Université de Provence 2011–2012

Mathématiques Générales 1

FEUILLE D'EXERCICES N° 4

THÉORIE DES ENSEMBLES, APPLICATIONS

I. Théorie des ensembles

Exercice 1 symboles de théorie des ensembles

Soient X un ensemble non vide et A, B, C trois parties de X.

- 1. Expliciter les formules de théorie des ensembles : $x \in A \cup B$, $x \in A \cap B$, $x \in A^c$, où c désigne le symbole de complément, au moyen des connecteurs logiques et des symboles élémentaires $(x \in A)$ et $(x \in B)$.
- 2. Déterminer les ensembles suivants :
 - $1. \ X \cap \emptyset^c \quad 2. \ X^c \cap \emptyset \quad 3. \ (X \cap \emptyset)^c \quad 4. \ X \cup \emptyset^c \quad 5. \ (X^c \cap \emptyset)^c \quad 6. \ (X^c \cup \emptyset)^c \cap X.$
- 3. Montrer que $(A \cup B \subset A \cup C \text{ et } A \cap B \subset A \cap C) \Rightarrow B \subset C$.

Exercice 2 Opérations sur les ensembles

- 1. Soient E, F et G trois ensembles. Montrer les propriétés suivantes :
 - (a) $(E \cap F) \cup G = (E \cup G) \cap (F \cup G)$
 - (b) $(E \cup F) \cap G = (E \cap G) \cup (F \cap G)$
- 2. Soient A et B des parties d'un ensemble E, montrer
 - (a) $(A \cup B)^c = A^c \cap B^c$
 - (b) $(A \cap B)^c = A^c \cup B^c$
 - (c) $A \subset B \Rightarrow B^c \subset A^c$.
- 3. Soient A et B des parties d'un ensemble E, démontrer que : $A \cup B = E \Leftrightarrow A^c \subset B \Leftrightarrow B^c \subset A$.

Exercice 3 extrait examen 2008

Soient A,B,C,D des parties d'un ensemble E non vide telles que l'on ait les quatre hypothèses :

(1)
$$A \cap B = C \cap D$$
; (2) $C \cup D = E$; (3) $C \subset A$; (4) $D \subset B$.

Prouver que C = A puis que D = B.

Exercice 4 Produit cartésien

Etant donnés, deux ensembles A et B, on appelle produit cartésien de A par B, l'ensemble $\{(x,y)/x \in A, y \in B\}$.

- 1. Soit $A = \{1, 2, 3\}$, $B = \{1, 5\}$ et $C = \{2, 10\}$. Expliciter les produits cartésiens : $A \times B$, $B \times A$, $C \times B$, $(A \cap C) \times B$, ainsi que l'ensemble $(A \times B) \cap (C \times B)$. Que remarque-t-on? Peut-on généraliser le résultat? Enoncer un résultat analogue avec les symboles \cup et \times .
- 2. Soient les sous-ensembles de \mathbb{R} suivants : I = [0,3], J = [0,4], K = [1,4], L = [1,5]. Dessiner, dans le plan rapporté au repère orthonormé $(0,\vec{i},\vec{j})$, les ensembles : $I \times J$ et $K \times L$; déterminer : $(I \times J) \cap (K \times L)$.
- 3. Pour les ensembles quelconques A, B, C, D, déterminer (en justifiant le résultat) $(A \times B) \cap (C \times D)$.
- 4. Montrer en donnant un contre-exemple, que $(A \times B) \cup (C \times D)$ n'est en général pas un produit cartésien.
- 5. Que vaut $\emptyset \times B$?
- 6. Résoudre l'équation : $A \times B = \emptyset$.

Exercice 5 Ensemble des parties d'un ensemble

- 1. Soit l'ensemble $A = \{a, b, c, d\}$. Déterminer $\mathcal{P}(A)$.
- 2. L'ensemble $\mathcal{P}(\emptyset)$ est-il vide?
- 3. Si E est un ensemble à k éléments, combien $\mathcal{P}(E)$ a-t-il d'éléments?

II. Applications

Exercice 6 Montrer que la composée de deux applications injectives (resp. surjectives) est une application injective (resp. surjective).

Exercice 7 Soient $f: X \to Y$ et $g: Y \to Z$ deux applications. Notons $h = g \circ f$.

- 1. Montrer que h injective entraı̂ne f injective.
- 2. Montrer que h surjective entraı̂ne g surjective.

Exercice 8 Soit f une application de X dans Y.

- 1. Montrer que f est injective si et seulement si il existe une fonction $g: Y \to X$ telle que $g \circ f = Id_X$. La fonction g est-elle unique? (on pourra faire un dessin avec diagramme sagital)
- 2. Prouver que f est bijective si et seulement si $\exists !g: Y \to X$ telle que $g \circ f = Id_X$.

Exercice 9 (Application "image réciproque")

On rappelle que si f est une application de X dans X', l'application de $\mathcal{P}(X')$ dans $\mathcal{P}(X)$, notée commodément mais abusivement f^{-1} , qui à A' associe $f^{-1}(A')$, est toujours bien définie.

Soient X, X' deux ensembles et $f: X \to X'$ une application.

