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The Stationary Boltzmann Equation in the Slab with
Given Weighted Mass for Hard and Soft Forces

LEIF ARKERYD - ANNE NOURI

Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)
Vol. XXVII (1998),

Abstract. The stationary Boltzmann equation for hard and soft forces is considered
in the slab. An L 1 existence theorem is proven in a given indata context with fixed
total weighted mass. In the proof a new direct approach is introduced, which uses
a certain coupling between mass and boundary flow. Compactness properties are
extracted from entropy production estimates and from the boundary behaviour.

Mathematics Subject Classification (1991): 76P05.

1. - Introduction

Consider the stationary Boltzmann equation in the slab,

The nonnegative function f (x, v) represents the density of a rarefied gas at

position x and velocity v. The collision operator Q is the classical Boltzmann
operator

where Q+ - Q- is the splitting into gain and loss terms,

The velocity component in the x-direction is denoted by ~, and (v - v*, w)
denotes the Euclidean inner product in JR3. Let w be represented by the polar

Pervenuto alla Redazione il 26 maggio 1998 e in forma definitiva il 5 ottobre 1998.
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angle (with polar axis along v - v*) and the azimuthal angle 0 - The function
B(v - v*, w) is the collision kernel of the collision operator Q, and is taken as
I with

Given positive indata fb bounded away from zero on compacts and a constant
M &#x3E; 0, solutions f to (o.1 ) are studied with

for some constant k &#x3E; 0. The constant k is determined from the value M of
the 13-norm (1.2).

For a general introduction to the Boltzmann equation and the problem area
see [5], [6]. We refer to [3] for a review about earlier results concerning the
linearized Boltzmann equation as well as the non-linear Boltzmann equation in
specific cases like close to equilibrium, small domains etc..

The existence of L 1 solutions to the stationary Boltzmann equation in a
slab for maxwellian and hard forces was the main result in [3]. The approach in
that paper starts by a classical transformation of the space variable resulting in a
homogeneous equation of degree one, compatible with the boundary conditions.
That transformation is not well adapted for generalizations to several space
variables in the Boltzmann equation case. To avoid it, in the present paper
an alternative straightforward approach is taken, which here delivers existence
results for maxwellian and hard forces as in [3]. The new approach is also
well suited to the mild solution concept used for soft forces, and this paper
includes the first general existence proof for the nonlinear stationary Boltzmann
equation with soft forces in a slab. The weighted mass is kept constant during
the whole sequence of approximations. The constancy of the weighted mass is
important for connecting the distribution function inside the slab to its values
on the boundary via the exponential form of the equation.

We have chosen to present our approach in [3] for the case of boundary
conditions of diffuse reflection type, and in this paper for given indata bound-
ary conditions, but both approaches can be used for both types of boundary
conditions. Those parts of the proofs that rely on the boundary behaviour can
with advantage be treated differently depending on the boundary conditions, the
present given indata paper containing a number of simplifications in compari-
son with the diffuse reflection paper [3]. In both papers all results hold with

analogous proofs when the velocities v are in 2. Also a number of

generalizations of B can be analyzed straightforwardly by the same approach
(see [3] for more details). As for the multiplicative constants appearing in

the boundary values (1.3), they are proven to belong to a compact subset of
f k E &#x3E; 01. Here and in several other proofs of this paper, the boundedness
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of the entropy production term and of the second in the

slab direction play an important role. Similar arguments have earlier been used
in [1] ] for deriving a compactness lemma in weak L ~ 1 as well as an existence
theorem for an L 1 solution of the stationary Boltzmann equation in Z~ 1 under
a truncation for small velocities.

Denote the collision frequency by

Assuming that Q+(f,f) E 1 Q (f,f) E 1 , the exponential, mild andAssuming that 1 + j e 9 e the exponential, mild and
weak solution concepts in the stationary context ( 1.1-3 ) can be formulated as
follows.

DEFINITION 1.1. f is an exponential solution to the stationary Boltzmann
problem ( 1.1-3 ) with f3-norm M, if f e 1 ) x I1~3 ) , v E 1 ) x
~3), I v ~ v) dx d v = M, and there is a constant k &#x3E; 0 such that
for almost all v 

DEFINITION 1.2. f is a mild solution to the stationary Boltzmann prob-
lem (1.1-3) with 13-norm M, if f E 1) x JR3), f (I+ I v 1)0 f (x, v)
dx d v = M, and there is a constant k &#x3E; 0 such that for almost all v in JR3,

Here the integrals for Q+ and Q- are assumed to exist separately.
DEFINITION 1.3. f is a weak solution of the stationary Boltzmann prob-

lem (1.1-3) with f3-norm M, if f E Ll loc ((-1, 1) x R 3), I v f (x, v)
dx d v = M, and there is a constant k &#x3E; 0 such that
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for every w E x JR3) with supp~ C [-1, 1] x {v E R3; |03BE| &#x3E; 8 ) for
some 5 &#x3E; 0 and ~o vanishing on {(-1, v); ~  01 U {(1, v); ~ &#x3E; 01. In (1.4) the
integrals for Q+ and for Q- are assumed to exist separately.

