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ABSTRACT
We introduce boundary adaptedwavelets, which are orthogonal and
have the same scale in the three spatial directions. The construc-
tion thus yields a multiresolution analysis. We analyse direct numeri-
cal simulation data of turbulent channel flow computed at a friction
Reynolds number of 395, and investigate the role of coherent vortic-
ity. Thresholding of the vorticity wavelet coefficients allows us to split
the flow into two parts, coherent and incoherent flows. The coher-
ent vorticity is reconstructed from its few intensewavelet coefficients
and the coherent velocity is reconstructed using Biot–Savart’s law.
The statistics of the coherent flow, i.e. energy and enstrophy spectra,
are close to the statistics of the total flow, and moreover, the non-
linear energy budgets of the total flow are very well preserved. The
remaining incoherent part, represented by the large majority of the
weak wavelet coefficients, corresponds to a structureless, i.e. noise-
like, background flow whose energy is equidistributed.

1. Introduction

Wall-bounded turbulent shear flows are of general interest in many engineering applica-
tions. Three-dimensional (3D) turbulent channel flow, bounded by two parallel walls, is
one of the canonical flows considered for direct numerical simulation (DNS). Starting with
the seminal work of Kim et al. [1], many DNS have been performed for increasingly higher
Reynolds number, taking advantage of the growing power of supercomputers (see, e.g. the
review article [2]). Currently, the DNS with the highest friction-based Reynolds number,
Reτ = 5200, has been carried out by Lee and Moser [3]. The influence of rough walls has
been reviewed in Ref. [4].

Turbulent flows are typically characterised by the excitation of a multitude of spatial and
temporal scales, which involves a large number of degrees of freedom interacting nonlin-
early. Self-organisation of the flow into coherent vortices is observed, even at large Reynolds
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number [5], where these vortices are superimposed to a random background flow [6].
Moreover, turbulence exhibits significant spatial and temporal intermittency, especially in
the dissipative range. This implies that the strong contributions become sparser and sparser
as scale becomes smaller in space and time.Wavelets being well-localised functions in both
space and scale yield efficientmulti-scale decompositions, which have been applied to anal-
yse, model and compute turbulent flows since 1988 [7–10]. Decomposing turbulent flows
into a wavelet basis yields a sparse representation, namely the most energetic contributions
are concentrated in few wavelet coefficients having large intensity, while the large majority
of the remaining wavelet coefficients have negligibly small intensity.

The presence of coherent structures superimposed to a random background flow moti-
vated the development of the coherent vorticity extraction (CVE)method. The idea ofCVE,
proposed by Farge et al. [11,12], defines coherent structures as what remains after denoising
the flow vorticity. Since vorticity is better localised in space than velocity, thus more inter-
mittent, its wavelet decomposition is sparser and only few coefficients are necessary to rep-
resent the coherent structures.Moreover, in contrast to velocity, vorticity preservesGalilean
invariance and has stronger topological properties owed to Helmholtz’ and Kelvin’s theo-
rems. Numerous applications of CVE can be found for periodic domains in the literature
starting with homogeneous isotropic turbulence [11–16], temporally developing mixing
layers [17] and homogeneous shear flow with and without rotation [18].

For wall-bounded flows, the situation becomes more complex, because no-slip bound-
ary conditions have to be taken into account. Indeed, no-slip boundary conditions generate
vorticity due to the viscous flow interactions with the walls. For turbulent boundary layers,
Khujadze et al. [19] obtained an efficient algorithm to extract coherent vorticity, construct-
ing a locally refined grid using wavelets with mirror boundary conditions. However, this
construction does not yield a multiresolution analysis, as the basis functions have mixed
scales in the different spatial directions. Fröhlich & Uhlmann [20] constructed wavelets
based on second kindChebyshev polynomials and applied them to channel flowdata. Scale-
wise statistics in the wall-normal direction have thus been performed. However, no fast
wavelet transform (FWT) is available for these Chebyshev wavelet bases. Two-dimensional
(2D) wavelets have also been applied to wall-parallel planes in channel flows, in order to
examine turbulent statistics, in particular statistics of energy transfer [21,22].

The aim of the present work is to examine the role of coherent and incoherent flow con-
tributions in 3D turbulent channel flow.We propose a novel construction of 3D orthogonal
wavelets using boundary wavelets in the wall-normal direction and periodic wavelets in
the wall-parallel directions. To this end, Cohen-Daubechies-Jawerth-Vial (CDJV) bound-
ary wavelets [23,24] having three vanishing moments, and the periodised Coiflet 30
wavelets [25] having 10 vanishing moments are employed. These wavelets are orthogonal,
the FWT can be used while taking into account boundary conditions, and the basis func-
tions have no mixed scales in the different spatial directions. Hence, the basis functions
yield a multiresolution analysis with the same scale in the three directions.

