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A simulation method to track the time evolution of coherent vorticity and current density,
called coherent vorticity and current density simulation (CVCS), is developed for three-
dimensional (3D) incompressible magnetohydrodynamic (MHD) turbulence. The vorticity and
current density fields are, respectively, decomposed at each time step into two orthogonal
components, the coherent and incoherent fields, using an orthogonal wavelet representation.
Each of the coherent fields is reconstructed from the wavelet coefficients whose modulus is
larger than a threshold, while their incoherent counterparts are obtained from the remaining
coefficients. The two threshold values depend on the instantaneous kinetic and magnetic
enstrophies. The induced coherent velocity and magnetic fields are computed from the coherent
vorticity and current density using the Biot–Savart kernel. In order to compute the flow
evolution, one should retain not only the coherent wavelet coefficients but also their neighbors
in wavelet space, and the set of those additional coefficients is called the safety zone. CVCS is
performed for 3D forced incompressible homogeneous MHD turbulence without mean
magnetic field for a magnetic Prandtl number equal to unity and with 2563 grid points. The
quality of CVCS is assessed by comparing the results with a direct numerical simulation. It is
found that CVCS with the safety zone well preserves the statistical predictability of the
turbulent flow with a reduced number of degrees of freedom. CVCS is also compared with a
Fourier truncated simulation using a spectral cutoff filter where the number of retained Fourier
modes is similar to the number of the wavelet coefficients retained by CVCS. It is shown that
the wavelet representation is more suitable than the Fourier representation, especially
concerning the probability density functions of vorticity and current density.
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1. Introduction

Magnetohydrodynamic (MHD) turbulence is ubiquitous in astrophysical flows
(Goldstein et al. 1995, Brandenburg and Subramanian 2005), as hydrodynamic (HD)
turbulence is in our daily life. Turbulence has a large number of degrees of freedom,
a wide range of dynamically active scales and strong nonlinearity. A key feature of
turbulence is its strong spatial and temporal intermittency. The intermittency is
attributed to coherent structures, e.g. vortex tubes for three-dimensional (3D) HD
turbulence (e.g. Batchelor and Townsend 1949) and vorticity sheets and current sheets
for 3D MHD turbulence (e.g. Politano and Pouquet 1995).

Wavelet analysis is an efficient tool which yields a sparse multiscale representation of
intermittent fields, because wavelets are well-localized functions in both space and scale.
Thus, decomposing such fields into wavelet space keeps track of both their location and
their scale. Wavelet techniques to analyze and simulate turbulent flows have been
developed mainly for HD turbulence since the pioneering works (e.g. Farge and
Sadourny 1989, Meneveau 1991, Yamada and Ohkitani 1991). Readers interested in the
application of wavelets to turbulence may refer to review articles, e.g. Farge (1992),
Schneider and Vasilyev (2010).

To reduce the degrees of freedom of turbulent flows and thus computational load in
numerical simulations, a wavelet-based approach, called coherent vorticity simulation
(CVS), was introduced for incompressible HD turbulence (Farge et al. 1999, Farge and
Schneider 2001, Farge et al. 2003). CVS is based on the deterministic computation of
the coherent flow evolution, using an adaptive wavelet basis while either modeling or
neglecting the influence of the incoherent background flow. The underlying idea of CVS
is to extract coherent vorticity out of HD turbulence at each time step. The coherent
and incoherent vorticity fields are obtained by nonlinear filtering, i.e. thresholding the
orthogonal wavelet coefficients of the vorticity field. The coherent vorticity is
reconstructed from few wavelet coefficients whose modulus is larger than a given
threshold, while the incoherent vorticity is obtained from the many remaining wavelet
coefficients. The coherent and incoherent velocity fields are, respectively, computed
from the coherent and incoherent vorticity fields, using the Biot–Savart kernel. The
choice of the threshold is directly related to Donoho’s (1993) criterion which supposes
the incoherent flow to be Gaussian and decorrelated. At a given time instant, the
coherent flow well preserves the statistics of the turbulent flow, while the discarded
incoherent flow is like Gaussian and exhibits an energy equipartition. As the Reynolds
number increases, the wavelet representation of 3D incompressible HD turbulence
becomes more efficient in terms of the number of degrees of freedom (Okamoto et al.
2007).

To track the translation of the coherent vorticity and the generation of smaller scales,
a safety zone is required. It corresponds to adding in wavelet space neighbors to the
wavelet coefficients of the coherent vorticity at each time step. For 2D incompressible
HD turbulence (Fröhlich and Schneider 1999, Schneider et al. 2006), 3D incompressible
HD turbulent mixing layers (Schneider et al. 2005), and 3D incompressible HD
homogeneous isotropic turbulence (Okamoto et al. 2011a), it was shown that CVS
with the safety zone preserves the nonlinear dynamics and the statistical predictability,
while in CVS without safety zone both are lost. Fully adaptive CVS will reduce not
only the memory requirements, but also the CPU time of the computations of
3D incompressible HD turbulent flows, as shown for 3D compressible HD mixing
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layers (Roussel and Schneider 2010). The estimation of the numerical cost of fully

adaptive CVS for the incompressible HD flows is discussed in (Okamoto et al. 2011a).

