current density sheets from mag-
netohydrodynamic turbulence [30] and also to perform directional statistical analyses
[2]. Okamoto et al. [20] have shown that for three-dimensional homogeneous isotropic
turbulence, the number of degrees of freedomNc of the coherent vorticity increases more
slowly with the Taylor microscale Reynolds number Rλ, i.e.,Nc ∝ R3.9

λ , than the number
of degrees of freedom of DNS N , where Kolmogorov type arguments imply N ∝ R9∕ 2

λ .
One might think that the improvement of the scaling exponent is small. However, the
coefficient in front was shown to be about a factor 10 smaller than that of DNS, which
implies a significant reduction, i.e., a reduction of one order of magnitude of the number
of degrees of freedom in CVS.

The CVS approach was originally introduced in [7], [8]. The underlying idea of CVS
is to decompose the turbulent flow at each time step into organized coherent and noise-
like incoherent contributions using an orthogonal wavelet representation of vorticity.
The coherent vorticity is reconstructed from the few wavelet coefficients whose modulus
is larger than a given threshold, while the incoherent vorticity is obtained from the many
remaining wavelet coefficients. Only the coherent flow is computed deterministically,
while the incoherent flow is discarded or statistically modeled. The choice of the thresh-
old, which is applied to the wavelet coefficients, is directly related to Donoho’s criterion
[5], and hence its value is determined automatically during the flow evolution. This cri-
terion supposes the incoherent flow to be Gaussian and decorrelated. Different examples
of CVS for two-dimensional turbulent flows can be found in [7], [8], [12], [25] and for
three-dimensional turbulent mixing layers in [24]. In [12], [24], [25], a safety zone in
wavelet space was introduced in order to predict the translation of coherent vorticity
and the generation of smaller scales due to its nonlinear dynamics.

CVS-like computations of three-dimensional homogeneous isotropic decaying and
forced turbulence and its coupling with LES are presented in [13], [27]. In these CVS-like
simulations, the velocity is decomposed into biorthogonal wavelets, and the coherent
velocity is advanced in time using an adaptive wavelet collocation method with a finite
difference discretization. The threshold there is determined a priori from DNS results.
The resolution of the CVS-like computations was increased by a factor of 8 with respect
to DNS as, instead of a Fourier spectral method, a finite difference scheme is used.
Readers interested in wavelet methods in computational fluid dynamics may refer to
the recent review article [26].

The aim of the present work is to assess the potential of CVS for three-dimensional
forced homogeneous isotropic turbulence. The choice of homogeneous turbulence is
made to demonstrate the feasibility and efficiency of CVS by choosing the most challen-
ging case. Indeed, in homogeneous turbulence, coherent vortices are spread all over
physical space, in contrast to inhomogeneous turbulence, e.g., mixing layers or flows
past bluff bodies. The motivation to analyze forced turbulence is to obtain a statistically
stationary flow and to keep the small scales active.
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We investigate the choice of the safety zone and of the threshold, as they play a
significant role regarding CVS efficiency and reliability. The CVS results are compared
to DNS results using the same maximal resolution and also to Fourier truncated simula-
tion using the spectral cutoff filter. Thus, we check if we can benefit from the wavelet
representation with respect to the predictability of turbulence in the statistical sense,
and not in the determinisitc sense as the system is chaotic. In the present study, we
perform CVS using pseudoadaptive computations in the same way as in [24] to check
the feasibility of fully adaptive computations, and therefore we do not focus on the CPU
time of CVS. Fully adaptive CVS computations of three-dimensional turbulent flows
will reduce not only the memory requirements but also the CPU time of the computa-
tions, as shown for three-dimensional weakly compressible mixing layers using an
adaptive multiresolution method [21].

The remainder of the paper is organized as follows. First, the CVS methodology is
exposed in section 2, and then different choices of the safety zone are discussed in
section 3. Section 4 presents numerical results, and finally section 5 gives conclusions
and perspectives.

2. CVSmethodology. In this section, we describe the CVS methodology, i.e., the
coherent vorticity extraction (CVE) method, the wavelet filtered Navier–Stokes equa-
tions, and safety zones.

2.1. Coherent vorticity extraction. We briefly summarize the CVE method for
three-dimensional turbulent flows, which was first introduced in [9]. This approach is
based on a decomposition of vorticity ω ¼ ∇× u into an orthogonal discrete wavelet
series, i.e.,

ωðxÞ ¼
X
λ∈Λ

~ωλψλðxÞ;ð2:1Þ

where the multi-index λ ¼ ðj; i1; i2; i3;μÞ denotes the scale 2−j, the position
2−ji ¼ 2−jði1; i2; i3Þ, and the seven directions μ ¼ 1; : : : ; 7 of the wavelets. The index
set of the wavelet coefficients Λ is

Λ ¼ fλ ¼ ðj; in;μÞ; j ¼ 0; : : : ; J − 1; in ¼ 0; : : : ; 2j − 1; n ¼ 1; 2; 3; andμ ¼ 1; : : : ; 7g:

The discrete wavelet basis ψλðxÞ consists of a discrete set of continuous functions, whose
index set Λ is discrete. The three-dimensional wavelets ψλðxÞ correspond to products of
one-dimensional scaling functions and wavelets in various combinations, as shown in
(Mallat, p. 340 of [16] and Meyer, p. 81 of [19]) and (Meneveau, p. 478 of [17]) for
two- and three-dimensional wavelets, respectively. An illustration of the three-
dimensional wavelet space is given in Figure 2.1 and the seven directions are shown
in Figure 2.2(c). It can be observed that there are more coefficients as scale decreases.

