Examen de la seconde session : Jeudi 26 Mai 2014

Durée : 2 heures.

Documents interdits. Calculatrices autorisées.

Téléphones portables interdits.

Les tables nécessaires se trouvent à la fin du sujet.

Le barème est donné a titre indicatif. L'énoncé comporte quatre pages.

Exercice 1 : Questions de cours (2 points).

- 1. Rappeler la formule des probabilités composées de Bayes.
- 2. Rappeler la définition de la loi de Poisson.

Exercice 2: Erreurs de transmission (4 pts).

Les bits (0 ou 1) transmis par une longue fibre optique peuvent évenutellement être modifié durant le trajet (un 0 devenir un 1 et réciproquement), avec une probabilité de 20%. L'opérateur de la ligne trouve ce taux d'erreur trop élevé et décide de tripler tous les bits : il va transmettre 000 pour 0 et 111 pour 1. A l'arrivée, le récepteur décode le signal avec la règle de la majorité : si parmi les trois bits, il y a plus de 0, le recepteur considère que c'est un 0, et ce sera un 1 dans le cas contraire.

- 1. L'opérateur transmet un 1 avec sa nouvelle méthode : c-à-d qu'il transmet 111. On note X le nombre de 1 obtenu au niveau du récepteur. Quelle est la loi de X? Quelle est la probabilité de recevoir 2 un et 1 zéro?
- 2. Calculer la nouvelle probabilité d'erreur.
- 3. L'opérateur n'est toujours pas satisfait. Il souhaiterait un taux d'erreur inférieur à 5%. Combien de fois doit-il dupliquer chaque bit pour satisfaire cette exigence?

Exercice 3 : Publicité pour des farces et attrapes (8 points).

Un vendeur de farces et attrapes se lance dans la vente sur Internet. Pour se faire connaître, il convaint son ami, auteur d'un blog humoristique très suivi de mettre un lien publicitaire sur son blog. Mais la publicité n'a guère d'effet. En étudiant ses bases de données, son ami observe qu'un visiteur du blog a un chance sur 10000 de cliquer sur le lien publicitaire.

On note X le nombre de personnes qui clique sur la publicité pour $100\,000$ visites. C'est une variable qui dépend des visiteurs considérés, et que l'on supposera donc aléatoire.

- 1. Quelle est la vraie loi de X? Donner son espérance et sa variance.
- 2. Quelle approximation peut-on utiliser pour la loi de X? Donner l'espérance et la variance si on utilise cette approximation.
- 3. Utiliser l'approximation pour calculer $P(X \leq 4)$.

Le vendeur décide d'améliorer sa publicité. Il remplace l'image fixe par une image qui clignote très vite. L'efficacité augmente. Maintenant, les visiteurs du blog ont une chance sur 5 de cliquer sur sa publicité.

On note Y le nombre de personnes qui cliquent sur la nouvelle publicité pour 1000 visites. C'est une variable qui dépend des visiteurs considérés, et que l'on supposera donc aléatoire.

- 4. Quelle est la vraie loi de Y? Donner son espérance et sa variance.
- 5. Quelle approximation peut-on utiliser pour la loi de Y? Donner l'espérance et la variance si on utilise cette approximation.

Pour l'instant son site web est configuré pour bien fonctionner tant que $Y \leq 220$. Or il voudrait que celui-ci ne plante pas dans plus de 95% des cas.

- 6. En utilisant la loi approchée de Y, calculer la probabilité $P(Y \ge 220)$.
- 7. Le marchand devrait-il changer son serveur?
- 8. Quel est la valeur de z_0 pour laquelle $P(Z \ge z_0) = 95\%$?

Exercice 4: Tests sur une éolienne (6 points).

Avant d'installer une éolienne près de sa ferme, un paysan décide d'étudier la force du vent. Durant une année, il effectue 37 mesures à des dates choisies aléatoirement et trouve 18 fois une vitesse du vent supérieure à 30 km/h. N'ayant jamais suivi de cours de statistique, il en conclut que le vent souffle à plus de 30 km/h exactement 48,6% du temps.

- 1. Expliquer pourquoi le propriétaire ne devrait pas donner une valeur exacte.
- 2. Donner l'intervalle de confiance à 95% associé à cet échantillon de mesures.