DNS computation of the channel flow has been performed, and the data are analysed at
different time instants, using the above boundary adapted 3D wavelets. The flow vorticity
is decomposed into an orthogonal wavelet series, and we apply a thresholding to split the
coefficients into two sets, the coherent and incoherent ones. The coherent vorticity, recon-
structed from the few strongest wavelet coefficients, well preserves the turbulent statistics of
the total flow, while the incoherent vorticity, reconstructed from the remaining largemajor-
ity of the coefficients that are very weak, corresponds to a noise-like background flow. The
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Figure . Flow configuration for the turbulent channel flow.

corresponding coherent and incoherent velocity fields are reconstructed from the coherent
and incoherent vorticity fields, respectively, using the Biot–Savart relation satisfying the no-
slip conditions at the walls. Thus, we can efficiently examine the role of coherent vorticity
in turbulent channel flows. Other conventional methods, such as theQ-criterion and the λ2

method [26,27], could be used to identify coherent vortices in physical space, as regions for
whichQ or λ2 is above a given threshold. Here,Q is the second-invariant of the 3D velocity
gradient tensor, and λ2 is the second largest eigenvalue of SijSjk + AijAjk, where Sij and Aij

are, respectively, the symmetric and antisymmetric tensor of the velocity gradient tensor.
It should be noticed that these quantities do not preserve the scale information about the
vortices, as the smoothness of the flow field is not preserved due to the clipping of vorticity
in physical space. In contrast, the proposed wavelet filtering does preserve the smoothness
of the coherent vorticity field and the multiscale properties of the coherent structures.

The paper is organised as follows: Section 2 presents the DNS computation and the data
we analyse, including the methodology. The construction of wavelets is described, and the
CVE method is summarised. Numerical results are shown in Section 3. Conclusions and
perspectives are given in Section 4.

2. DNS andmethodology

2.1. Direct numerical simulation

We consider 3D incompressible fluid flow in a channel bounded by two parallel walls sub-
jected to a streamwise mean pressure gradient, which is a canonical flow configuration.
It is illustrated in Figure 1 together with the Cartesian coordinate system x = (x1, x2, x3),
where the walls are at x2 = ±h, x2 being the wall-normal direction and h the half width
of the channel. The domain size in the streamwise x1-direction is 2πh, and the size in the
spanwise x3-direction is πh. Periodic boundary conditions are, respectively, imposed in x1-
and x3-directions, while in the x2-direction no-slip boundary conditions are satisfied at the
walls.

The fluid flowmotion obeys theNavier–Stokes equationswith the incompressibility con-
dition,

∂tvi + ∂ j(v jvi) = −∂i p+ Gδi1 + ν∂ j∂ jvi, (1)
∂ jv j = 0, (2)
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where v i (i = 1, 2, 3) is the i-th velocity component, p is the pressure fluctuation, G is the
intensity of the mean pressure gradient in the x1-direction, δij is the Kronecker delta, ν is
the kinematic viscosity, t is time, and �t = �/�t and �i = �/�xi. Einstein’s summation
convention is used for repeated indices.

We performed DNS of turbulent channel flow at Reτ of 395 using N1N2N3 grid points,
where Reτ � uτh/ν, uτ is the friction velocity defined by [νdU1(x2)/dx2]1/2 at x2 = −h.
The velocity field v j is decomposed as v j = Uj(x2) + uj with Uj being the mean velocity
defined asUj = 〈v j〉, and uj are the velocity fluctuations. Here, 〈·〉 denotes the x2-dependent
spatial average of · over the x1-x3 plane, and Ni is the number of the grid points in the
xi-direction, N1 = N3 = 256 and N2 = 192. The toroidal and poloidal representation of
Equations (1) and (2) is employed, in order to satisfy the incompressibility constraint as
done byKim et al. [1].We used the Fourier pseudo-spectralmethod in the x1-x3 planes, and
the Chebyshev-taumethod in the x2-direction. The Chebyshev collocation points are given
by x2 = hcos {π(2j+ 1)/(2N2)} ( j= 0, 1,… ,N2 − 1) (see, e.g. Appendix B in Ref. [28]). The
aliasing errors are removed by the 3/2 rule in the x1–x3 planes, and by the 2/3 rule in the
x2-direction. Time advancement is carried out using the first-order implicit Euler method
for the viscous terms, and a third-order Runge-Kutta method for the nonlinear terms and
the mean pressure gradient term G, whose value is determined so that the total flow rate is
kept constant. The DNS code has been developed in Ref. [29].

Statistical quantities shown in this paper are obtained by time averaging over 40 DNS
snapshots with intervals of 0.5 washout times, defined by 2πh/U1. The averaging starts after
the total Reynolds stress −〈u1u2〉 + νdU1/dx2 has become quasi-stationary.

2.2. Wavelets

In this subsection, we briefly summarise one-dimensional (1D) orthogonal periodised
wavelets and 1D orthogonal boundary wavelets. Then, we propose a 3D orthogonal wavelet
transform with one scale in the three spatial directions constructed by tensor product of
these 1D wavelets. The CVE based on orthogonal wavelets to extract coherent vorticity out
of turbulent channel flow is described in Section 2.3. In Figure 2, we present the flowchart
of the CVE method used here.