Owing to orthogonality the wavelet coefficients are given by ~ωλ ¼ hω;ψλi, where
h·; ·i denotes the L2-inner product, defined by hf ; gi ¼ ∫ R3fðxÞgðxÞdx. The coefficients
measure the fluctuations of ω around scale 2−j and around position 2−ji for each of the
seven directions. The N wavelet coefficients ~ωλ are efficiently computed from the
N ¼ 23J grid point values of ω using the fast wavelet transform which has linear com-
putational complexity (see, e.g., [16]). In the present work, the compactly supported
Coiflet wavelets with filter width 12 are used.

Thresholding the wavelet coefficients ~ωλ at a given time instant, with a thresholding
function
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ρT ð ~ωλÞ ¼
�

~ωλ for j ~ωλj > T;
0 for j ~ωλj ≤ T;

ð2:2Þ

we separate the coefficients into coherent and incoherent, i.e., ~ωc ¼ ρT ð ~ωλÞ and
~ωi ¼ ~ωλ − ~ωc, respectively. The coherent and incoherent vorticity fields are then recon-
structed by the inverse wavelet transform. By construction we have

ω ¼ ωc þ ωi;ð2:3Þ

and, thanks to the orthogonality of the decomposition, enstrophy Z ¼ hω;ωi ∕ 2 is
conserved, i.e., Z ¼ Zc þ Zi.

The threshold is motivated by denoising theory [5]. The threshold value is given by
T ¼ fð4 ∕ 3ÞZi ln Ng1∕ 2, which depends only on the incoherent enstrophy Zi (which is a
priori unknown) and the maximal resolution N . Owing to Parseval’s identity, the en-
strophy can be computed directly in wavelet space. We compute the first threshold value
T 0 using the total enstrophy Z as a first estimate of Zi, i.e., T 0 ¼ fð4 ∕ 3ÞZ ln Ng1∕ 2.
Then we split the total vorticity field ω into coherent and incoherent vorticity with
threshold T ¼ T 0. The obtained incoherent enstrophy provides a new estimate of Zi

from which we compute a new threshold value T 1. The above procedure could then

FIG. 2.1. The orthogonal wavelet representation of a three-dimensional field. Generalizing Mallat’s con-
vention used for two-dimensional images [16], each three-dimensional subcube corresponds to a given scale
indexed by j and a given direction indexed by μ, all three depending on the three spatial directions x, y,
and z.
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be iterated until convergence. For details on this iterative algorithm and its mathema-
tical justification, we refer to [1]. The coherent vorticity extracted by wavelet filtering
with T ¼ T1 is sufficient to preserve the statistics of the total field at a given time in-
stant and achieves good compression. In contrast, the coherent vorticity field extracted
by the wavelet filtering with T ¼ T 0ð> T 1Þ does not sufficiently preserve the statistics
of the total field well [25]. The influence of the number of iterations for two- and three-
dimensional homogeneous isotropic turbulence is reported in [25] and [20], respectively.

The corresponding induced velocity fields are reconstructed by applying the
Biot–Savart kernel to both the coherent and incoherent vorticity fields, i.e., u ¼
−∇× ð∇−2ωÞ to obtain

u ¼ uc þ ui:ð2:4Þ

For the energy, we have E ¼ Ec þ Ei þ ε, where E ¼ hu; ui ∕ 2 and ε ∕ E ≪ 1. Farge,
Pellegrino, and Schneider [9] showed that the incoherent velocity field is Gaussian-like
and exhibits an energy equipartition.

The projection of the vorticity field onto a finite-dimensional subspace, see (2.1) in
the case of wavelets (with N ¼ 2J ) or the space of trigonometric polynomials of
degree smaller or equal N ∕ 2 in the case of the Fourier tranform, yields a one-to-one
correspondence between the discrete wavelet or Fourier coefficients and the continuous

FIG. 2.2. The different options for the safety zone showing the neighbors in space, scale, or direction of a
given wavelet coefficient ~ωλ : (a) spatial position of the neighbor wavelet coefficients at the same scale 2−j, and
(b) spatial position of the neighbor wavelet coefficients at the next smaller scale 2j−1, (c) directions of the
neighbor wavelet coefficients.
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functions. Thus, one can work either with the projected functions or with the coeffi-
cients. The coefficients are used in a Galerkin projection of the Navier–Stokes equations
onto a finite-dimensional subspace.

