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Decaying Two-Dimensional Turbulence in a Circular Container
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We present direct numerical simulations of two-dimensional decaying turbulence at initial Reynolds
number 5� 104 in a circular container with no-slip boundary conditions. Starting with random initial
conditions the flow rapidly exhibits self-organization into coherent vortices. We study their formation and
the role of the viscous boundary layer on the production and decay of integral quantities. The no-slip wall
produces vortices which are injected into the bulk flow and tend to compensate the enstrophy dissipation.
The self-organization of the flow is reflected by the transition of the initially Gaussian vorticity probability
density function (PDF) towards a distribution with exponential tails. Because of the presence of coherent
vortices the pressure PDF become strongly skewed with exponential tails for negative values.
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Two-dimensional turbulence in bounded domains plays
an important role in oceanography, e.g., in vortex forma-
tion in coastal currents. Many experiments in rotating
tanks, e.g., in Ref. [1], resulting in quasi–two-dimensional
geostrophic flows, have shown the formation of long-lived
coherent vortices. In contrast, only a few numerical studies
of 2D turbulence in bounded circular domains have been
performed so far. Some numerical simulations of decaying
2D turbulence in a circular domain with no-slip boundary
conditions have been presented in Refs. [2–4], which used
a spectral method with Bessel functions of the first kind,
i.e., circular analogues of the Chandrasekhar-Reid func-
tions. Because of the numerical complexity of the spectral
scheme these simulations were limited to low resolution.
Therefore only flows at low Reynolds numbers have thus
been studied, i.e., Re< 103, where Re is based on the rms
initial velocity and the circle radius. Numerical simulations
of forced 2D turbulence in circular geometry for Reynolds
numbers up to 3500 using a Tchebycheff-Fourier discreti-
zation have been presented in Ref. [5].

The aim of this Letter is to present direct numerical
simulation of two-dimensional decaying turbulence in a
circular geometry with higher initial Reynolds number of
5� 104 computed at resolutionN � 10242. The numerical
scheme is based on a Fourier pseudospectral method with
semi-implicit time discretization and adaptive time step-
ping [6]. The Navier-Stokes equations are solved in a
square domain of size L � 2� using the vorticity-velocity
formulation. The circular container � of radius R � 2:8 is
thus imbedded in the square domain and the no-slip bound-
ary conditions on the wall @� are imposed using a volume
penalization method. A mathematical analysis of the
method is given in Ref. [7], proving its convergence to-
wards the Navier-Stokes equations with no-slip boundary
conditions. Its numerical validation can be found in
Refs. [6,8].
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The resulting governing equation is
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where ~u is the divergence-free velocity field, i.e., ~r � ~u �
0, ! � ~r� ~u the vorticity, � the kinematic viscosity, and
�� ~x� a mask function which is 0 inside the fluid, i.e., ~x 2
�, and 1 inside the solid wall. The penalization parameter
� is chosen to be sufficiently small (� � 10�3) [6].

Different invariants of the flow, i.e., quantities which are
conserved by the flow dynamics for inviscid flows, can be
derived [9]: (i) the circulation � (total vorticity) is defined
as
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(ii) energy E, enstrophy Z, and palinstrophy P as
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respectively. (iii) the energy dissipation is given by dtE �
�2�Z and the enstrophy dissipation by

dtZ � �2�P� �
I
@�
!� ~n � ~r!�ds; (3)

where ~n denotes the outer normal vector with respect to
@�. The surface integral reflects the enstrophy production
at the wall involving the vorticity and its gradients. (iv) the
angular momentumM of the flow with respect to the center
of the domain is

M � 2
Z

�
 d~x (4)

where  � r�2! denotes the stream function.
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FIG. 1 (color). Vorticity fields at � � 80, 160, and 320.
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FIG. 2. Time evolution of energy E, enstrophy Z, and palins-
trophy P in log-log coordinates (Inset: time evolution in log-lin
coordinates).
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FIG. 3. Time evolution of the average wave number W ����������
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As initial conditions we choose a correlated Gaussian
noise with zero angular momentum and an energy spec-
trum E�k� / k�4. The initial Reynolds number is Re �
2R

������
2E
p

=� � 5� 104. We introduce a dimensionless time
� � t=te based on the initial eddy turnover time te �
1=

������������
2Z�0�

p
� 0:061. The flow has been integrated for

650te corresponding to more than 105 time steps.
Figure 1 shows snapshots of the vorticity field at � � 80,

160, and 320. We observe the formation of vorticity sheets
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at the wall which roll up into coherent vortices. This active
unstable strong boundary layer persists throughout the
simulation. The resulting continuous injection of vorticity
and vorticity gradients into the flow leads to a concomitant
increase of the energy dissipation. Where the boundary
layer detaches from the wall we observe the formation of
dipolar vortices, which then move into the bulk flow and
interact with other vortices as observed in rotating tanks
[1].