REMARK. This weak form is somewhat stronger than the mild and expo-
nential ones.

Suppose

The main result of this paper is the proof by a direct method of the following
theorems.

THEOREM 1.1. Given ~8 with 0  ~B  2, indata fb satisfying (1.5), and M &#x3E; 0,
there is a weak solution to the stationary problem ( 1.1 - 3) with f3-norm M.

THEOREM 1.2. with -3  f3  0, indata fb satisfying (1.5), and
M &#x3E; 0, there is a mild solution to the stationary problem (1.1 - 3) with 13-norm M.

In Section 2 approximate solutions are obtained for this existence problem.
Based on those approximate solutions, Theorem 1.1 is proven in Section 3, and
Theorem 1.2 in Section 4.

Starting from the slab solutions, results on the small mean free path limit
and the half-space problem can be obtained. Such questions, however, are left
for a following paper [4].

2. - Approximations with fixed total mass.

The first approximation below of ( 1.1-3) is of the same type as in the
Povzner paper [2] and in the transform based paper on the Boltzmann equation
in a slab [3]. In contrast to those papers, here the approximation is carried
out directly on the quadratic collision operator. Its main characteristics are

truncations bounding domains of integration and integrands in the collision

operators. Necessary compactness properties are inserted "by hand" through
convolution with mollifiers. Solutions are obtained via strong L 

1 fixed point
techniques. We give the main steps and refer to [3] for easily adaptable details.

For convenience, take M = 1 and in this and the following section 0 
13  2. With N* := N B e l~*, m e N*, n e N*, 1 &#x3E; 0, r &#x3E; 0, J1- &#x3E; 0, and
a e]0, 1 [, define the map T on the closed and convex subset of L 1 ( [ -1, 1] x R)
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by

where F is the solution to

The function v*, w) is invariant under the collision transformation defined
by J (v, v*, to) = (v’, v’, -w), invariant under an exchange of v and v*, and
satisfies X’ E Coo, 0  1,

is a positive Coo function approximating min(B, when

The functions ~pl are mollifiers in the x-variable defined by CPl (x) := lcp(lx),
where

Notice that by the XI-truncation
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and that by the exponential form

Here c* &#x3E; 2 depends only on JL and r, since for f E K

Analogously

À is defined by

so that, by the above estimates of F from below by ingoing boundary values,

With then (for j large) and I I ft - fb 
Notice that c* can be taken so that for r, it fixed, h decreases when n is

increasing, with the infimum Ài strictly positive. Denote by k, the corresponding
value of h for n = 1. Following the lines of the proofs in Section 2 of [3], one
can show that the map T is continuous and compact in K with the strong L 

1

topology. By the Schauder fixed point theorem, there are integrable functions f
and F, solutions to
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with

i.e.

Let us pass to the limit when I - oo. Again as in Section 2 of [3] the gain
terms in (2.2-3) are strongly compact in By the exponential form of F and
using the truncation of the collision operator by XT,

so that

. 

Multiplying (2.3) by 1 and integrating it on (-1, 1) x R3 implies that

Hence k belongs to some interval [k*,1 ], with k* independent of j, m, n, l ,
and a, and so as above strong compactness in L 1 x [k*, 1] can be used to get
a non trivial limit in (2.2-3) when I - +cxJ. The passage to the limit when
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a tends to zero is performed analogously. So there are functions f j and FJ
solutions to

with

By the exponential form of (2.4), and (2.5),

Hence
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uniformly with respect to j. Multiply (2.4) by fj - + 1, and notice thatuniformly with respect to j . Multiply (2-4) by log -f- I I and notice that

Here f j) is the non-negative term defined by

Moreover,
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so that

Hence for all j

As in [3], it follows from here that is weakly compact in L 1, that we can
pass to the limit in (2.4) when m = ~ , j -~ oo, and that the entropy production
term in the limit is bounded uniformly with respect to n. The passage to the limit
when n -~ oo is performed via weak L 1 compactness arguments. The uniform
boundedness from above is there used to obtain weak L 1

compactness of (Q-(fn, fn)) from the weak L 1 compactness of ( f n ) . And
the weak L 1 compactness of (Q+(fn, fn)) is then obtained from the weak L 1

compactness of (Q-(fn, fn)) together with the boundedness of the entropy
production term. So there is a solution F’," = w lim f n to

for some constant with 0  Às.
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3. - The slab solution for 0  13  2.