2.2. Wavelet filtered Navier–Stokes equation. To track the nonlinear flow
dynamics in space, scale, and direction, the CVE method should be applied at each time
step. But retaining the coherent wavelet coefficients only is not sufficient to catch the flow
evolution. Adding a safety zone in the vicinity of the retained wavelet coefficients is cru-
cial, as shown in [25] for two-dimensional turbulence. The CVS method should thus retain
both the coherent wavelet coefficients and their neighbor coefficients at each time step.
The coherent vorticity field, including the safety zone ωc�, is obtained from these wavelet
coefficients, and the remaining vorticity field ωi� is ωi� ¼ ω− ωc�. The corresponding
velocity fields uc� and ui� induced by ωc� and ωi�, respectively, are computed from
the Biot–Savart relation. In CVS, ωc� is not perfectly divergence-free, but this is ensured
by taking the curl of uc�. A discussion on the divergence of ωc� is given in Appendix A.

Inserting the decompositions ω ¼ ωc� þ ωi� and u ¼ uc� þ ui� into the Navier–
Stokes equations and neglecting the influence of ωi� and ui�, we obtain the evolution
equation for ωc�,

∂
∂t

ωc� þ uc� · ∇ωc� ¼ ωc� · ∇uc� þ ν∇2ωc� þ∇× f ;ð2:5Þ

where ν denotes the kinematic viscosity and with ∇ · uc� ¼ 0. The term f expresses a
solenoidal external force applied to the velocity field. The evolution of uc� can be ob-
tained by the velocity-pressure formulation, which is equivalent to (2.5) supposing the
incompressibility of ωc�.

2.3. Safety zone in wavelet space. The index set of the coherent wavelet coeffi-
cients at a given time instant Λn

c is expanded by adding the neighbor wavelets in scale,
space, and direction, which corresponds to the safety zone, as illustrated in Figure 2.2.
The expanded index set, denoted by Λn� , thus allows one to track the translation of
coherent vortices and the production of finer scales due to their nonlinear interaction.
A flowchart of the CVS algorithm is shown in Figure 2.3.

As illustrated in Figures 2.2(a)–(c) the total number of neighbors is large, i.e., we
have 26 adjacent neighbors in space, 2 or 3 in direction, and 8 in scale for a given coeffi-
cient. Adding all neighbors whose indices do not belong to Λn

c to the safety zone would
significantly increase the percentage of the wavelet coefficients retained by CVS. Here
we keep the incoherent wavelet coefficients belonging to the safety zone, i.e., the differ-
ence set Λn� − Λn

c , at any time in order to take advantage of the safety zone as much as
possible. The remaining large majority of the wavelet coefficients, which are not
elements of Λn� , are neglected.

The width of the safety zone depends on the time increment and on the fact that the
nonlinear term is quadratic. The fluid incompressibility implies that local changes in the
flow could become global. However, the wavelet representation of the flow, which uses
functions with vanishing moments, implies that the energy and enstrophy transfer be-
come local in wavelet space, as shown in Schneider et al. [24] and Fröhlich and Schneider
[12] for three- and two-dimensional flows, respectively. These studies suggest that the
information which travels further than the adjacent wavelet coefficients is not signifi-
cant, given that the time increment is sufficiently small. However, one should verify
whether the width of the safety zone is sufficient to preserve the flow dynamics well.
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3. Numerical method and simulation settings. The numerical code uses a
classical Fourier pseudospectral method based on the velocity-pressure formulation with
a fourth-order Runge–Kutta scheme for time marching. We compute in each time step
the vorticity field, perform the wavelet filtering of vorticity including the definition of
the safety zone in order to obtain the coherent vorticity, and invert the curl operator to
compute the coherent velocity field, which is advanced in time (see Figure 2.3). The
aliasing errors are removed by a phase-shift method, which keeps all the Fourier modes
satisfying k ¼ jkj < kmax, where k is the wave vector and kmax ¼ 21∕ 2N 1 ∕ 3 ∕ 3.

The external force F ½f �ðk; tÞ is applied to F ½u�ðk; tÞ in the low wavenumber range
k < 2.5, where F ½·� denotes the Fourier representation of ·. The force satisfies the
following conditions:

hF ½fl�ðk; tÞi ¼ 0;ð3:1Þ

hF ½fl�ðk; tþ τÞF ½fm�ð−k  0; tÞi ¼ F

�
δlm −

klkm
k2

�
δk;k 0e

−jτj ∕ τc ;ð3:2Þ

where fl is the lth component of f , F the intensity of f , τc the correlation time of the
external force, δlm the Kronecker delta δk;k 0 ¼ 1 for k ¼ k 0, and δk;k 0 ¼ 0 else. The
bracket hi denotes the ensemble average. Readers interested in details of how to generate
such a random force are referred to the appendix of [29].