The CVS approach is different from the filtering approach of large eddy simulation

(LES), for the latter, see, e.g. Lesieur and Métais (1996), Meneveau and Katz (2000). In

LES only the evolution of the large-scale flow is computed while modeling the influence

of small-scale motion onto the large-scale motion.
Wavelet methods have also been applied for analyzing MHD turbulence. For

example, Ishizawa and Hattori (1998) divided 2D MHD turbulent flows into two

regions, using wavelet decomposition of the velocity and magnetic fields: one is the

turbulent region showing Iroshnikov and Kraichnan spectra, i.e. the total energy

spectra with the exponent of �3/2 (Iroshnikov 1964, Kraichnan 1965), and the other

has spectra with �2 slope related to the existence of isolated current sheets. Recently,

Yoshimatsu et al. (2011) examined the scale-dependent statistics of 3D MHD

turbulence in the absence of a uniformly imposed magnetic field, and showed that

the Lagrangian acceleration does not exhibit substantially stronger intermittency than

the Eulerian acceleration. This behavior is in contrast to 3D HD turbulence where the

Lagrangian acceleration shows much stronger intermittency than the Eulerian

acceleration. Okamoto et al. (2011b) applied wavelet-based statistics to quasistatic

MHD turbulence and quantified the flow anisotropy and its intermittency. By

generalizing the coherent vorticity extraction method from HD turbulence, a method to

extract coherent vorticity sheets and current sheets out of 3D MHD turbulence was

introduced (Yoshimatsu et al. 2009). It was shown that only few degrees of freedom of

both vorticity and current density, the coherent ones, well preserve the statistics of the

total 3D MHD turbulence. Using this extraction method at each time step and

neglecting or modeling the incoherent contributions, the time evolution of the coherent

vorticity and current density can be simulated if a safety zone is introduced as in the

case of HD turbulence. We call this simulation method coherent vorticity and current

density simulation (CVCS).
The aim of this work is to develop a methodology of CVCS by generalizing CVS and

then to show that the multiscale simulation method, CVS, has a great potential for

application to other types of intermittent dynamics. To illustrate this, we perform

CVCS for 3D forced homogeneous MHD turbulence in the absence of an imposed

uniform magnetic field. Homogeneous turbulence is chosen here in order to

demonstrate the efficiency of CVCS in the worst possible case where structures are

spread all over physical space in contrast to inhomogeneous turbulence. Indeed, the

wavelet representation is even more efficient for inhomogeneous flows, such as

turbulent mixing layers, than for dealing with homogeneous flows. Forced turbulence is

simulated in order to keep the small scales active, and to achieve the highest possible

Reynolds number under the limitation of the available computational resources. To

assess CVCS, the results are compared with direct numerical simulation (DNS) using

the same maximal resolution. Comparing CVCS to a Fourier truncated simulation

using a spectral cutoff filter, we examine whether the wavelet representation is more

efficient with respect to the statistical predictability of turbulence than the Fourier

representation. In this study we perform CVCS using pseudo-adaptive computations, as

done for CVS in Schneider et al. (2005) and Okamoto et al. (2011a). The motivation is

to get insight into the feasibility of fully adaptive CVCS computations, therefore we do

not focus here on the CPU time.
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The remainder of this article is organized as follows: in the next section, the CVCS

method is presented after a short review of orthonormal wavelet representation. Section 3
shows the numerical method and results. Finally, conclusions are drawn in section 4.

2. Coherent vorticity and current density simulation method

We summarize the orthogonal wavelet decomposition of a generic 3D vector valued

field. Then, we describe the coherent vorticity and current density simulation (CVCS)
method, i.e. a method to simulate the evolution of coherent vorticity and current

density, which is based on the wavelet filtered MHD equations.

2.1. Orthogonal wavelet decomposition of 3D vector field

We consider a 3D 2�-periodic vector field v(x) with x2O¼ [0, 2�]3�R
3 and v2L2(O)

sampled on N¼ 23J equidistant grid points. Here, J is the number of octaves in each

space direction of the Cartesian coordinates, x¼ (x1, x2, x3) and v¼ (v1, v2, v3).
The vector field v, having a mean value �v (which vanishes in the flows studied here),

can be decomposed into an orthogonal wavelet series:

vðxÞ ¼ �vþ
X
ð�,�Þ2L

ev�,� �,�ðxÞ, ð1Þ

where the index set of the wavelet coefficients L is

L¼ �, �¼ ð j, i1, i2, i3Þj�¼ 1, . . . , 7, j¼ 0, . . . ,J� 1, and in ¼ 0, . . . , 2j � 1 ðn¼ 1, 2, 3Þ
� �

:

The multi-index � denotes the scale 2�j and the position 2� � 2�ji¼ 2� � 2�j(i1, i2, i3),
and � denotes the seven directions of the wavelets. The index set L can be seen as the
octree representation of the orthogonal wavelet coefficients. We have 7� 23j wavelet

coefficients at scale 2�j for each component of v. A family of 3D wavelets  �,�(x) is
generated by dilation and translation of the 3D mother wavelet  �(x) based on a tensor

product construction:

 �ðxÞ ¼

 ðx1Þ�ðx2Þ�ðx3Þ ð� ¼ 1Þ,

�ðx1Þ ðx2Þ�ðx3Þ ð� ¼ 2Þ,

�ðx1Þ�ðx2Þ ðx3Þ ð� ¼ 3Þ,

 ðx1Þ ðx2Þ�ðx3Þ ð� ¼ 4Þ,

�ðx1Þ ðx2Þ ðx3Þ ð� ¼ 5Þ,

 ðx1Þ�ðx2Þ ðx3Þ ð� ¼ 6Þ,

 ðx1Þ ðx2Þ ðx3Þ ð� ¼ 7Þ:

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð2Þ

Here (x) is the one-dimensional mother wavelet, and �(x) is the one-dimensional scaling
function. The family of  �,� yields an orthogonal basis of not only L2(R3) but also of
L2(O) through the application of a periodization technique (see, e.g. Mallat 2009).
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Note that  �,�(x) is well-localized in space x2R
3, oscillating, smooth, and the spatial

average of  �,�(x) vanishes for each index.
Owing to orthogonality, the wavelet coefficients ev�,� are given by ev�,� ¼ v, �,�

� �
,

where h�, �i denotes the L2-inner product, defined by h f, gi¼
R
Of(x)g(x)dx. The

coefficients measure the fluctuations of v at scale 2�j and around position 2� � 2�ji for
each of the seven directions �¼ 1, . . . , 7. The N� 1 wavelet coefficients ev�,� and one
mean value �v are efficiently computed from the N¼ 23J grid point values of v using the
fast wavelet transform which has linear computational complexity. In this work, the
compactly supported Coiflet wavelets with filter width 12 are used. For details on the
orthogonal wavelet transform, we refer readers to, e.g. Farge (1992) and Mallat (2009).

2.2. Coherent vorticity and current density extraction method

We present a summary of the method to extract both coherent vorticity sheets and
coherent current sheets out of 3D MHD turbulence, which was introduced by
Yoshimatsu et al. (2009). This method is based on orthogonal wavelet decompositions
of vorticity x¼;� u and current density j¼;� b. Here u is the velocity field and b is
the magnetic field. The latter is normalized by (�0�0)

1/2, where �0 is the permeability of
free space and �0 is the fluid density.

Thresholding the wavelet coefficients ex�,� andej�,� at a given time instant, with a
thresholding function

�Tðev�,�Þ ¼ ev�,� for jev�,�j4Tðev�,�Þ,
0 for jev�,�j � Tðev�,�Þ,

�
ðev�,� ¼ ex�,� or ej�,�Þ, ð3Þ

we separate the coefficients into coherent and incoherent ones, i.e. evc ¼ �Tðev�,�Þ andevi ¼ev�,� �evc, respectively. The value of Tðex�,�Þ can be different from that of Tðej�,�Þ.
The coherent vorticity, xc, the incoherent vorticity, xi, the coherent current density,

jc, and the incoherent current density, ji, are then reconstructed by the inverse wavelet
transform. These fields satisfy

x ¼ xc þ xi, and j ¼ jc þ ji: ð4Þ

Kinetic and magnetic enstrophies are conserved, i.e. Zu ¼ Zu
c þ Zu

i and Zb ¼ Zb
c þ Zb

i ,
thanks to the orthogonality of the decomposition. Here, Zu

¼hx,xi/2, Zu
c ¼ hxc,xci=2,

Zu
i ¼ hxi,xii=2, Z

b
¼h j, ji/2 , Zb

c ¼ h jc, jci=2, and Zb
i ¼ h ji, jii=2.

The choice of the thresholds is motivated by denoising theory (Donoho 1993,
Donoho and Johnstone 1994). The values of the thresholds are given by
Tðex�,�Þ ¼ fð4=3ÞZ

u
i lnNg

1=2 and Tðej�,�Þ ¼ fð4=3ÞZb
i lnNg

1=2, which depend only on the
incoherent enstrophies Zu

i and Zb
i (which are a priori unknown) and the maximal

resolution N. Parseval’s identity implies that the enstrophy can be computed directly in
wavelet space. We use the threshold values, T0ðex�,�Þ and T0ðej�,�Þ, from the total
enstrophies, Zu and Zb, as the first estimates of Zu

i and Zb
i , respectively, i.e.

T0ðex�,�Þ ¼ fð4=3ÞZ
u lnNg1=2 and T0ðej�,�Þ ¼ fð4=3ÞZb lnNg1=2. Then we split x and j

into coherent and incoherent fields by thresholding their wavelet coefficients with
T0ðex�,�Þ and T0ðej�,�Þ, respectively. The obtained incoherent enstrophies provide new
estimates of Zu

i and Zb
i , from which new threshold values T1ðex�,�Þ and T1ðej�,�Þ are

computed. The above procedure could then be iterated until convergence. The coherent
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vorticity and current density extracted by the wavelet thresholding with T1ðex�,�Þ and
T1ðej�,�Þ are sufficient to preserve the statistics of the total field at a given time instant

and yield good compression. In contrast, the coherent vorticity and current density
extracted by the wavelet filtering with T0ðex�,�Þð4T1ðex�,�ÞÞ and T0ðej�,�Þð4T1ðej�,�ÞÞ do
not sufficiently preserve the statistics of the total field.

Biot–Savart’s relations, u¼�;� (r�2x) and b¼�;� (r�2j), are used to obtain
the corresponding induced velocity and magnetic fields, respectively. By construction
the total fields are obtained by summation,

u ¼ uc þ ui, and b ¼ bc þ bi: ð5Þ

For the kinetic and magnetic energies, we have Eu ¼ Eu
c þ Eu

i þ "
u and Eb ¼

Eb
c þ Eb

i þ "
b, where Eu

¼hu, ui/2, Eb
¼hb, bi/2, "u/Eu

� 1 and "b/Eb
� 1. The incoherent

velocity and magnetic fields are like Gaussian and exhibit an energy equipartition.

2.3. Wavelet filtered MHD equations

In order to follow the time evolution of MHD turbulence, we should apply the method

to extract coherent vorticity and current density at each time step. However, to track
the evolution, adding a safety zone in the vicinity of the coherent wavelet coefficients of
vorticity and current density, exc andejc, is inevitable, as it is the case for CVS. Thus, the
CVCS method should retain not only exc and ejc but also their neighbor wavelet
coefficients at each time step.