For proving the existence Theorem 1.1, it remains to pass to the limit
in (2.6) when r tends to zero and it tends to infinity.

LEMMA 3.1. There are c &#x3E; 0, c &#x3E; 0, and for 8 &#x3E; 0 constants cs &#x3E; 0 and

~3 &#x3E; 0, such that

PROOF OF LEMMA 3.1. In the first inequality, the left-hand side is a constant
of the motion, so it is enough to consider x = -1. But there the inequality
follows from Green’s formula 2. By the exponential form
of (2.6) and using ingoing boundary values,

Similarly using outgoing boundary values,
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LEMMA 3.2.

PROOF OF LEMMA 3.2. It follows from Lemma 3.1 that

so that

and

It follows by Lemma 3.2 that the entropy dissipation for is bounded by
cekr,,, where Ce is independent of r and JL.

LEMMA 3.3. If 0  f3  2 in the collision kernel B, then

PROOF OF LEMMA 3.3. Let us prove Lemma 3.3 by contradiction.
If ii k = 0, there are sequences (rj) and with = 0
and limj,,,,, /J.tj = such that kj := kri I - tends to zero when j tends to
infinity. But that leads to the following contradiction with the entropy dissipation
bound cekr,JL. Denote by Fj := Fri’Ai. Write v = (~, 17, ~) and p = + ~2.
By Lemma 3.1

Again by Lemma 3.1, there is a constant c independent of j and x, such that

For these v* and for v with |03BE  p a h » 10, we can for some c" &#x3E; 0,
take a set of cv E S2 depending on x, v, v* of measure c", so that
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Denote by Bi := xrj min(/Lj, B) and by Fix E « 1 and take I 03BE I:::: rj.kJ
For these x, v, V*, úJ, rj, ltj, and for L &#x3E; 2,

Consequently,

for L large enough and a suitable À(L). In the same way

Similarly for p  À,

for j large enough. Finally there exists jo, such that

for j &#x3E; jo, since kj  ko and = 0. And so, if kj - 0, then
for j large enough,

This contradiction implies that li &#x3E; 0. 1:1

We may now choose rl, and kl, so that kl   ko for 0  r  ri,

A :::: AO.

LEMMA 3.4. For 8 &#x3E; 0, the family is weakly precompact in

~?~,~v~~ s)).
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PROOF OF LEMMA 3.4. From Lemma 3.1 it follows that for any 8 &#x3E; 0,

and

PROOF OF THEOREM 1.1. Denote by F~ = = kri I iii * Let 
be a converging sequence, where 

(or ~c~ = ~ 1100 in the pseudo-maxwellian case). By Lemma 3.4
there is a subsequence, still denoted (F~ ) with F in weak

1 ] x { v e JR3; I ~ I ? 8, I v I ~ s } ) for all 8 &#x3E; 0. In order to prove
have the we

first prove the three following lemmas.

LEMMA 3.5.

Here := 1)f3).
PROOF OF LEMMA 3.5. By the exponential form, there is c &#x3E; 0, such that



547

By the exponential estimate (3.1),

and by analogous estimates from below

For some c &#x3E; 0, c" &#x3E; 0, for all p &#x3E; 100 and for half of the v* as above

(depending on v), there is a (v, v*)-dependent set of cv E S2 of measure c",
where independently of j, x,

If the lemma does not hold, then there are q &#x3E; 0 and a subsequence, still denoted
. - - 

__ _, cj _ IQc(FJ ), such that for each there is S j c (-1, 1 ) with ! |n/4je and

Then

loc

It follows that, for k = e 17

It follows for j large, that at least half the value of the integral over Sj comes
from
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Here at least half the integral comes from the set of (x, v ) with v ) &#x3E; c 1 j .
For each v such that v) &#x3E; ci j, let

By Lemmas 3.1 and 3.3, Fj(x, v*) &#x3E; c, v* E V*. Then, from the geometry of
the velocities involved, and from v)d v  c, for some c" &#x3E; 0, given
v it holds for v* in a subset of V* of measure (say) and for (0 E S2 in a2

(v, v*)-dependent subset of measure c", that

It follows that, for some c &#x3E; 0 independent of such v, v* E V*, w and for j
large,

And so using the entropy dissipation estimate,

for j large. The lemma follows from this contradiction. r-i

LEMMA 3.6. Given 17 &#x3E; 0, there is jo such that for j &#x3E; jo and outside a
j -dependent set in x of measure less than 17,

uniformly with respect to x and j.