We performed eight numerical computations of forced homogeneous isotropic tur-
bulence in a 2π periodic box: one DNS computation as reference, five CVS computations
(CVS0, CVS1, CVS2, CVS3, and CVS4), and two Fourier truncated simulations (FL0
and FL1) using the spectral cutoff filter. The different CVS computations are summar-
ized in Table 3.1. The safety zones in CVS0 and CVS1 are determined in the same way as
in [8], [12], [24], [25]. The resolution is N ¼ 2563, the kinematic viscosity ν ¼ 7.0× 10−4,
and the time increment Δt ¼ 1.0× 10−3. The external force has the same time history in
all the above computations. Here we set τc ¼ 0.5 and F ¼ 1.5× 10−3.

FIG. 2.3. Flowchart of CVS.
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All the above computations are integrated during about four initial eddy turnover
times τ ¼ L ∕ u 02, where u 0 ¼ 2E ∕ 3 and L is the integral length scale defined by
L ¼ π ∕ ð2u 02Þ∫ kmax

0 EðkÞ ∕ kdk. Here, EðkÞ is the energy spectrum, defined as EðkÞ ¼
Σk−1∕ 2≤jpj<kþ1 ∕ 2jF ½u�ðpÞj2 ∕ 2. The Kolmogorov length scale η is defined by η ¼
ðν3 ∕ hϵiÞ1 ∕ 4, where hϵi is the mean rate of energy dissipation per unit mass. Typical
physical quantities are summarized in Table 3.2.

We use the same initial velocity field in all the computations. This initial flow field is
obtained by a preceding DNS computation of a statistically quasi-steady turbulent flow
with a Taylor microscale Reynolds number Rλ ¼ 153. Here, Rλ ¼ u 0λ ∕ ν, λ is the Taylor
microscale length defined by λ ¼ ð15νu 02 ∕ hϵiÞ1 ∕ 2. The initial energy spectrum of the DNS
has the form EðkÞ ∝ k4 expð−2k2 ∕ k2pÞ. Here, kp ¼ 2 and the initial total energy is 0.5.

The numerical procedure to simulate CVS using a Fourier solver is close to real
adaptive CVS computations, as the concept of the safety zone is completely identical.
However, we should keep in mind that in our case the flow is computed in a Fourier basis.
Thus, derivation and integration are exact in Fourier space, which is not the case in a
wavelet basis. An exception are Shannon wavelets, which are made out of trigonometric
polynomials. For Shannon wavelets, the adaptive CVS computation would be algebrai-
cally identical to the Fourier solver. For other wavelet bases, e.g., spline wavelets, the
difference between the wavelet and Fourier schemes becomes smaller with increasing
order of the wavelet. Readers interested in the estimation of numerical cost of fully
adaptive CVS are referred to Appendix B.

4. Numerical results. In this section, we study the choice of the safety zone and
then examine the dependence of CVS on the threshold. Finally, we compare CVS with
Fourier truncated simulations.

TABLE 3.1
Safety zone and threshold used for CVS (∘ for active safety zone, × for nonactive safety zone).

safety zone

space direction scale threshold value T

CVS0 ∘ ∘ ∘ T0

CVS1 ∘ ∘ ∘ T1

CVS2 ∘ ∘ × T1

CVS3 × × ∘ T1

CVS4 × × × T1

TABLE 3.2
Physical parameters of the DNS, CVS, and FL computations at t∕ τ ¼ 3.78.

E E ∕ EDNS(%) Z Z ∕ ZDNS(%) L λ η −Su Fω

DNS 0.516 100 71.4 100 0.942 0.190 0.00765 0.491 7.99
CVS 0 0.529 103 45.8 64.1 0.893 0.240 0.00855 0.494 8.41
CVS 1 0.514 99.6 56.6 79.3 0.945 0.213 0.00811 0.511 8.72
CVS 2 0.512 99.2 51.1 71.6 0.898 0.224 0.00832 0.475 7.19
CVS 3 0.518 100 55.0 77.0 0.915 0.217 0.00817 0.509 8.80
CVS 4 0.534 103 14.1 19.7 0.997 0.436 0.01149 0.394 4.60
FL 1 0.518 100 71.4 100 0.939 0.190 0.00765 0.465 7.30
FL 0 0.520 101 72.1 101 0.942 0.190 0.00763 0.377 5.70
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4.1. Influence of the safety zone. Figure 4.1 shows the time evolution of the
percentage of retained coefficients in CVS. They consist of the coherent wavelet coeffi-
cients and the wavelet coefficients retained in the safety zone. In each case, we see that
after a transient decay at early times, say t > 0.5τ, the number of the retained coeffi-
cients does not vary much. Most coefficients are retained by CVS1 (about 30%), fol-
lowed by CVS3 (about 27%), and then CVS2 (11.5%). For CVS4, where no safety
zone is present, the number of retained wavelet coefficients decays rapidly below 0.5%.