We first consider 1-periodic wavelets ψP(x) and their corresponding scaling function
φP(x), and orthogonal boundary adaptive wavelets ψB(x) and their scaling function φB(x),
with the boundaries at x = (0, 1). Wavelets at scale j are obtained by dilation, so that
ψ

γ

j,0(x) = 2 j/2ψγ (2 jx) and φ
γ

j,0(x) = 2 j/2φγ (2 jx), where γ = P, B. The periodised orthog-
onal wavelets are also self-similar with respect to translation. Then the scaling function
φγ and wavelet function ψγ at scale 2−j ( j � 0) and position 2−ji (i = 0, 1,… , 2j − 1),
φP

j,i(x) andψP
j,i(x), are defined as φP

j,i(x) = 2 j/2φP(2 jx − i) andψP
j,i(x) = 2 j/2ψP(2 jx − i).

In contrast,ψB
j,0 and φB

j,0 are nomore translation invariant due to the boundary conditions,
whichmodify the wavelets as position i changes. Readers interested in the details of bound-
ary adapted wavelets may refer to the textbook [30], as the construction of ψB

j,i and φB
j,i is

rather technical. All wavelets used here are orthonormal, i.e.
∫ 1
0 ψ

γ

j,i(x)ψ
γ

j′,i′ (x)dx = δii′δ j j′ ,∫ 1
0 φ

γ

j,i(x)φ
γ

j,i′ (x)dx = δii′ , and
∫ 1
0 ψ

γ

j,i(x)φ
γ

j,i′ (x)dx = 0.
In this paper, we use Coiflet 30 wavelets [25] in the x1- and x3-directions, and the CDJV

wavelets having three vanishing moments [23,24] in the x2-direction, both wavelets being
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Figure . Flowchart of the CVE procedure.

compactly supported. The Coiflet 30 wavelets are quasi-symmetric and have 10 vanishing
moments. The largest scale 2− j0 of the CDJV wavelets satisfies 2 j0−1 ≥ 3 [24]. The illustra-
tions of these wavelet functions are shown in Figures 3 and 4.

The 3D orthogonal wavelets �μ (μ = 1, 2,… , 7) are obtained by tensor product such
that

�
μ

j,i(x1, x2, x3) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψP
j,i1 (x1)φ

B
j′,i2 (x2)φ

P
j,i3 (x3) for μ = 1,

φP
j,i1 (x1)ψ

B
j′,i2 (x2)φ

P
j,i3 (x3) for μ = 2,

φP
j,i1 (x1)φ

B
j′,i2 (x2)ψ

P
j,i3 (x3) for μ = 3,

ψP
j,i1 (x1)φ

B
j′,i2 (x2)ψ

P
j,i3 (x3) for μ = 4,

ψP
j,i1 (x1)ψ

B
j′,i2 (x2)φ

P
j,i3 (x3) for μ = 5,

φP
j,i1 (x1)ψ

B
j′,i2 (x2)ψ

P
j,i3 (x3) for μ = 6,

ψP
j,i1 (x1)ψ

B
j′,i2 (x2)ψ

P
j,i3 (x3) for μ = 7,

(3)
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Figure . Coiflet  wavelet on the periodic domain: scaling function φP
8,i(x) (left) and corresponding

waveletψP
8,i(x) (right), both at scale j= .

Figure . CDJV wavelet on the interval: three scaling functions φB
8,i(x) (left) and three wavelets ψB

8,i(x)
(right) at scale j=  and position i=  (solid line),  (dashed line) and  (dotted line) are shown.

where i = (i1, i2, i3), j′ = j0 + j and j = 0,… , J − 1. The corresponding scaling function is
defined as �(x1, x2, x3) = φP(x1)φB(x2)φP(x3).

Now, let us consider a 3Dvector fieldw(x) = (w1, w2, w3) in the computational domain
D, where D = {x1, x2, x3|0 � x1 � 2πh, −h � x2 � h, 0 � x1 � πh}. Before applying
this wavelet decomposition, we interpolate w(x) on an equidistant grid in the x2-direction
from the DNS data non-uniformly sampled on N2 Chebyshev grid points in the wall-
normal direction. We thus get w(x) uniformly sampled on N ′

2 equidistant grid points at
x2,n = h{−1 + 2n/(N ′

2 − 1)} (n = 0, . . . ,N ′
2 − 1) using the Chebyshev interpolation [31].

We choose N ′
2 to be equal to 2048 so that the flow field near the walls is kept well-resolved.

We have 2/N ′
2 ∼ 8π 2/N2

2 , which shows that the grid width after the interpolation is com-
parable to the minimum grid width of the Chebyshev grid. In the x1- and x3-directions, we
keep w(x) uniformly sampled on N1 and N3( = N1) equidistant grid points, respectively.