- 1. Rappeler la définition de f(A) pour une partie A de X, ainsi que la définition de $f^{-1}(A')$ pour une partie A' de X'.
- 2. Si f est une des fonctions usuelles $\cos x$, $\sin x$, e^x , x^2 , \sqrt{x} ou $\ln x$, déterminer $f^{-1}(\{y\})$, suivant les valeurs du réel y et dire si f est injective ou surjective.
- 3. Pour tous $(A, B) \in \mathcal{P}(X)^2$ et $(A', B') \in \mathcal{P}(X')^2$, montrer que :
 - (a) $f(A \cup B) = f(A) \cup f(B)$
 - (b) $f(A \cap B) \subset f(A) \cap f(B)$ (on dessinera un contre-exemple à l'autre inclusion).
 - (c) $f^{-1}(A' \cup B') = f^{-1}(A') \cup f^{-1}(B')$
 - (d) $f^{-1}(A' \cap B') = f^{-1}(A') \cap f^{-1}(B')$.
- 4. Pour tout $A \subset X$, $A' \subset X'$, comparer :
 - (a) $f(A^c)$ et $f(A)^c$; $f^{-1}(A'^c)$ et $f^{-1}(A')^c$.
 - (b) $A \text{ et } f^{-1}(f(A)); A' \text{ et } f(f^{-1}(A')).$
- 5. Montrer que $A' \subset B' \Rightarrow f^{-1}(A') \subset f^{-1}(B')$;

Exercice 10 Soient les fonctions

$$f: \left\{ \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & x^3 - x + 2 \end{array} \right. \qquad g: \left\{ \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & x^2 - 4 \end{array} \right.$$

Calculer $f \circ g$, $g \circ f$ ainsi que la fonction

$$fg: \left\{ \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & f(x)g(x) \end{array} \right.$$

Exercice 11 Une fonction $f: \mathbb{R} \to \mathbb{R}$ est dite paire si f(-x) = f(x) pour tout $x \in \mathbb{R}$, et impaire si f(-x) = -f(x) pour tout $x \in \mathbb{R}$. On définit la fonction s par

$$s: \left\{ \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & -x \end{array} \right.$$

3

- 1. Exhiber une fonction paire mais pas impaire, puis une fonction impaire mais pas paire.
- 2. Existe-t-il des fonctions qui ne sont ni paires ni impaires?
- 3. Trouver toutes les fonctions qui sont à la fois paires et impaires.
- 4. Montrer qu'une fonction $f: \mathbb{R} \to \mathbb{R}$ est paire ssi $f \circ s = f$.
- 5. Montrer qu'une fonction $f: \mathbb{R} \to \mathbb{R}$ est impaire ssi $f \circ s = s \circ f$.

6. Si f est une fonction quelconque, que dire des fonctions

$$x \mapsto \frac{f(x) + f(-x)}{2}, \quad x \mapsto \frac{f(x) - f(-x)}{2}$$
?

7. Montrer que toute fonction f s'écrit de manière unique comme la somme d'une fonction paire et d'une fonction impaire.

Exercice 12 Expliciter $f(]0,1[), f([1,2[), f([-3,-2]), f^{-1}(]0,1[), f^{-1}([1,2[),f^{-1}([-3,-1]),f^{-1}([-\frac{1}{2},3]))$ pour chacune des fonctions $f: \mathbb{R} \to \mathbb{R}$ suivantes

1)
$$f: x \mapsto x^2$$
 2) $f: x \mapsto e^x$ 3) $f: x \mapsto \frac{1}{1+x^2}$ 4) $f: x \mapsto \sin x$

Exercice 13 extrait examen 2008

- 1. Etant donnée une application f de E vers F, rappeler les définitions mathématiques de f injective et f surjective, puis exprimer que f n'est pas injective, et enfin que f n'est pas surjective. En déduire la définition mathématique de : f n'est pas bijective.
- 2. On considère l'application f définie par :

$$f: \mathbb{R} \setminus \{-2\} \mapsto \mathbb{R}$$

$$x \mapsto \frac{x+1}{x+2}$$

- Démontrer que f est injective.
- Combien l'équation f(x) = 1 a-t-elle de solution? En déduire que f n'est pas surjective.
- Soit g l'application définie par

$$g: \mathbb{R} \setminus \{-2\} \mapsto \mathbb{R} \setminus \{1\}$$

$$x+1$$

Justifier que q est bijective et déterminer sa bijection réciproque.

Exercice 14 extrait DS 2010

- 1. Étudier la fonction $g(x) = \sin^2(x)$ définie sur $[-\pi, 2\pi]$ et tracer son graphe.
- 2. Rappelez la définition des ensembles $g([\pi/4, 3\pi/4])$ et $g^{-1}([-1/2, 1/2])$ et les déterminer l'aide du graphe.

Exercice 15 extrait DS 2010 (pour information)

Soient X et X' deux ensembles et f une application de X vers X'. Pour tout $A \subset X$, $A' \subset X'$, :

- 1. montrer que $f^{-1}(A'^c) = f^{-1}(A')^c$.
- 2. Que peut-on dire de $f(A^c)$ et $f(A)^c$? (Indic. On dessinera des contres exemples aux deux inclusions.)

4