Let Ln
c,x and Ln

c, j be the index sets of the coherent wavelet coefficients of xc and jc at a
given time instant tn, respectively. We then consider the union of these sets denoted by
Ln

cþ, i.e. Ln
cþ ¼ Ln

c,x [ L
n
c, j. Subsequently, the index set Ln

cþ is expanded by adding
neighbors in direction, space and scale. The zone consisting of the neighbors is called
the safety zone. There are 2 or 3 in direction, 26 adjacent neighbors in space, and 8 in

scale for a given wavelet coefficient, as illustrated in figure 1. The expanded index set,
denoted by Ln

�, allows to track not only the translation of xc and jc but also the
production of finer scales due to their nonlinear interactions. To take advantage of the
safety zone as much as possible, we keep the incoherent wavelet coefficients belonging
to the safety zone, i.e. the difference set Ln

�nL
n
cþ, at any time. We neglect the remaining

large majority of the wavelet coefficients, which are not elements of Ln
�.

One should verify whether the width of the safety zone, which depends on the time
increment, is sufficient to preserve the flow dynamics well, because the incompressibility
conditions given by equations (8) and (9) imply that local changes in the flow could

become global. For HD turbulence, the statistics of the reference DNS are shown to be
well preserved by CVS if a safety zone is provided (Schneider et al. 2005, 2006,
Okamoto et al. 2011a). These studies suggest that information which travels further
than the adjacent wavelet coefficients are not significant and can thus be neglected.

The coherent fields including the safety zone,xc� and jc�, are obtained from the wavelet
coefficients belonging to L�. The remaining vorticity and current density, xi� and ji�, are
given by xi�¼x�xc� and ji�¼ j� jc�, respectively. The corresponding velocity and
magnetic fields, uc�, ui�, bc� and bi�, which are induced byxc�,xi�, jc� and ji�, are obtained
from the Biot–Savart relation. Althoughxc� and jc� are not perfectly solenoidal in CVCS,
the solenoidal conditions are ensured by taking the curl of uc� and bc�. In section 3.2,
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we will confirm that the discrepancies between xc� and ;� uc� and between jc�
and ;� bc� are indeed negligible.

Substituting x¼xc�þxi�, u¼ uc�þ ui�, j¼ jc�þ ji� and b¼ bc�þ bi� into the Navier–

Stokes equations and the induction equations, and then neglecting the terms including

xi�, ui�, ji� and bi�, we obtain the evolution equations for uc� and bc�:

@uc�
@t
¼ �ðuc� ·;Þuc� � ;Pþ jc� � bc� þ �r

2uc� þ f u, ð6Þ

@bc�
@t
¼ ;� ðuc� � bc�Þ þ �r

2bc� þ f b, ð7Þ

; · uc� ¼ 0, ð8Þ

; · bc� ¼ 0, ð9Þ

where f u and f b are external solenoidal forces imposed on large-scale flow, P is the
pressure, � is the kinematic viscosity, and � is the magnetic diffusivity. The evolution of

Figure 1. (color online) The safety zone showing the neighbors in direction, space and scale of a given
wavelet mode which belongs to Lcþ: (a) directions of the neighbor wavelet coefficients, (b) spatial position of
the neighbor wavelet coefficients at the same scale 2�j, and (c) spatial position of the neighbor wavelet
coefficients at the next smaller scale 2j�1.
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xc� and jc� can be obtained by taking the curl of equations (6) and (7). A flowchart of

the CVCS algorithm is shown in figure 2.

3. Numerical method and results

3.1. Numerical method

We performed five numerical computations of forced incompressible MHD turbulence

without mean magnetic field in a 2� periodic box; one DNS computation as reference,

three CVCS computations (CVCS0, CVCS1 and CVCS2) and one Fourier truncated

simulation (FT0) using a spectral cutoff filter. In FT0, only Fourier coefficients of the

velocity and magnetic fields for jkj � kc are retained, while coefficients with

wavenumbers larger than kc are set to zero. Here, k¼ jkj and kc is the cutoff

wavenumber of the filter where k is the wave vector. The magnetic Prandtl number Pr is

set to 1, i.e. �¼ �. CVCS0 performs wavelet thresholding with T0ðex�,�Þ and T0ðej�,�Þ
(without iteration), while CVCS1 and CVCS2 use threshold values T1ðex�,�Þ and

T1ðej�,�Þ applying one iteration. The thresholds for ex�,� andej�,� depend on the kinetic

and magnetic enstrophies, respectively, and thus the threshold values vary in time.

CVCS0 and CVCS1 include the safety zones, while CVCS2 has no safety zone. An

overview on the different CVCS computations is given in table 1. We perform these

CVCS using pseudo-adaptive computations, as mentioned in section 1. We do not

employ any subgrid scale model in FT0, because the influence of the incoherent flow

Figure 2. Flowchart of CVCS. The superscripts n and n	 1 denote time steps. FWT and FWT�1 stand for
the fast wavelet transform and its inverse, respectively. The grey rectangle indicates operations taking place in
wavelet coefficient space.
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onto the coherent flow is neglected for the present CVCS either. The cutoff
wavenumber kc of the spectral cutoff filter is chosen such that the percentage of the
retained Fourier coefficients is almost the same as for the retained wavelet coefficients
in CVCS0.