The field w(x), now sampled on N1 × N ′
2 × N3 equidistant grid points, can then be

decomposed into an orthogonal wavelet series as follows;

w(x) = w̄ +
7∑

μ=1

J−1∑
j=0

2 j−1∑
i1,i2,i3=0

w̃
μ

j,i�
μ

j,i(x), (4)
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with wavelet coefficients computed with wavelets �
μ

j,i

w̃
μ

j,i = 1
V

∫ L1

0
dx1

∫ h

−h
dx2

∫ L3

0
dx3 w(x)�μ

j,i

(
x1
2πh

,
x2 + h
2h

,
x3
πh

)
, (5)

and the mean value computed with the scaling function �

w̄ = 1
V

∫ 2πh

0
dx1

∫ h

−h
dx2

∫ πh

0
dx3 w(x)�

(
x1
2πh

,
x2 + h
2h

,
x3
πh

)
, (6)

where J = log2N1 and V = 4π 2h3.

2.3. Coherent vorticity extraction

We extract coherent vorticity out of turbulent channel flow data using the CVE method
based on the wavelet decomposition of vorticity ω = ∇ × v. In the following, we sum-
marise our method. Since coherent structures do not have a universal definition yet, we
define them as what remains after denoising. As first guess we consider the simplest type of
noise, namely additive, Gaussian and white, i.e. uncorrelated noise. Readers interested in
details of this ansatz may refer to the original articles, e.g. Refs. [11,12,16].

The CVE method is based on nonlinear thresholding of the orthogonal wavelet coeffi-
cients of vorticity. To this end, the vorticityω, interpolated on a sufficiently fine equidistant
grid, is decomposed into an orthogonal wavelet series using the FWT. Applying threshold-
ing to the wavelet coefficients, we split the flow into coherent and incoherent contributions.
The corresponding coherent and incoherent vorticity fields are then obtained by inverse
wavelet transform.

In previous work, we used Donoho’s threshold [32] to determine the value of the thresh-
old and estimate the variance of the incoherent vorticity using an iterative scheme. Azza-
lini et al. [33] investigated the convergence of the iterative scheme and for isotropic tur-
bulence Okamoto et al. [16] found that, depending on the Reynolds number, 8.7% and
6.0% of the wavelet coefficients are retained as coherent for Reλ = 167 and Reλ = 732,
respectively. In Ref. [11], Farge et al. used one iteration only, which was sufficient to get
good compression while preserving the statistics of the total flow. For the turbulent chan-
nel flow studied here, we tried Donoho’s threshold and found that very few wavelet coeffi-
cients keep almost the whole enstrophy of the flow, which is illustrated in the compression
curve, shown in Figure 5. The flow visualisation in Figure 6 shows tube-like coherent vor-
tex structures whose intensity is very strong close to the wall and much weaker in the cen-
tre of the channel. In the current work, we propose, instead of Donoho’s threshold, an ad
hoc criterion for the threshold defined by T = 〈|ω̃μ

j,i|〉w + α〈(|ω̃μ

j,i| − 〈|ω̃μ

j,i|〉)2〉1/2w , where

〈|ω̃μ

j,i|〉w = ∑7
μ=1

∑J−1
j=0

∑2 j−1
i1,i2,i3=0 |ω̃μ

j,i|/(N1N ′
2N3). The field is first decomposed into an

orthogonal wavelet series and split into two orthogonal contributions using wavelet thresh-
olding. Hereafter, they are called coherent (wavelet coefficients whosemodulus is above the
threshold) and incoherent (the remaining weaker wavelet coefficients), in order to be con-
sistent with the terminology of the pioneering work [11]. Our aim is to retain only those
wavelet coefficients which are responsible for the nonlinear dynamics of the flow, even if the
fully developed turbulent regime has not been yet reached.We set α = 0.75 in the threshold
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Figure . Compression curve for CVE: % of retained enstrophy per unit volume vs. % of retained wavelet
coefficients. The circle corresponds to the threshold T used for CVE in the following.

Figure . Visualisation of total vorticity ω (top), coherent vorticity ωc (middle) and incoherent vorticity
ωi (bottom). The left column presents isosurfaces |ω+| = |ω+

c | = 0.3 and |ω+
i | = 0.1. The right column

shows their zooms in the wall region where � x � .πh,−.h� x � h, and .πh� x � πh.
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value T such that both velocity and vorticity statistics (as a function of x2), together with
the nonlinear dynamics and structures, are well preserved by the coherent flow. The ad hoc
criterion of the threshold could be further improved.

Using the inverse FWT, the coherent vorticityωc is reconstructed from the wavelet coef-
ficients whose intensity is larger than the threshold value T. The incoherent vorticity ωi is
then obtained using ωi = ω − ωc. To get ωc and ωi sampled on the Chebyshev grid points,
which are useful and efficient for the data analysis presented in Section 3, we perform a
cubic spline interpolation in the x2-direction.

Owing to the orthogonality of the wavelet decomposition, ωc is orthogonal to ωi and
thus Zt = Zc + Zi, where Zt, Zc and Zi are respectively the total, coherent and incoherent
enstrophy per unit volume, defined as Zα = ∫∫∫

D |ωα|2dx/(2V ) (α = t, c, i). The coherent
velocity vc and the incoherent velocity vi are computed from ωc and ωi by solving Biot–
Savart’s relation, ∇2v = −∇ × ω, respectively. It is noted that vi and vc are weakly non-
orthogonal, i.e. the cross term

∫
vi ·vc dx is below 0.4% of the total energy. The extraction

method could also be applied to the fluctuating vorticity instead of the total one used here.
We checked that the results thus obtained are indeed very similar as those presented in
Section 3.