In Fig. 2 we plot the time evolution of different integral
quantities. We observe that the kinetic energy slowly de-
cays. At the final instant the energy has lost 71% of its
initial value, while the enstrophy has decreased to only
2-2



-300

-200

-100

0

100

200

300

0 100 200 300 400 500
τ

m
in

/m
ax

 v
or

tic
ity

FIG. 4. Time evolution of the maximum and minimum vor-
ticity !.
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FIG. 6. Time evolution of angular momentum M.
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5.1% and the palinstrophy to only 1.5% of their initial
values. The enstrophy exhibits a self-similar decay over
one decade (from � � 10 to about 100), proportional to
t�2=3. Note that this is much slower than in double periodic
simulations [10] where typically a slope of�1 is observed
for the enstrophy decay. At later times, for � > 150, we
also observe a nonmonotonous behavior for Z and P which
is due to the generation of vorticity and its gradients at the
no-slip wall. The inset, which shows the time evolution of
E, Z, and P in log-lin coordinates, illustrates that, after a
transition phase up to � � 150, the palinstrophy and ens-
trophy decay is strongly reduced.

The mean square wave number W �
���������
Z=E

p
, which is

inversely proportional to the Taylor microscale, is bounded
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FIG. 5. Time evolution dtZ, 2�P, and �
H
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~r!�ds �
dtZ� 2�P.
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from below by one, corresponding to structures of the size
of the domain. For unbounded flows one can show that
dt�W�2 � 0; i.e., the average vortex size is monotonously
increasing [10]. In the present case we observe a monoto-
nous decay up to � � 100. At later times a nonmonotonous
behavior is found which is due to the intermittent genera-
tion of vortices at the no-slip wall (cf. Fig. 3).

The time evolution of minimum and maximum vorticity
(Fig. 4) also exhibits an oscillating behavior, which is in
contrast to 2D decaying turbulence without walls, where
the maximum of j!j is decaying monotonously. Note that
the circulation � (not shown here) almost vanishes with a
rms value below 3:4� 10�6.

Figure 5 illustrates the different terms in Eq. (3) for the
enstrophy dissipation. We observe a monotonous decay of
all terms up to � � 100. The enstrophy production term at
the wall yields a power-law behavior with slope�2=3, and
for later times oscillations can be observed. Furthermore,
the enstrophy production at the wall (�

H
@� !� ~n �

~r!�ds)
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FIG. 7. PDF of vorticity � � 0, 80, 160, and 320.
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FIG. 8. PDF of pressure � � 0, 80, 160, and 320.

TABLE I. Statistical properties of the vorticity field. Variance,
skewness, flatness at � � 0, 80, 160, and 320.

Vorticity Variance Skewness Flatness

! (� � 0) 183.95 �0:02 3.00
! (� � 80) 33.01 0.04 23.04
! (� � 160) 20.97 0.71 15.11
! (� � 320) 14.75 0.32 25.98
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coincides with the term �P for � > 100. This implies that
the enstrophy dissipation dtZ becomes negligible and os-
cillates around zero. In Fig. 6 we plot the time evolution of
angular momentum M�t�, normalized with the angular
momentum of a flow in solid body rotation having the
same energy E�t�. We observe alternating periods of posi-
tive and negative angular momentum, with a sawtooth
behavior where rises are followed by abrupt decays. This
is in contrast to the spontaneous spin-up encountered in
decaying turbulent flows in square domains with no-slip
boundary conditions [11]. This confirms the conjecture,
that spin-up is likely to be absent in circular geometries [3].

Figure 7 shows the probability density functions (PDF)s
of vorticity at different time instants. Starting with a
Gaussian shape at � � 0 the vorticity PDF becomes more
and more non-Gaussian with heavy tails, although its
symmetry is preserved (Table I). This confirms that the
flow intermittency is due to the formation of vortex sheets
and the resulting coherent vortices.

The PDF of pressure, which is initially almost Gaussian,
becomes strongly skewed (Table II) and exhibits exponen-
tial tails proportional to exp�10p� for negative values
(Fig. 8). The much stronger probability for negative values
and the resulting skewness is a signature of coherent
vortices.

In conclusion, we have shown, by means of direct nu-
merical simulation performed in cylindrical geometry, that
no-slip boundaries play a crucial role for decaying turbu-
lent flows. At early times we observe a decay of the flow
which leads to self-organization and the emergence of
vortices in the bulk flow, similarly to flows in double
periodic boxes. At later times, the production of coherent
vortices at the boundary compensates the enstrophy dis-
sipation and the flow decay is drastically reduced. This is
TABLE II. Statistical properties of the pressure field. Variance,
skewness, flatness at � � 0, 80, 160, and 320.

Pressure Variance Skewness Flatness

p (� � 0) 1:66� 10�2 �0:49 3.59
p (� � 80) 4:35� 10�2 �2:35 9.32
p (� � 160) 4:48� 10�2 �2:86 12.40
p (� � 320) 5:21� 10�2 �2:96 12.86
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reflected in the time evolution of enstrophy and palins-
trophy which decay in a nonmonotonous way. The pressure
PDF is strongly skewed with an exponential shape for
negative values due to the presence of coherent vortices.
The present simulation at initial Re � 5� 104 confirms
that spontaneous spin-up seems to be absent for circular
geometries with no-slip walls as conjectured in Refs. [2,5].
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