The numerical code uses a classical Fourier pseudo-spectral method based on the
Elsässer variables formulation with a fourth-order Runge–Kutta scheme for time
marching. The variables z	 are defined by z	¼ u	 b. In each time step, we compute the
coherent vorticity and current density wavelet coefficients, exc andejc, by applying the
coherent vorticity and current density extraction method, add the corresponding safety
zone, and invert the curl operator to compute the coherent velocity and magnetic field,
uc� and bc�. Thus we obtain the corresponding Elsässer variables z	c� ¼ uc� 	 bc�, which
are advanced in time. The aliasing errors are removed by a phase-shift method, which
keeps all the Fourier modes satisfying k< kmax, where kmax¼ 21/2N1/3/3. Solenoidal
random forces introduced by Yoshida and Arimitsu (2007) are imposed only at large
scale, i.e. in the wavenumber range 1� k< 2.5. The resolution is N¼ 2563,
�¼ �¼ 10.2� 10�4, and the time increment �t¼ 4.2� 10�3. For both forces, f u and
f b, the correlation time and the intensity are, respectively, set to 1.8 and 0.9� 10�3.
Note that they have the same time history in all the presented computations.

The computations are integrated over the time period 3.31	, where 	¼L/u0,
u20 ¼ 2Eu=3 and L is the integral length scale defined by L ¼ �=ð2u20Þ

R kmax

0 EuðkÞ=kdk
and kmax is the maximum wavenumber. The kinetic energy spectrum E u(k) is defined by
Eu(k)¼

P
k�1/2�jqj<kþ1/2 jF [u](q)j

2/2. Here, F [�] is the Fourier transform of �. Typical
physical quantities at the final time tf¼ 3.31	 are summarized in table 2.

Table 1. Overview on the different CVCS computations
in terms of the use of the safety zone and the threshold.

Safety zone Threshold

CVCS0 * T0

CVCS1 * T1

CVCS2 � T1

Notes: The symbols * and � denote the computations with and
without the safety zone, respectively. The threshold T1 stands for a
threshold with one iteration, and T0 for a threshold without
iteration. Note that T0>T1.

Table 2. Physical parameters of DNS, CVCS and the Fourier truncated simulation at t¼ tf, where H
C and

HM are the total cross and magnetic helicities defined by HC
¼hu · bi and HM

¼ha · bi, respectively.

Eu Eb Zu Zb �IK HC HM

DNS 0.425 0.682 45.1 65.8 1.46� 10�2 �0.159 0.159
CVCS0 0.424 0.677 36.8 54.4 1.55� 10�2 �0.159 0.159
CVCS1 0.425 0.681 42.5 62.4 1.49� 10�2 �0.159 0.159
CVCS2 0.417 0.642 17.3 24.5 2.00� 10�2 �0.152 0.152
FT0 0.426 0.682 46.1 64.7 1.46� 10�2 �0.158 0.159

Note: Here a is the magnetic potential of b.
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We use the same initial flow field in all computations. This field was obtained by a
preceding DNS computation of 3D incompressible homogeneous MHD turbulence
with the kinetic Taylor micro-scale Reynolds number Ru

� ¼ 86, the magnetic Taylor
micro-scale Reynolds number Rb

� ¼ 124 and kmax�IK¼ 1.76. The total energy
dissipation rate h
i is statistically quasi-stationary. Here, Ru

� ¼ u0�
u=� and

Rb
� ¼ b0�

b=�, the Iroshnikov and Kraichnan microscale �IK is defined by (�2b0/h
i)
1/3,

where the kinetic Taylor microscale �u ¼ ð15�u20=h

uiÞ

1=2, the magnetic Taylor micro-
scale �b ¼ ð15�b20=h


biÞ
1=2, b0¼ (2 �E b/3)1/2, h
ui and h
bi are the kinetic and magnetic

energy dissipation rates, respectively. The initial velocity and magnetic fields of the
preceding DNS, which are randomly generated, have the following constraints;
Eu(k)¼Eb (k)/ k2 exp(�2k2/25), the total cross helicity and magnetic helicity are nearly
zero, and both the initial total kinetic and magnetic energies are 0.5.

3.2. Assessment of CVCS

In this subsection, we study the feasibility of CVCS and assess its quality in comparison
to DNS and the Fourier truncated simulation.

We first describe the percentage C of the wavelet coefficients retained by CVCS,
which is defined by C¼ 100N�/N. Here N� is the number of the wavelet coefficients
which are elements of L�, in other words, the number of wavelet coefficients retained by
the coherent vorticity and the coherent current density including the safety zone.
Figure 3 shows C versus normalized time t/	. In each CVCS, C is almost independent of
time after a transient decay at early times, for t/	0 0.1. CVCS1 retains most
coefficients (C
 33[%]), while CVCS0 exhibits a smaller percentage, C
 13[%]. This is
consistent with the fact that CVCS0 employs larger threshold values for the wavelet
coefficients of vorticity and current density than CVCS1. For CVCS2, which has no
safety zone, the percentage C rapidly decreases to much smaller value (about 0.9%).
For FT0 we have chosen a cutoff wavenumber kc¼ 80 such that the percentage of
retained Fourier coefficients yields about 13%, which is thus slightly larger than the
percentage of CVCS1 for t/	 > 1.

Figure 3. (color online) Time evolution of the percentage C of retained wavelet coefficients for CVCS0,
CVCS1 and CVCS2. The percentage of retained Fourier coefficients for FT0, which is constant in time, is also
indicated.
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Figures 4 and 5 show flow visualizations of intense vorticity regions and current
density regions, respectively. Vorticity sheets and current sheets are observed, as in the
previous DNS results (e.g. Politano et al. 1995). We can see that CVCS0, CVCS1 and
FT0 well preserve the positions of these regions of DNS at the final time tf.