3. Numerical results

Now we analyse 40 snapshots of DNS data for the turbulent channel flow with intervals
of 0.5 washout times, and we ensemble-average over those 40 snapshots to guarantee well-
converged statistical results. We examine contributions of coherent and incoherent flows
obtained with the previously described CVE method. Quantities with the superscript +

are expressed in wall units, i.e. they are non-dimensionalised by uτ and ν. We define the
distance from the wall y = x2/h + 1.

3.1. Visualisation

Visualisations of isosurface values of the modulus of vorticity for the total, coherent and
incoherent flows given at the same time instant are shown in Figures 6 and 7. Correspond-
ing zooms are also presented to see flow structures more clearly. Figure 6 shows that the
most intense vorticity structures are near the walls. Since the incoherent vorticity is much
weaker than the total and coherent vorticities in Figure 6, the isosurface value for the inco-
herent vorticity ωi is reduced by a factor 3 compared to the coherent and total vorticities.
On the other hand, Figure 7 visualises vorticity structures in the core region, using y+-
dependent isosurface values, |ω+| = |ω+

c | = 〈|ω+|〉 + 3〈(|ω+| − 〈|ω+|〉)2〉1/2 and |ω+
i | =

〈|ω+
i |〉 + 3〈(|ω+

i | − 〈|ω+
i |〉)2〉1/2, recalling 〈·〉 denotes the y+-dependent spatial average

of · over each wall-parallel plane.
We observe that the total flow exhibits intense vortex tubes near the walls, as in previous

DNS (e.g. Ref. [34]), but we also see them in the core region, however they are less intense.
Looking at the coherent flow, we find that these tubes are well preserved by ωc, which is
reconstructed fromonly 0.55%of the 2562 × 2048(�13× 107) wavelet coefficients, i.e. 5.9%
of the original 2562 × 192(�1.2 × 107) grid points. The coherent flow retains almost all of
the total energy and enstrophy, 99.9% of the total energy and 99.7% of the total enstrophy.
In contrast, the incoherent vorticityωi looks less organised without exhibiting vortex tubes
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Figure . Visualisation of total vorticity ω (top), coherent vorticity ωc (middle) and incoherent vor-
ticity ωi (bottom). Isosurfaces |ω+| = |ω+

c | = 〈|ω+|〉 + 3〈(|ω+| − 〈|ω+|〉)2〉1/2 and |ω+
i | = 〈|ω+

i |〉 +
3〈(|ω+

i | − 〈|ω+
i |〉)2〉1/2 are shown. The right column presents corresponding zooms in the core where 

� x � .πh,−.h� x � .h and � x � .πh.

near the walls and in the core region. Although the incoherent flow is represented by the
remaining majority of wavelet coefficients, it retains a negligible amount of energy, namely
2.3 × 10−3% of the total energy, and only 0.5% of total enstrophy.

3.2. Mean and root-mean-square velocity and vorticity statistics

We analyse the statistics of the mean velocity and vorticity profiles of the coherent and
incoherent flows, and compare them with the total flow. The results are averaged over 40
snapshots. Figure 8 shows the y+-dependence of the streamwisemean velocityU+

1 (y+) and
of the spanwise mean vorticity �+

3 (y+), averaged over x1-x3 planes, for the total, coherent
and incoherent flows. It is observed that the coherent flow perfectly preservesU+

1 (y+) and
�+

3 (y+), while both incoherent contributions are very weak. It can be noted that U+
2 (y+)
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Figure . Streamwisemean velocityU+
1 (y+) (left) and spanwise mean vorticity�+

3 (y+) (right) for total,
coherent and incoherent flows, together with the DNS results of Ref. [] in the lin-log representation.

Figure . RMS of u+
j (left) and RMS of ζ

+
j (right) for total, coherent and incoherent flows.

vanishes identically and thatU+
3 (y+) almost vanishes for the total, coherent and incoherent

flows. This implies that �+
1 (y+) is almost zero, and �+

2 (y+) is identically zero. The com-
parison ofU+

1 with the DNS data at Reτ = 395 in Moser et al. [35] confirms the validity of
the present DNS.

The root-mean square (RMS) of the velocity fluctuations u+
j (j = 1, 2, 3) as a function

of y+ are shown in Figure 9 (left). Again, we find an excellent agreement between the total
and the coherent flow for all values of y+, while the incoherent contribution is negligibly
small. For the RMS of the vorticity fluctuations ζ+

j shown in Figure 9 (right), the coherent
contributions well preserve the total RMS of ζ+

j . The fluctuations are defined by ζ j = ωj −
�j, where �j is the mean vorticity averaged over the x1 − x3 plane. The vorticity RMS of
the incoherent flow is much smaller than that of the total flow.