Flow visualizations of intense vorticity regions for CVS1, CVS2, and CVS3 (abbre-
viated as CVS1–3 here) and the reference DNS show a statistically similar picture of
turbulent vorticity which consists of entangled vortex tubes (see Figure 4.2). From a
deterministic point of view, the instantaneous flow fields do not exactly coincide due
to the sensitivity to initial conditions of any flows as soon as they reach the turbulent
regime. This is consistent with the results in [28], which showed that turbulent flow is
sensitive to the resolution level kmaxη even if kmaxη ≳ 1. From the visualization of CVS4,
we see that the dynamics is lost as the vorticity structure is no longer preserved because
no safety zone has been added in this case.

In Figure 4.3(left), the ratio of energy for CVS to that for DNS is plotted as a func-
tion of time. For the ratio, we see reasonable agreement for CVS1–3: the time evolutions
of CVS1–3 differ from the evolution of DNS by less than only 1.5%, while the time
evolution of CVS4 differs by at most 8%.

CVS1–3 retain between 62% and 82% of the DNS enstrophy for t > 0.5τ, as shown
in Figure 4.3(right). We also observe that the best result is obtained for CVS1, where the
safety zone is taken in space, scale, and direction and where the retained enstrophy
varies between 75% and 82%. For CVS4, the enstrophy rapidly decays and retains only
20% enstrophy of DNS for t > 0.5τ.

To get insight into the spectral distribution of energy, we plot the energy spectra
EðkÞ for the different runs in Figure 4.4(left). We find that CVS1–3 again agree well with
the DNS in terms of EðkÞ. Although the energy spectra for CVS1–3 are different from
the spectrum of DNS in the dissipative range, i.e., kη ≳ 0.3, they still have significant
contributions in the dissipative range. The energy fluxΠðkÞ in Figure 4.4(right) confirms
that all the nonlinear dynamics are well retained in CVS1–3, where TðkÞ and

FIG. 4.1. Time evolution of the percentage of retained wavelet coefficients with and without safety zone for
CVS1–4. The curve for the percentage without safety zone, marked with ∘, superimposes well for CVS1–3, while
the curve for CVS4 is below those for CVS1–3.
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ΠðkÞ are defined by TðkÞ ¼ −
P

k−1 ∕ 2≤jpj<kþ1 ∕ 2F ½u�ð−pÞ · F ½ðu · ∇Þu�ðpÞ and ΠðkÞ ¼
−∫ k

0TðkÞdk, respectively.
The skewness of the longitudinal velocity derivative ∂u ∕ ∂x, defined by Su ¼

hð∂u ∕ ∂xÞ3i ∕ hð∂u ∕ ∂xÞ2i3 ∕ 2 (Figure 4.5, left), and the flatness of vorticity, defined by
Fω ¼ hω4

li ∕ hω2
li2 (Figure 4.5, right), yield information on higher order statistics of

the flow. For the time evolution of the former, we find similar tendencies for CVS1–
3. CVS1–3 exhibit almost constant values which are close to the DNS value. For the
latter, we see that the values of the vorticity flatness for CVS1 and CVS3 remain close
to each other and above the value for DNS. These larger flatness values quantify that the

FIG. 4.2. Visualization of the intense vorticity regions for DNS (in green) and (CVS0–4) (in red) at
t ∕ τ ¼ 3.78. Isosurfaces of vorticity are shown for jωj ¼ M þ 4σ, where M and σ denote the mean value
and standard deviation of the modulus of each vorticity field. (Corresponding movies can be downloaded from
http://ccs.engg.nagoya-u.ac.jp/CVS/HIT_forced/)
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flow in these CVS runs is more intermittent than in the DNS. Although the flatness
value for CVS2 is below that for DNS, the moduli of deviations of the flatness values
of CVS2 and CVS1 from the DNS value are nearly the same. CVS4 yields much smaller
values than the DNS for both the skewness and the flatness.

FIG. 4.4. Energy spectra EðkÞ (left) and energy fluxes ΠðkÞ (right) at t∕ τ ¼ 3.78. The wavenumber k and
the flux ΠðkÞ are respectively normalized by η and hϵi of the DNS at t ∕ τ ¼ 3.78.

FIG. 4.5. Time evolution of the skewness Su of the longitudinal velocity derivative (left) and of the flatness
Fω of vorticity (right).

FIG. 4.3. Left: The ratio of energy between CVS and DNS. Right: The ratio of enstrophy between CVS and
DNS.
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Probability distribution functions (PDFs) of velocity and vorticity are shown in
Figure 4.6 for the four CVS runs together with the DNS. The velocity PDFs (Figure 4.6,
left) of all the CVS runs agree well with the velocity PDF of the DNS and exhibit a
Gaussian shape. For the vorticity PDFs (Figure 4.6, right), this picture differs. For
CVS1–3, the PDFs of the coherent vorticity present almost the same stretched expo-
nential shape as that for the DNS. In contrast, the variance for CVS4 is significantly
reduced, and hence the heavy tails present in DNS are not reproduced in CVS4.