De cette série de mesure, il conclut que la force du vent est suffisante pour installer une éolienne. Un an après l'installation, il a l'impression que les vaches de son troupeau sont plus souvent malades depuis l'installation de l'éolienne. Après observations et en cherchant dans ses archives, il fabrique le tableau suivant :

Eolienne Santé des vaches	Avant construction	Après construction	
Saine	38	33	
Malade	6	9	

Pour savoir si la santé des vaches est liée à la construction de l'éolienne, il décide de faire un test du χ^2 d'indépendance à partir de ce tableau.

On rapelle que pour faire ce test, la variable pivot est

$$Z = \sum_{i} \sum_{j} \frac{\left(N_{i,j}^{obs} - N_{i,j}^{th}\right)^{2}}{N_{i,j}^{th}},$$

ou les effectifs théoriques se calculent par $N_{i,j}^{th} = \frac{\text{Total ligne} \times \text{Total colonne}}{\text{Total global}}$.

- 1. Effectuer le test du χ^2 d'indépendance avec un seuil d'erreur de 5%.
- 2. Peut-on en déduire l'existence d'un lien entre maladie des vaches et présence de l'éolienne?
- 3. Quel aurait été le résultat si on avait choisit un seuil d'erreur de 1%?

Table du χ^2

ν	60.0%	66.7%	75.0%	80.0%	87.5%	90.0%	95.0%	97.5%	99.0%	99.5%	99.9%
1	0.708	0.936	1.323	1.642	2.354	2.706	3.841	5.024	6.635	7.879	10.828
2	1.833	2.197	2.773	3.219	4.159	4.605	5.991	7.378	9.210	10.597	13.816
3	2.946	3.405	4.108	4.642	5.739	6.251	7.815	9.348	11.345	12.838	16.266
4	4.045	4.579	5.385	5.989	7.214	7.779	9.488	11.143	13.277	14.860	18.467
5	5.132	5.730	6.626	7.289	8.625	9.236	11.070	12.833	15.086	16.750	20.515
6	6.211	6.867	7.841	8.558	9.992	10.645	12.592	14.449	16.812	18.548	22.458
7	7.283	7.992	9.037	9.803	11.326	12.017	14.067	16.013	18.475	20.278	24.322
8	8.351	9.107	10.219	11.030	12.636	13.362	15.507	17.535	20.090	21.955	26.125
9	9.414	10.215	11.389	12.242	13.926	14.684	16.919	19.023	21.666	23.589	27.877
10	10.473	11.317	12.549	13.442	15.198	15.987	18.307	20.483	23.209	25.188	29.588
11	11.530	12.414	13.701	14.631	16.457	17.275	19.675	21.920	24.725	26.757	31.264
12	12.584	13.506	14.845	15.812	17.703	18.549	21.026	23.337	26.217	28.300	32.910
13	13.636	14.595	15.984	16.985	18.939	19.812	22.362	24.736	27.688	29.819	34.528
14	14.685	15.680	17.117	18.151	20.166	21.064	23.685	26.119	29.141	31.319	36.123
15	15.733	16.761	18.245	19.311	21.384	22.307	24.996	27.488	30.578	32.801	37.697
16	16.780	17.840	19.369	20.465	22.595	23.542	26.296	28.845	32.000	34.267	39.252
17	17.824	18.917	20.489	21.615	23.799	24.769	27.587	30.191	33.409	35.718	40.790
18	18.868	19.991	21.605	22.760	24.997	25.989	28.869	31.526	34.805	37.156	42.312
19	19.910	21.063	22.718	23.900	26.189	27.204	30.144	32.852	36.191	38.582	43.820
_20	20.951	22.133	23.828	25.038	27.376	28.412	31.410	34.170	37.566	39.997	45.315

 $\nu \text{ désigne le nombre de degré de liberté}.$ Exemple : si Z suit la loi du χ^2 à 6 degrés de libertés, on lit par exemple dans le tableau que $P(Z \le 9,992) = 87,5\%.$

Fonction de distribution cumulée de la loi $\mathcal{N}(0,1)$.

							100 101 0	, ,		
x	0.00	0.01	0.02	0.03	0.04		0.06	0.07		0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7703	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998
3.5	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998
3.6	0.9998	0.9998	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.7	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.8	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.9	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

On lit dans ce tableau sur la seconde ligne, quatrième colonne : $\mathbb{P}(Z \le 0, 13) = 0,5517$, où Z est une variable de loi normale centrée réduite.