3.3. Probability density functions of velocity and vorticity

Figure 10 (left) shows the probability density functions (PDFs), estimated using histograms
with 200 bins, of the streamwise velocity fluctuations u+

1 for the total, coherent and incoher-
ent flows at three representative positions y+: in the viscous sublayer, the log region andnear
the centre of the channel. In all cases, we observe that the PDFs for the total and coherent
velocity fluctuations perfectly superimpose, which indicates that high order statistics are
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Figure . PDFs of u+
1 (left) and ζ+

3 (right) ; (top) y+ = . viscous sublayer, (middle) y+ = . around
the log region and (bottom) y+ = . around the centre of the channel.

well preserved by the coherent flow. We also find that the velocity PDFs remain skewed in
the different regions and agree well with the data of Ref. [35], using appropriate renormali-
sation. In contrast, the PDFs of the incoherent velocity fluctuations are symmetric, and have
strongly reduced variances. For the incoherent velocity, we analysed y+-dependent flatness,
and found values around 4 in the viscous sublayer and in the log region, which decrease to
3.6 near the centre of the channel. For the y+-dependent skewness, fluctuations around zero
are observed with an amplitude below 0.05. The PDFs of the incoherent velocity well super-
impose the logistic distribution with zero mean and the variances σ 2(y+) of the incoherent
velocity, though their flatness is 1.2, which is much smaller than the PDFs of the incoherent
velocity. The logistic distributions P(u+

1 ) are given by exp(−πu+
1 /s)/{s(1 + exp(−u+

1 /s)},
where s = 31/2σ (y+)/π .
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Figure . Dimensionless energy spectra of u+
1 in the x-direction at three representative y+: (top left)

y+ = . viscous sublayer, (top right) y+ = . around the log region, and (bottom) y+ = . around
the centre of the channel.

In Figure 10 (right), we illustrate the PDFs of the vorticity fluctuations ζ+
3 at three rep-

resentative positions y+: in the viscous sublayer, the log region and near the centre of the
channel. The coherent vorticity fluctuations well represent the total vorticity PDFs which
are skewed in all cases, while the corresponding incoherent PDFs are symmetric. The vari-
ances of these incoherent PDFs are, respectively, significantly weaker than the variances of
the total and coherent PDFs.

3.4. Energy spectra

To get insight into the scale distribution of turbulent kinetic energy, we analyse the 1D
energy spectra of the streamwise velocity u+

1 in the streamwise direction E+(k1h, y+), which
is defined as E+(k1h, y+) = ∑′ |ûi(k1h, y+, k3h)|2/2, where ûi(k1h, y, k3h) is the Fourier
transform of u+(x) in the x1-x3 planes, �′ denotes the summation in terms of all k3. The
results are shown in Figure 11, again for the total, coherent an incoherent flows at three rep-
resentative positions; in the viscous sublayer, the log layer and near the centre of the chan-
nel. The dimensionless wavenumber in the x1-direction is denoted by k1h. Figure 11 shows
that the spectral distribution of turbulent kinetic energy is well preserved by the coherent
flow, from the viscous sublayer to the centre of the channel. In contrast, the incoherent
energy exhibits an almost flat spectrum, which corresponds to equipartition of incoherent
energy, i.e. decorrelation of the incoherent flow in physical space.
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Figure . Scale-dependent compression rate.

At large wavenumbers close to the cut-off scale, imposed by the resolution of the DNS,
we find that the incoherent energy dominates the total energy in the viscous sublayer and
the log layer, while it dominates the coherent energy as well as the total one at the large
wavenumbers around the centre of the channel. However, this is not surprising since the
wavelet decomposition is orthogonal for vorticity but not for velocity, due to the fact that
the Biot–Savart operator is not diagonal in wavelet space. Note that ω̂

+
c (k1, y+, k3) and

ω̂
+
i (k1, y+, k3) are not orthogonal for any fixed (k1, k3) at every y+. But even though the

cross-term 〈ω+
c ·ω+

i 〉(x2) �= 0, its averaged contribution vanishes,
∫ h

−h dx2〈ω+
c ·ω+

i 〉(x2) = 0.
The compression is most efficient for small scales, i.e. large j and large wavenumbers

(Figure 12). This implies that the scale-by-scale incoherent enstrophy is comparable or
larger than the scale-by-scale coherent enstrophy.

3.5. Nonlinear dynamics

To get further insight into the nonlinear dynamics, we consider the energy budget given in
the equation for 〈u+

j u
+
j 〉/2 per unit mass [36]:

1
2
(
∂t +U+

j ∂ j
)〈
u+
j u

+
j

〉 = P(v+) + T (u+) + �(u+, p+) − ε(u+) +V (u+), (7)

where P(v+) = −〈u+
j u

+
l 〉∂lU+

j , T (u+) = −∂l〈u+
j u

+
j u

+
l 〉/2, �(u+, p+) = −∂l〈p+u+

l 〉,
ε(u+) = ν〈∂lu+

j ∂lu
+
j 〉,V (u+) = ν∂l∂l〈u+

j u
+
j 〉. In Figure 13 (left), we see that three nonlin-

ear coherent contributions, corresponding to production P(v+
c ), turbulent diffusionT (u+

c )

and pressure diffusion �(u+
c , p+

c ), are in good agreement with the corresponding total
ones. Hence, the coherent flow almost perfectly preserves the nonlinear dynamics. Thus,
we anticipate that the departure of the coherent flow from the total flow is negligibly small.
Indeed, the incoherent contribution to the different terms, defined by P(v+) − P(v+

c ),
T (u+) − T (u+

c ) and �(u+, p+) − �(u+
c , p+

c ), is almost zero. The two viscous contribu-
tions, ε(u+) and V (u+), are also well retained by the coherent flow, ε(u+

c ) and V (u+
c ),
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Figure . Production termP, turbulent diffusion term T andpressurediffusion term� vs. y+ (left). Energy
dissipation ϵ and viscous diffusion V vs. y+ (right). Coherent and incoherent contributions are presented
together with the total one.

Figure . The ratios of total, coherent and incoherent productions P to the dissipation of turbulent
kinetic energy for total flow, ϵ, vs. y+(left). The Reynolds stress−〈u+

1 u
+
2 〉 vs. y+(right).

as confirmed in Figure 13 (right). In the viscous sublayer, the incoherent flow has small
contribution on ε(u+) and V (u+). The incoherent contribution to the viscous terms,
respectively measured by ε(u+) − ε(u+

c ) andV (u+) −V (u+
c ), becomes even smaller and

more negligible as y+ increases, a behaviour which is expected.
The ratio between the production and the dissipation yields insight into the equilibrium

of the turbulent flow in the log region, as discussed in Ref. [35]. Figure 14 (left) shows this
balance. Considering P(v+

c )/ε(u+), the coherent contribution perfectly superimposes with
the ratio of the total flow,P(v+)/ε(u+). The corresponding quantity for the incoherent flow,
{P(v+) − P(v+

c )}/ε(u+), is negligible, as expected from Figure 13 (left).
The Reynolds stress defined by−〈u+

1 u
+
2 〉measures the fluctuation of turbulent momen-

tum. The analysis of the Reynolds stress provides detailed information on the contribution
to the turbulence production from various events occurring in the flow. Figure 14 (right)
shows that the coherent Reynolds stresswell represents theReynolds stress for the total flow,
while its incoherent contribution is negligibly small. The interaction between the coherent
flows is predominant over the stress. In contrast, the remaining interactions play a non-
significant role in the stress, not only between the incoherent flows but also between the
coherent and the incoherent flows.
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4. Conclusions and perspectives

DNS data of turbulent channel flow at moderate Reynolds number have been analysed
using theCVEmethod. Boundary-adaptedwavelets have been developed and implemented
into a FWT. By thresholding the wavelet coefficients with one scale in three spatial direc-
tions, the flow has been decomposed into coherent and incoherent contributions.We found
that few percentage of wavelet coefficients, i.e. 6%, are sufficient to represent the coherent
structures of the flow. The low order statistics, mean velocity, mean vorticity, RMS velocity
and RMS vorticity of the coherent part agree very well with those of the total flow. A spec-
tral decomposition of turbulent kinetic energy confirms that the coherent flowmatches the
spectrum all along the inertial range. In contrast, the incoherent noise-like flow exhibits
energy equipartition, which suggests that filtering it out corresponds to modelling turbu-
lent dissipation. In order to obtain reliable statistical results, averaging over 40 flow snap-
shots has been performed. To get insight into the flow dynamics, we analysed the energy
budget and we found that the coherent flow almost perfectly retains the nonlinear dynam-
ics. The production/dissipation ratio of the coherent flow superimposes well the one of
the total flow in the log layer, while the interactions between incoherent–incoherent and
coherent–incoherent contributions are negligibly small. Although the coherent and inco-
herent vorticity fields are not perfectly divergence free, the divergence issue is not crucial
as discussed in Appendix 1.

The present construction requires that the DNS data be interpolated onto an equidistant
grid. This limits the applicability of the current CVE algorithm as higher resolution DNS
data may not be handled due to the implied memory requirements. One way to overcome
this is the use of Chebyshevwavelets, see e.g. [20,37]. InAppendix 2, we tested this approach
andwe have shown that similar results in terms of statistics and compression rate are indeed
obtained.

The CVE results are encouraging for developing coherent vorticity simulation (CVS) of
wall bounded turbulent flows. We anticipate that for higher Reynolds number, the com-
pression rate will further improve, similar to what was found for isotropic turbulence [16].
CVS is based on a deterministic computation of the coherent flow evolution using an adap-
tive orthogonal wavelet basis [13]. The influence of the incoherent background flow is
neglected to model turbulent dissipation. Applications of CVS to turbulent mixing layers
and isotropic turbulence can be found in Refs. [17] and [38], respectively.