Thus, we can draw the following conclusions:
(i) CVS1 yields the best results among CVS1–4 but also has the largest number

of coefficients.
(ii) CVS2 has the best compression among CVS1–3, while keeping the statistical

predictability of the turbulent flow.
(iii) In CVS4, the flow dynamics of DNS has been destroyed.

Finally, we study the difference of the threshold value T 1 when filtering a fully de-
veloped turbulent field obtained by DNS at a given time instant with the value of T1 we
obtain during time stepping of CVS. We examine this point by computing two kinds of
threshold values: One is obtained by applying the CVE filter to the DNS field at the final
time t ¼ 3.78τ. The other is the threshold value used in the CVS computations, again at
t ¼ 3.78τ. We call here the former CVE threshold and the latter CVS threshold. For the
CVE threshold, we obtain T1 ¼ 23.4, while the CVS thresholds for CVS1–4 are given as
16.4, 13.4, 15.0, and 1.6, respectively. Thus, we find that the threshold values are smaller
in the CVS runs, compared to a CVE filtering applied to the DNS data. It is remarkable
that the threshold values of CVS, except CVS4 which has no safety zone, are of the same
order as those obtained by filtering the DNS result.

4.2. Influence of the threshold. We examine the influence of the threshold value
T in (2.2) for the CVS computations with the safety zone in space, scale, and direction.
Therefore, we performed another CVS, denoted by CVS0, whose threshold is taken as
T ¼ T 0, i.e., without any iteration. The threshold value T 0 is larger than T 1 used in
CVS1, and therefore CVS0 does retain fewer coefficients than CVS1. Indeed, the per-
centage of the retained coefficients in CVS0 is about 10% for t > 0.5τ (figure not shown
here), while the percentage in CVS1 is about 30%. Nevertheless CVS0 works well thanks
to the addition of the safety zone added to the coherent vorticity, although the coherent
vorticity extracted by wavelet filtering with T ¼ T 0 does not preserve the statistics of
the instantaneous turbulent field as well as with T ¼ T 1.

The comparison of CVS0 with CVS1 in Figure 4.7(left) shows that the energy evo-
lution is not very sensitive to the choice of the threshold. In contrast, the enstrophy

FIG. 4.6. PDFs of velocity (left) and vorticity (right) at t∕ τ ¼ 3.78.
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evolution (Figure 4.7, right) changes significantly. However, this is not a problem as long
as energy is conserved. The loss of enstrophy corresponds to the incoherent enstrophy
which is removed at each time step by the filtering. CVS1 retains about 80% of the
enstrophy, while CVS0 retains about 60% of the enstrophy. Figure 4.8(left) shows that
CVS0 has almost the same energy spectrum as the DNS reference in the inertial range. In
Figure 4.8(right), the energy flux in CVS0 is in reasonable agreement with that in
DNS. CVS0 preserves reasonably well higher order statistics, i.e., skewness and flatness
presented in Figure 4.9, of the DNS results. Intense vorticity regions for CVS0 are
visualized in Figure 4.2(top, left). CVS0 exhibits entangled vortex tubes similar to
the tubes observed in DNS and also well preserved in CVS1–3.

For two-dimensional decaying turbulence, it was verified that CVS using the thresh-
oldT ¼ T 0 and with the safety zone in space, scale, and direction preserves the statistics
of DNS well [25].

4.3. Comparison with Fourier truncated simulation. We compare CVS with
Fourier truncated simulation with respect to the statistical predictability of turbulence.
Two computations (FL0 and FL1) were performed using the spectral cutoff filter. We do
not employ any subgrid-scale model in FL0 and FL1 since the influence of the discarded
field onto the resolved field is not modeled for the present CVS computations either.
The cutoff wavenumber kc is chosen such that the percentage of the retained Fourier

FIG. 4.7. The energy ratio of CVS/DNS and FL/DNS (left) and the enstrophy ratio of CVS/DNS and FL/
DNS (right).

FIG.4.8. Energy spectra EðkÞ (left) and energy fluxes ΠðkÞ (right) at t ∕ τ ¼ 3.78. The wavenumber k and
the flux ΠðkÞ are respectively normalized by η and hϵi of the DNS at t ∕ τ ¼ 3.78.
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coefficients is almost the same as for the retained wavelet coefficients in CVS0 and
CVS1, i.e., 10% and 30%, respectively. Note that CVS does not require the addition
of a subgrid-scale model, since CVS zeros out the energy that arrives outside of Λ�.