PROOF OF LEMMA 3.6. It follows from the geometry of the velocities in-
volved, and from the inequality

that for some c" &#x3E; 0, for each (v, v*) with p &#x3E; ~, » 10, and v* in a suitable
subset (depending on v) of
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and of measure exceeding 1 1 V~, 1, there is a (v, v*)-dependent subset of w E ,S2
with measure c", such that

Moreover, Fj(x, v*) &#x3E; c, for ~ 1 £* ]a I v* ~ 10 with c independent of j.
Hence rj,

Multiplying (2.6) by log FJ + 1 and integrating it on (-1, 1) x R 3 implies thatJ

outside of a set S! C [-1, 1 ] of measure 17. Let us integrate this inequality on
the above set of (v, v*, w), obtaining

by (3.2). K may be chosen so that is small, and then À so that ~2K~ is

small, which implies that v)dv tends to zero uniformly outside of
a j -dependent set of measure bounded by yy. D

LEMMA 3.7. &#x3E; 0 &#x3E; 0, there is jo such that for j &#x3E; jo and
outside a j -dependent set in x of measure less than E,

tends to zero when i ---&#x3E;. -I-oo, uniformly with respect to x and j.
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PROOF OF LEMMA 3.7. Given 0  q « 1 and x, j, either

or

In the latter case

and

. 2
For each (x, v ) such that v ) &#x3E; ’72 i, take v* in

Then Fj (x, v*) ? c &#x3E; 0 for v E V*, and with c independent of j. For some

c" &#x3E; 0, given v with ~ ~ ~ &#x3E; rj, we may take v* in a half volume of V* and (0
in a subset of S2 of measure c", so that

with c independent of j. Hence, for such x, v, v* and to,

Since there is c’ &#x3E; 0 such that, uniformly with respect to j, the integral

is bounded by c’ outside of a j -dependent set S~ of measure E in x, it follows

that for x E SjC,

for i large enough.
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END OF THE PROOF OF THEOREM 1.1. It follows from Lemma 3.1 and
Lemma 3.5 that the sequence of functions of the variable x

is weakly compact in 1]). Moreover,

and the sequences (F~ ( 1, v)) J E~* and (F~ (-1, v))~ E~* are respectively weakly
compact in

and

Hence is weakly compact in 1 ] x { v E JR3; 1 v !: ~J I
~ ( &#x3E; 8 {) . It is a consequence of the weak L 1 compactness of 
and the boundedness of Fj))jEN*, that (Qj(Fj, is weakly com-

pact in 1 ] x { v E R3; 1 V I~ !, I ~ !~ S } ) . This together with Lemma 3.1
implies a (subsequence) limit when j - oo in the weak form of equation (2.6)
for any test function cp with compact support and vanishing for ] %  8 for
some 8 &#x3E; 0. Using the weak L1 1 compactness of (F~ ), and
Lemma 3.6-7, we may conclude (cf [7]) that F satisfies the weak form of our
boundary value problem (1.1-3) for such functions cp, and that F has 13-norm
equal to M in the hard force case. That in turn implies that F is a mild
solution. On the other hand, the integrability properties of Q~ (F, F) satisfied
by the above weak solutions are stronger than what is required from a mild
solution. D

4. - The slab solution for -3  13  0.

Let us consider the approximate solution F4 of the bounded B, case (2.6)
for B, = max ( ~ , min(B, p)). The bounds from above and below in Sec-

tion 3 still hold with similar proofs.
LEMMA 4.1. The family is weakly compact in 1] x {v E

II~3;~v~s,~~~&#x3E;S{),for8&#x3E;0.
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PROOF OF LEMMA 4.1. Given M &#x3E; 0 and B,~, the proof of the previous two
sections imply that there is a solution F JL satisfying

for all 03BC &#x3E; 1. Here = (1+ I v 1) 03B2)). And so, uniformly
with respect 

"

So, given E &#x3E; 0  i, outside of a set C { v E R 3; 1 V _ 11 with
measure I VIB (  E, it holds that