Finally, let us remark that the wavelet bases are not orthogonal in 2D planes for fixed
y+. This implies that 2D statistics cannot be done, especially at small scales. In this case, it
would be better to apply 2D wavelets in each plane, as done in previous work [21].
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Appendices

Appendix 1. Divergence issues

The vector-valued wavelet basis used here is not divergence-free, since the orthogonal
wavelet transform does not commute with the differential operator. Thus, the coherent
vorticity, ωc, and also the incoherent one, ωi, are not divergence-free. In the following,
we quantify the y+-dependent contribution of the divergent component �ξ of ωc on the
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Figure A. Enstrophy spectra, Z+(kh, y
+), and spectra of the divergence component �+(kh, y

+) in the
x+
1 -direction, at (left) y

+ = . in the viscous sublayer, and (right) at y+ = . around the centre of the
channel.

streamwise vorticity spectra in the x1-direction. Figure A1 shows dimensionless spectra of
total streamwise vorticity ω+ and those of �ξ+ at two representative values of y+, which
are, respectively, located near the wall and around the centre of the channel. The contribu-
tion of �ξ+ appears mostly in the dissipative range, not only in the viscous sublayer but
also around the centre of the channel. It can be seen that the contributions of ξ+ are weak
in the lower wavenumber region. The intensity of �ξ+, denoted by 〈|�ξ |2〉(y+), is about
2.8 × 10−2% of the total enstrophy in the viscous sublayer, and about 1.89% around the
centre of the channel. Therefore, this divergence issue in ωc is negligible for the statistics,
but also for simulations, since ωc is almost divergence-free.

Appendix 2. CVE using Chebyshevwavelets

In the following, we briefly summarise Chebyshev wavelets which yield an alternative con-
struction of wavelets on the interval [39]. The idea is to perform a change of variables,
similar to what is done for the trigonometric definition of Chebyshev polynomials. The
efficient numerical implementation of Chebyshev wavelets is based on the periodic wavelet
transform, in analogy with the fast Chebyshev transform which uses the cosine trans-
form. The CVE results presented here use Chebyshev wavelets in the x2-direction instead
of the CDJV wavelets, while in the x1 and x3-directions, periodic Coiflet 30 wavelets are
used.

B. On Chebyshev wavelets
Using the coordinate transform x = cos (θ) we map the interval x 	 [ − 1, 1] onto θ 	 [0,
π]. Then π-periodic orthogonal waveletsψP(θ) are used to construct waveletsψB(θ), [20],
which are even functions:

ψB(θ ) = ψP(θ ) + ψP(π − θ ). (B1)

The corresponding dilated and translated wavelets are obtained byψB
j,i(θ ) = 2 j/2ψB(2 jθ −

i). Setting θ = arccos x we obtain the boundary wavelets ψB(x) on the interval [−1, 1]
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Figure B. PDFs ofu+
1 ; x

+
2 = 378.8 around the centre of the channel with CVE using Chebyshevwavelets.

The inset shows a zoom of the PDF of the incoherent velocity around .

which yield an orthogonal basis with respect to the weighted scalar product, i.e.

∫ 1

−1
ψB

j,i(x)ψ
B
j′,i′ (x)

1√
(1 − x2)

dx = δ j j′ δii′ .

To compute the Chebyshev wavelet transform efficiently, we use periodic orthonormal
Coiflet 30 wavelets with period 2π and extend the vorticityω(x1, θ, x3) as an even function
g(x1, θ, x3) for each (x1, x3),

g(x1, θ, x3) =
{

ω(x1, θ, x3) for 0 ≤ θ ≤ π,

ω(x1, −θ, x3) for − π ≤ θ < 0. (B2)

Before applying the extension of ω, we interpolate the vorticity given on 192 Chebyshev
grid points onto 256 equidistant grid points in the θ-coordinate. Then we can proceed with
the CVE method and apply the FWT to g using 3D orthogonal wavelets constructed by a
tensor product from ψP(x1), ψP(θ) and ψP(x3).

B. Numerical results
Nowwe extract coherent vorticity out of the turbulent channel flow at Reτ = 395, using the
previously described Chebyshev wavelets. For the threshold value T we use the coefficient
α = 0.10. We find that the coherent flow, reconstructed from only 4.8% of the 2562 × 512
wavelet coefficients, i.e. 6.4% of the original 2562 × 192 grid points, retains almost all of the
total energy and enstrophy, i.e. 99.9% of the total energy and 99.0% of the total enstrophy.
In contrast, the incoherent flow represented by the remaining majority of the wavelet coef-
ficients has little energy and enstrophy, namely 10−2 % of the total energy and 1.3% of the
total enstrophy.

Inspecting Figure B1 confirms that the PDFs for the total and coherent velocity fluc-
tuations perfectly superimpose, indicating that high-order statistics are well preserved by
the coherent flow. In contrast, the PDFs of incoherent velocity fluctuations have strongly
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reduced variances and are not skewed, in contrast to what is found for the total and
coherent fluctuations. Coherent and incoherent flows exhibit very similar properties as in
Section 3, where we used CDJV wavelets instead of the Chebyshev wavelets (figure with
flow visualisations is omitted). Thus, Chebyshev wavelets can be more efficient for CVE
than CDJV wavelets if the flow data have a large number of grid points, as no interpolation
onto a fine equidistant grid is required.
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