First, we compare FL0 with CVS0. Figure 4.7(left) shows that both CVS0 and FL0
yield reasonable predictability for the time evolution of energy. The time evolution of the
enstrophy ratio, plotted in Figure 4.7(right), is about 100% for FL0, while CVS0 retains
about 60% of the enstrophy of DNS for t > 0.5τ. This loss of enstrophy is due to the fact
that CVS removes the incoherent enstrophy while retaining the energy, as explained in
the previous subsection. In Figure 4.8(left), we see that FL0 tends to pile up energy near
the cutoff wavenumber in its energy spectrum, while CVS0 does not. The influence of the
pileup on the enstrophy for FL0 can be estimated to be 18%. This percentage is calcu-
lated by 100× ∫ kc

0 k
2EFL0ðkÞdk ∕ ∫ kc

0 k
2EDNSðkÞdk, where EFL0ðkÞ and EDNSðkÞ are the

energy spectra for FL0 and DNS at the final time of the simulations, respectively.
The energy fluxes for FL0 and CVS0 are in good agreement with the energy flux of
DNS. In Figure 4.9, we see that the skewness and flatness of FL0 are much smaller than
those of DNS, while CVS0 preserves the higher order statistics of DNS reasonably well.

Next, we compare FL1 with CVS1. In contrast to the comparison of CVS0 with
FL0, there is little difference between the statistical predictability of CVS1 and FL1.
Figures 4.7, 4.8, and 4.9 show that FL1 well preserves the DNS results studied here.
The statistics of DNS are well predicted by CVS1, as discussed in subsection 4.1.

Therefore, we find that, as the number of the retained coefficients decreases, the
wavelet representation is more suitable for predicting the third- and fourth-order
turbulence statistics than the Fourier representation.

5. Conclusions and perspectives. CVS computations of three-dimensional
forced homogeneous isotropic turbulence have been performed and compared with a re-
ference DNS at initial Taylor microscale Reynolds number Rλ ¼ 153 and resolution
N ¼ 2563. Different strategies for choosing the safety zone and the threshold value have
been assessed in terms of statistical predictability and reduction of the number of degrees
of freedom to be computed. Three-dimensional homogeneous isotropic turbulence was
chosen to demonstrate the feasibility and efficiency of CVS in the most challenging case.

We found that the statistics of the reference DNS are well preserved by CVS if a
safety zone is provided in wavelet space. Of course, as any truncated method, CVS can-
not preserve the deterministic predictability when the flow has become turbulent (due to
the sensitivity to initial conditions). CVS1, which has a safety zone in space, scale, and

FIG. 4.9. Time evolution of the skewness Su of the longitudinal velocity derivative (left) and of the flatness
Fω of vorticity (right).
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direction, presents the best statistical predictability, but the number of computed de-
grees of freedom is in this case only reduced by a factor of three in comparison to DNS.
To improve the computational efficiency of CVS we then proposed two strategies to
further reduce the number of degrees of freedom. One is to reduce the safety zone
and the other to raise the threshold value. Thus, CVS2 has a reduced safety zone, where
neighbor coefficients are only retained in space and direction but not in scale. CVS0
keeps the widest safety zone but increases the threshold value. We found that both
methods reduce the number of degrees of freedom by a factor of ten, in comparison
to DNS, while preserving an excellent statistical predictability of the turbulent flow evo-
lution. In contrast, the flow dynamics, as well as the flow statistics, are lost for CVS4
which does not have any safety zone. The statistical predictability seems similar for
CVS0 and CVS2. However, we conjecture that CVS0 may be better suited for comput-
ing the transition between the laminar and the turbulent flow regime than CVS2 since
the production of small-scale vortices plays a significant role to trigger this transition. It
was shown that information which travels further than the adjacent wavelet coefficients
is not crucial to track the evolution of the nonlinear dynamics since all the CVS with
safety zone well retain the statistics of DNS. The small divergence contribution in the
coherent vorticity field has been confirmed to be not significant.

We have also compared CVS with Fourier truncated simulations, where Fourier
coefficients are removed if their wavenumber is larger than a given cutoff value. We
did not add any subgrid or other turbulence models to either CVS or Fourier truncated
simulations. We found that, as the number of retained coefficients decreases, the wavelet
representation better predicts the turbulence statistics, in particular the vorticity PDF,
than the Fourier representation.

In contrast to LES, where only the evolution of the large scales is computed, CVS
covers the full range of the energy spectrum, even retaining some modes in the dissipa-
tive range which still contribute to the nonlinear dynamics. Moreover, CVS does not
require the addition of a subgrid-scale model to take into account the effect of the un-
resolved onto the resolved scales, as necessary for LES. Indeed, neglecting the incoherent
modes, whatever their scale, removes the incoherent enstrophy without affecting the
energy, which is sufficient to model the turbulent dissipation and efficiently compute
the flow evolution in the fully developed turbulent regime.