By the exponential form, for V43,

Outside of some set V~s c f v e I:s i, I ~ (g 3) with ~ I V~s ~  E, the

functions F~ ( 1, v) and F~ (-1, v) are bounded by a constant independent of
~. Hence the family satisfies an equiintegrability type condition with

respect to [-1, 1 ] x { v e V~s n V~s ; ~ v ~ !~ ~, ! ~ I &#x3E; 8}. It remains to obtain

this, also with respect to VJL8 U V~s . Since

it is enough to prove that, given 77, 1 &#x3E; 0, there exists q2 &#x3E; 0 such that

uniformly for I A ! r~2, A C { v e JR3; I ~ I ? ~ , I v Is ~}. If this

latter criterium does not hold, then there is a constant qi , a sequence (03BCj ) with
limj-+oo 03BCj = +00 and a sequence of subsets (Aj) of { v e JR3; I v |1/03B4|03BE &#x3E; 8 {,
with measure ! I A j  3 , J such that
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Then

By the exponential form, uniformly in it &#x3E; po,

Also there is a constant c &#x3E; 0 and a set Wj equal

such that

For some c" &#x3E; 0, for any (x, v ) E ( -1, 1) x Aj such that v ) &#x3E; 

and any v* E Wj n  11 6 but outside a v-dependent set of measure (say)
one, there is a subset of S2 with measure c", such that

Consequently for some ( j -independent) co &#x3E; 0 and the above ( j -dependent) x,
v, V*, W,

There is a constant c 1, independent of x and j, such that

There is a constant C2 independent of j, such that outside a j -dependent set 1j
of measure bounded by -~-,C1 ,

And so
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, n1j3Here /1 is the integral over the subset where 1Jiö ’ /2 is the integral over
1j x Aj, and /3 is the remaining integral. Hence ,

which leads to a contradiction for j large enough. This ends the proof of
Lemma 4.1. 0

PROOF OF THEOREM 1.2. It follows from Lemma 4.1 that there is a sequence
converging weakly to some F in E v ~  s , ~ ~ ~ &#x3E; b 1),

for any 8 &#x3E; 0. From here with minor adaptations in the arguments, Lemma 3.7
from the hard force case holds, and Lemma 3.6 holds if is replaced
by As for Lemma 3.5, the following is a proof in the case of
soft forces. Since 1 and

it holds that

Recall that

for all j. And so, uniformly with respect to j,

So, given E &#x3E; 0, for i, outside of a set  11 with
measure I g5 ! E, it holds that

By the exponential estimates,

From here the conclusion of Lemma 3.5 in the soft force case follows similarly
to the proof of Lemma 3.5 for hard forces.
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With the help of Lemma 3.5-7, we shall next prove that the family of loss
terms in renormalized form, is weakly compact in the space 1 ] x { v E

 1, 1 ~ 1&#x3E; 31). It is enough to prove the weak L 
1 
compactness of

FJ-lj (x, v*)d v*. This integral can be split into the sum of four
terms, 

-

Let c &#x3E; 0, ’I &#x3E; 0 be given. By (4.1) and Lemma 3.6,  t outside a subset
of [-1, 1] of measure q, when is large enough. Next, given X, by
Lemma 3.7, 

_

in the sense of Lemma 3.7. Hence, given il &#x3E; 0, the quantities X and i
can be chosen so that outside of a subset of [-1, 1 ] of measure 71, the terms

Il ’ , I2’  4 , uniformly in it for It large. Also,

So for i given, (4.2) tends to zero when k tends to infinity, uniformly with
respect to Hence k can be chosen large enough so that  03B5/4,41
uniformly with respect to it. Finally

so that, by the uniform boundedness from above of * F4j (x, v*)d v*, (I4’ ) is
weakly compact in 1 ] x { v E JR 3; I v !~ ~ ! ~ I &#x3E; ~}). Using the above
estimates of = 1,..., 4 together with Lemma 3.5, the weak compactness of
the loss terms in renormalized form follows from here. By a classical argument
using the uniform boundedness of the entropy production terms, it then follows

that also the family of gain terms in renormalized form is weakly compact in
Z~([-l, 1] x { v E JR3; I v !~ ~ ! I ~ I &#x3E; 3 1). From here, the argument in [7] for
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the time-dependent problem can be used to prove that F satisfies the mild form
of the stationary problem (1.1-3). D

REMARK. In the there are slightly stronger solutions to
(1.1-3) with f3-norm M, namely in the sense of (1.4) where now

This can be proved using the ideas of the above proof of mild solutions.
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