Figure 4. (color online) Visualization of the intense vorticity regions for DNS, CVCS0, CVCS1, CVCS2 and
FT0 at t¼ tf. Isosurfaces of vorticity and current density are shown for jxj ¼ hjxji þ 3�!, where �! denotes the
standard deviation of jxj.

Figure 5. (color online) Visualization of the intense current density regions for DNS, CVCS0, CVCS1,
CVCS2 and FT0 at t¼ tf. Isosurfaces of current density are shown for j jj ¼ hj jji þ 3 �j where �j denotes the
standard deviation of j jj.
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This observation is in contrast to what is found in CVS of 3D homogeneous
incompressible HD turbulence (Okamoto et al. 2011a). The CVS computations show a
statistically similar picture of entangled vortex tubes as in DNS. However, the position
of these intense vorticity regions in CVS is completely different from those in DNS
because of the flow sensitivity. Considering finally the CVCS2 computation, where no
safety zone has been added, we find that the sheet-like structures are not preserved and
thus it is suggested that the flow dynamics is lost. It was confirmed that impressions
obtained from the visualization are the same as those at different time instants t� tf,
say, t¼ tf/2 (figure omitted).

Let us define the ratio of a quantity ‘‘X’’ in CVCS to that of DNS by R(X), in order
to quantify how much kinetic energy, Eu, magnetic energy, Eb, kinetic enstrophy, Zu,
and magnetic enstrophy, Zb, are retained by CVCS compared to DNS. Figures 6(a)–(d)
illustrate the time evolution of 100R(Eu), 100R(Eb), 100R(Zu) and 100R(Zb),
respectively. In figures 6(a) and (b), it is seen that 100R(Eu) and 100R(Eb) are almost
100% for CVCS0 and CVCS1, i.e. the kinetic and magnetic energies are in excellent
agreement with those in DNS, during the time evolution period studied here. The
differences of the energies among these CVCS and DNS are small and less than 1%. In
contrast, the evolution of the ratios in CVCS2 differs by 3 % for kinetic energy and by
6% for magnetic energy. FT0 yields reasonable predictability for the time evolution of
the energies with values being slightly above the ones of DNS.

In figures 6(c) and (d), it is seen that CVCS1 yields large values of enstrophy for both
Zu and Zb than CVCS0, because CVCS1 has more retained wavelet coefficients

(a) (b)

(c) (d)

Figure 6. (color online) The ratios of (a) kinetic energy and (b) magnetic energy, (c) kinetic enstrophy, and
(d) magnetic enstrophy for retained by CVCS0, CVCS1, CVCS2 and FT0 to the corresponding quantities
obtained by DNS.
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than CVCS0. CVCS1 retains about 94% of the kinetic and magnetic DNS enstrophies
after a transient period, i.e. t/	0 0.2, while CVCS0 retains 80% of these DNS
enstrophies. The loss of the enstrophies is not a problem as long as both of the kinetic
and magnetic energies are well retained. The energy evolution is not very sensitive to the
choice of the threshold in CVCS, though the enstrophy evolution changes significantly.
The loss is due to the incoherent enstrophies which are not included in the safety zone
and which are filtered out at each time step. In CVCS2, only about 40 % kinetic and
magnetic enstrophies in DNS are retained for t/	0 1. For FT0, 100 R(Zu) and 100
R(Zb) remain about 102 % and about 98 % during t/	0 0.3, respectively.

The flatness of vorticity and current density yields information on higher order
statistics of the flows. Figure 7 shows the flatness versus t/	. Both of the flatness values
of F! and Fj for CVCS0 and CVCS1 are a little larger than the corresponding values of
DNS. In contrast, the values in CVCS2 are much smaller than F! and Fj in DNS. The
flatness values F! and Fj for FT0 are also much smaller than those for DNS. Therefore,
we find that the wavelet representation is more suitable for predicting the fourth-order
turbulence statistics than the Fourier representation.

The probability density functions (PDFs) of velocity and magnetic fields for all
computations agree well with each other (figures 8(a) and (b)). All PDFs exhibit a
Gaussian shape. However, this is not the case for the PDFs of vorticity and current
density, as shown in figures 8(c) and (d). CVCS0 and CVCS1 well preserve the PDFs of
the vorticity and current density obtained by DNS, whose tails have stretched
exponential shapes. On the other hand, in the PDFs of the vorticity and current density
for CVCS2, their supports are significantly narrower compared to those for DNS,
respectively. The supports of the PDFs of vorticity and current density for FT0 are also
reduced compared to DNS and CVCS0, although the supports for FT0 are wider than
for CVCS2.

The kinetic and magnetic energy spectra, Eu(k) and Eb(k), are plotted in figure 9, to
assess the quality of CVCS in terms of two-point statistics. We find that, for CVCS0
and CVCS1, both of the energy spectra agree well with those for DNS, respectively.
CVCS0 and CVCS1 preserve the DNS spectra in the range k�IK0 0.5, while for larger
wavenumbers some departure, which is less pronounced for CVCS1 than for CVCS0,
can be observed. For CVCS2 we observe a strong departure for k�IK0 0.2. In contrast
to CVCS, FT0 tends to pile up energy in the spectra near the cutoff wavenumber kc.

(a) (b)

Figure 7. (color online) Time evolution of the flatness of (a) vorticity and (b) current density, F! and Fj,
which are respectively defined as F! ¼ h!