The presented CVS feasability study deals with homogeneous isotropic turbulence
which can be seen as the worst case for CVS. The coherent vortices are distributed sta-
tistically homogeneously over the whole flow domain. Inhomogeneous flows allow for high-
er compression rates. For example, in [24] temporally developing mixing layers have been
studied at resolution N ¼ 1283. It was shown that between 9% and 15% of the wavelet
modes, depending on the flow evolution, were sufficient to track the dynamics of the flow.

Concerning CVS of flows in complex geometries, we propose to use the volume pe-
nalization approach. In [23], two-dimensional flows past an impulsively started cylinder
have been computed using an adaptive wavelet method. It was shown that the grid is
automatically adapted to both the flow and the geometry. CVS well captures the flow
dynamics with 8% of the wavelet coefficients compared to DNS.

In this work, the incoherent vorticity is discarded during the CVS computations.
Before modeling the effect of the incoherent field onto the coherent field, a parametric
study for different time increments and different numbers of grid points should be
performed at the same Reynolds number in order to estimate how the statistical proper-
ties of the incoherent vorticity may change.
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Appendix A. Divergence issue. We assess the influence of the divergence of the
coherent vorticity ωc� at the final time t ¼ 3.78τ for CVS2. Figure A.1 shows the spectra
of the ωc�, its divergence-free part ω 0

c� and its compressible contribution ∇ϕ, where
ω 0

c� ¼ ωc� þ∇ϕ. We observe that the spectrum of ωc� agrees well with that of ω 0
c�.

The compressible contribution occurs only in the dissipative range and remains several
orders of magnitude below the incompressible part. The relative error of the divergence
part is estimated by 100× hj∇ϕj2i ∕ hjωc�j2i∼ 5.4× 10−2½%�. Therefore, the influence of
∇ϕ on ωc� is negligible in CVS.

Appendix B. Numerical cost of fully adaptive CVS.

B.1. Ideal savings. The ideal savings of CVS with respect to CPU time and mem-
ory depend on the size of the safety zone and the choice of the threshold because the
savings are directly related to the compression. For example, in CVS0, they would be
90%, as only about 10% of the coefficients are retained.

The incompressibility constraint for the velocity field requires the solution of
Poisson equations in each time step. The equations are solved for the “adaptive degrees
of freedom”, i.e., the retained wavelet coefficients. For this task, an iterative solver could
be employed. The wavelet representation yields an easy, i.e., diagonal, preconditioner of
the equations with a condition number which is uniformly bounded, as shown in [14].
Therefore, the complexity for solving the linear systems should be of order OðNadÞ,
where Nad denotes the number of adaptive degrees of freedom. Preconditioned Krylov
space solvers and a geometric multigrid solver allow one to solve the equations; for the
latter, its implementation is more sophisticated.

B.2. Actual savings. In the ideal savings, the computation of one adaptive degree
of freedom would not be more expensive than one degree of freedom on a regular grid in
DNS. For the above example, CVS0, the fully adaptive code would be faster than the
DNS code only if the computation of one adaptive degree of freedom is less than 10 times
more expensive than that of one degree of freedom in DNS. However, in fully adaptive
computations, the computation of one adaptive degree of freedom is typically more ex-
pensive than that of one degree of freedom on a regular grid in DNS because there are
different types of overhead in the adaptive CVS computations. The overhead consists in
the memory access of the data structure required to store the adaptive grid, forward and

FIG. A.1. Spectra of the coherent vorticityωc�, its incompressible and compressible contributions,ω 0
c� and

∇ϕ, respectively, at t ¼ 3.78τ.
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backward wavelet transforms, thresholding, and management of the safety zone. A de-
tailed discussion of the overhead comparing a multiresolution scheme with adaptive
mesh refinement techniques can be found in [4].

The data structure used to store the adaptive degrees of freedom, which may change
over time, requires some additional memory and CPU time for access, compared to the
simple sequential arrays used in the DNS code. Typically two options are possible, either
a tree data structure, corresponding in three space dimensions to an octree, or a hash
table. Due to memory access the tree data structure increases the theoretical complexity
of the fully adaptive scheme from OðNadÞ to OðNad logðNadÞÞ, while hash tables main-
tain the theoretical complexity of OðNadÞ.

The discrete wavelet transform is a fast transform algorithm of complexity CNad,
where C is proportional to the filter length of the wavelet. The thresholding iteration
also implies some additional CPU time of OðNadÞ, which is, however, negligible as the
iteration can be directly performed in wavelet coefficient space. The management of the
safety zone also necessitates some additional memory, which is also negligible as only
integer values are stored and some CPU time of OðNadÞ.

For weakly compressible mixing layers at maximum resolution N ¼ 2563, Roussel
and Schneider [21] found that the CPU time of fully adaptive CVS, which is implemen-
ted by using a tree data structure, corresponds to 23.4% of DNS and the memory to
17.1% of DNS. This shows that the computation of one adaptive degree of freedom
is 1.38 times more expensive than the computation of one degree of freedom on a regular
grid due to the above overheads.
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