4
‘i=h!

2
‘i

2 and Fj ¼ hj
4
‘i=hj

2
‘i

2. Here, x‘ and j‘ are ‘-th components of
x and j, respectively.
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A consequence of this effect is that the kinetic and magnetic enstrophies in figure 6 have

values of about 100%.
The total energy flux � (k) in figure 10 confirms that the nonlinear dynamics are well

retained by CVCS0, CVCS1 and FT0. Here �(k) is defined by

�ðkÞ ¼

Z k

0

TðqÞdq, ð10Þ

(a) (b)

(c) (d)

Figure 8. (color online) PDFs of ‘-th components of (a) velocity u‘ and (b) magnetic field b‘, (c) vorticity
!‘, and (d) current density j‘ at t¼ tf. Here, �u, �b, �! and �j are respectively the standard deviations of u‘, b‘,
!‘ and j‘.

(a) (b)

Figure 9. (color online) (a) Kinetic and (b) magnetic energy spectra Eu(k) and Eb(k) at t¼ tf. The
wavenumber k is normalized by �IK of the DNS at t¼ tf.
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TðqÞ ¼
1

2

X
q�1=2�jq0 j5 qþ1=2

F½z��ð�q0Þ ·F½ z
þ
·;

� �
z��ðq0Þ

�
þ F½zþ�ð�q0Þ ·F½ z

�
·;ð Þzþ�ðq0Þ

�
: ð11Þ

Again we see that CVCS2 exhibits substantial departure in terms of the energy flux.
To further quantify the difference of the simulations, we consider the spectra of the

kinetic and magnetic difference fields, u�� uDNS and b�� bDNS(�¼CVCS0, CVCS1,
FT0). Here u� and b� express the velocity and magnetic field of the computation �,
respectively, uDNS the velocity for DNS, and bDNS the magnetic field for DNS. The
spectra of the kinetic and magnetic difference fields are respectively defined as

Du
�ðkÞ ¼

1

2

X
k�1=2�jqj5 kþ1=2

jF ½u� � uDNS�ðqÞj
2, ð12Þ

Db
�ðkÞ ¼

1

2

X
k�1=2�jqj5 kþ1=2

jF ½b� � bDNS�ðqÞj
2: ð13Þ

In figure 11, we see that Du
CVCS0ðkÞ and Db

CVCS0ðkÞ are comparable to the kinetic and
magnetic energy spectra Eu(k) and Eb(k) for DNS in the range k�IK0 0.5, respectively.
Around k�IK
 0.2, these spectra of the difference fields take their maximum: the values
are about 10% of Eu(k) and Eb(k) for DNS. For the difference spectra of CVCS1, we
have Du

CVCS1ðkÞ5Du
CVCS0ðkÞ and Db

CVCS1ðkÞ5Db
CVCS0ðkÞ, as expected. Concerning FT0,

we find Du
FT0ðkÞ5Du

CVCS0ðkÞ and Db
FT0ðkÞ5Db

CVCS0ðkÞ for k�IK9 1, because the Fourier
modes of the difference fields increase for k� kc more rapidly in CVCS0 than in FT0.
CVCS0 removes some contributions in the range k� kc by filtering out the incoherent
contribution, while CVCS0 retains some contributions in the coherent flow for k> kc.
The difference spectra Du

� and Db
� grow in time at each wavenumber until they become

comparable to Eu(k) and Eb(k) at least up to t¼ tf, respectively (figure omitted), as is the
case studied by Yamazaki et al. (2002) who examined the effects of wavenumber
truncation in DNS of 3D homogeneous incompressible HD turbulence in a periodic
box using the Fourier spectral method. Thus, we confirm that CVCS cannot preserve
the deterministic predictability, as any truncated method, although we can see from the
visualization in figures 4 and 5 that the positions of the vorticity sheets and current

Figure 10. (color online) Energy fluxes � (k) at t¼ tf. The wavenumber k and the flux �(k) are respectively
normalized by �IK and h"i of the DNS at t¼ tf.

CVCS of 3D MHD turbulence 87



sheets are well preserved by CVCS0 and CVCS1 during the present simulation time
period. It is suggested that the positions are not retained at later times. Furthermore,
from figures 4, 5, and 11 we conjecture that the dynamics in the range k�IK9 0.2 play a
key role in determining the position of the sheet-like intense structures.

Finally, let us examine the compressible contributions of the coherent vorticity xc�

and coherent current density jc� and confirm that they are not crucial in CVCS with the
safety zone. Figure 12 shows the spectra of xc� and jc�, their divergence-free parts, x0c�
and j0c�, and their compressible contributions, ;�! and ;�j at the final time in the case of
CVCS0. Here x0c� ¼ xc� þ ;�! and j 0c� ¼ jc� þ ;�j. We observe that the spectra of xc�

and jc� agree well with those of x0c� and j0c�, respectively. The compressible contributions
are observed mainly in the dissipative range. However, they are some orders of
magnitude below the corresponding incompressible parts. The relative errors of the
compressible contributions are estimated by 100�hj;�!j

2
i/hjxc�j

2
i 
 0.17 [%], and

100�hj;�jj
2
i/hj jc�j

2
i 
 0.16 [%]. Therefore, the compressible contributions are

(a) (b)

Figure 11. (color online) Spectra of (a) kinetic and (b) magnetic difference fields at t¼ tf: the dashed curves
denote Du

CVCS0 and Db
CVCS0, the dashed dotted curves Du

CVCS1 and Db
CVCS1, and the dotted ones Du

FT0 and Db
FT0.

As references, the kinetic and magnetic energy spectra for DNS at t¼ tf are plotted as thick solid curves,
respectively. The wavenumber k is normalized by �IK of the DNS at t¼ tf.

(a) (b)

Figure 12. (color online) Spectra of the coherent field ac�, its incompressible contribution a0c�, and its
compressible one ;� at t¼ tf for CVCS0: (a) for the coherent vorticity, i.e. a¼x, and (b) for the coherent
current density, i.e. a¼ j. The wavenumber k is normalized by �IK of the DNS at t¼ tf.
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negligible in the CVCS. Note that CVCS1 has smaller relative errors than CVCS0,
because the former retains more wavelet coefficients than the latter (figure omitted).

4. Conclusions

We have developed the CVCS method to track the time evolution of coherent vorticity
and current density for 3D incompressible MHD turbulence, generalizing the CVS
method for 3D incompressible HD turbulence previously introduced by Farge and
Schneider (2001). CVCS is based on the orthogonal wavelet decomposition of the
vorticity and current density fields at each time step. Each of the coherent fields
corresponds to few wavelet coefficients whose modulus is larger than a threshold, and
the incoherent fields are obtained from the remaining large majority of the coefficients.
In order to obtain the flow evolution of these coherent fields, one needs to add a safety
zone in wavelet space. The wavelet coefficients which are computed in the next time step
consist of the coherent ones and their neighbors, i.e. the safety zone. The remaining
incoherent wavelet coefficients are discarded in the present CVCS computations. The
presented results show that discarding these coefficients is sufficient to model turbulent
dissipation.

CVCS of 3D forced homogeneous incompressible MHD turbulence in the absence of
an imposed uniform magnetic field has been performed to assess its quality. CVCS was
compared with a reference DNS at an initial kinetic Taylor microscale Reynolds
number Ru

� ¼ 86, and an initial magnetic one Rb
� ¼ 124. These computations were

performed at resolution N¼ 2563. Homogeneous turbulence was chosen to demonstrate
the feasibility and efficiency of CVCS in the most challenging case.

We found that the statistics of the reference DNS are well preserved by CVCS if the
safety zone is provided. CVCS1, which includes the safety zone, presents the best
statistical predictability, but the number of the degrees of freedom retained by CVCS1 is
only reduced by a factor three in comparison to DNS. To improve the computational
efficiency, we performed CVCS0, which uses larger threshold values than CVCS1.
CVCS0 has the same type of safety zone as CVCS1. However, the former reduces the
number of degrees of freedom by a factor eight, in comparison to DNS. Thus, it was
verified that information which travels further than the adjacent wavelet coefficients is
not crucial to track the evolution of the nonlinear dynamics, since the CVCS
computations with safety zone well retain the statistics of DNS. In contrast, CVCS2
without any safety zone loses both the flow dynamics and the flow statistics. The small
divergence contribution in the coherent vorticity field was confirmed to be negligible.
Therefore, it is demonstrated that the CVS method has also a great potential to be
applied to simulations of flows whose intermittency is different from HD turbulence.

As any truncated method the deterministic predictability of turbulent flows cannot be
preserved by CVCS owing to the flow sensitivity. Flow visualization suggests that
CVCS better preserves the positions of intense vorticity sheets and current sheets during
the simulation, compared to CVS of 3D incompressible homogeneous HD turbulence in
which the positions of vortex tubes are completely different from those for DNS.

We have also compared CVCS with a Fourier truncated simulation. By the use of the
spectral cutoff filter, the number of the modes retained by the Fourier truncated
simulation is set to be similar to the number of wavelet coefficients retained by CVCS0.
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For the sake of comparison no subgrid scale model was added to the Fourier truncated
simulation, because the influence of the incoherent flow onto the coherent flow is not
modeled in CVCS either. We found that the wavelet representation better predicts the
turbulence statistics such as the vorticity and current density PDFs, than the Fourier
representation.

In future work, the development of fully adaptive CVCS computations, especially for
MHD turbulence at much higher Reynolds number will be pursued. For CVCS of
inhomogeneous flows in complex geometries, a hybrid method between the volume
penalization approach for MHD flows, proposed (Neffaa et al. 2008, Schneider et al.
2011), and CVCS is promising. A generalization of the CVCS methodology to
anisotropic MHD turbulence under a substantial uniformly external magnetic field with
and without rotation, density stratification, the Hall effect, etc., would also be
interesting. The safety zone is related to physical processes such as sweeping, energy
cascade, etc. Indeed, the CVCS approach is based on the assumption of locality of
energy transfer in wavelet space, which allows an extrapolation of the flow dynamics in
time. Adding a safety zone, i.e. including adjacent wavelet coefficients, allows to capture
the translation of coherent vorticity and current sheets in space and direction, and the
generation of finer scales due to nonlinear interaction. For substantially anisotropic
turbulence, a significant reduction of the width of the safety zone is expected, because
the energy cascade and the small scale motion are suppressed in the direction of the
external magnetic field. In some situations, dynamos may occur, and then kinetic and
magnetic helicities may play significant roles in the dynamics and statistics. It is
conjectured that the above arguments on the safety zone still hold and that the
dynamics and statistics are well preserved by the coherent flow of the MHD turbulence.
In Farge et al. (1999), it was shown that CVS tracks well the coherent flow evolution in
the regime of an inverse energy cascade for 2D HD turbulence. However, examination
of this conjecture for MHD is beyond the scope of this article.
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