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A Cauchy Inequality for the Boltzmann Equation
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The distance to a set of Maxwellians is determined for a family of functions with bounded mass, energy and
a small entropy production term. Functions with small masses are close to the null Maxwellian. Functions
with masses bounded from below by a constant are approached by functions proportional to the gain term
of the Boltzmann operator, taking advantage of its regularity. For these regularizations, the integrands of
the entropy production term are small everywhere. Hence classical arguments can be used to obtain the
closedness to the set of Maxwellians. Copyright © 2000 John Wiley & Sons, Ltd.

1. Introduction

In kinetic theory for rarefied gas dynamics, described by the Boltzmann equation,
the entropy production term is

- | otsog fwrae

I
1

where Q(f,f) is the collision operator and B a collision kernel. Here, £, f,, f* and
f+ denote, respectively,

[=1W), fo=f), [=10), fi:= [

where v and v, are the precollisional velocities, and v" and v}, the postcollisional
velocities, given by

_ f Blo — valo) (ffy —f'f)log 2% dodu, dw, (L.1)
R3 x R3 x §2

V'=0v—(v— 0, 0o, Vi = Uy + (0 — Uy, W)O.

The entropy production term is equal to zero if and only if f is a Maxwellian. In
some circumstances, like the asymptotics for infinite times or hydrodynamic limits
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562 A. Nouri

of solutions to the Boltzmann equation, (1.1) is known to be small, so that its
integrand

|f S = 114l
is small outside of an arbitrarily small set in (v, v, ). The purpose of this paper is to
show that f'will then be close to a Maxwellian outside of an arbitrarily small set. Since
previous results on functional stability in several variables [6] cannot be applied

straightforwardly, a specific study is required and performed here. More precisely, for
a family F of functions f satisfying

Jf(1+|v|“+|10gf|)dv<cl (1.2)

for some constant « > 1, as well as the smallness of the associated entropy production
terms, its uniform closedness with respect to a family of Maxwellians is established.
This result has already been stated and proven in the frame of non-standard analysis
[17. In the present paper, it is proven by approaching the distribution function f by
a function proportional to the gain term of the Boltzmann operator and taking
advantage of the regularity of the gain term [7]. It implies previous results on lower
bounds of the entropy dissipation term

J f,.l Nog f=mldv < cfQ(f,f)logf(u)du

for some negative constant ¢ [5, 10]. There, the supplementary condition on f to be
far from vacuum, i.e.

J() = Ag, [v|<R

is required. Maxwellian lower bounds for solutions to the homogeneous Boltzmann
equation are proven in [4, 8]. However, the condition of being far from vacuum is
difficult to obtain in a non-homogeneous context, as soon as infinite times or
hydrodynamic limits are involved. Indeed, in the evolutionary setting, the estimate for
a lower bound on the distribution function obtained from the initial data vanishes for
infinite times, whereas in the setting of hydrodynamic limits, the lower bound on
f obtained from the boundary conditions vanishes with the mean free path.

This result is used in the study of the Milne problem and the hydrodynamic limit of
solutions to the stationary Boltzmann equation when the mean free path tends to
zero [3].

2. Extension and regularization
Recall a result from [7].

Lemma 2.1. Let r, and s, be numbers smaller than § to be chosen later. Let B(r,0) be
a function in C§ ((0, o0) x (0, 7/2)) such that

B(r, 0) =0, ifrg%*orcos@<%*orcos@>1—%*,

Copyright © 2000 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci., 23, 561-574 (2000)



Cauchy Inequality for Boltzmann Equation
B(r,0)=1, ifr=r, and cos0 e[Sy, 1 — 8,1,
B(r,0)e[0,1] else.

Here 0 is defined by cos 0 = |[(v — vy, )|/|v — vy].
There is a constant ¢ such that for any functions fe L* and g € L,

H JB(IU — Uyl 0) f (V) g (vy) doy, de <c|fllelglp
HI(®RY)
For any r > 0, denote by
3 1 2
V.:=<veR’ |y <; , S, =V, xV. xS
Define

1:(0):= 1, Jv] <=, y.(v):=0, else.

™ | N

For any function g, define

o(g) (0):= J B(lo — 04, 0)g(0,) do doo

Vie % S?

563

Let ¢ > 0 be given. Let F, be a family of functions satisfying (1.2) as well as j fv)dv > e.

For any function fin the family F,, denote by

go'= \/J:: gr+1(0):=

1 ’ ’
o B = %) do

(2.1)

Lemma 2.2. Let K € N* be given. There is a number r, small enough and positive

constants (ix(€))o < x < x» Such that
v(g)©) = i), veV, k<K

Proof. By the definition of B,

R J S0, dv, do

[0 — vy =1y, co80€ 54,1 —s4]

\Y

o [ Ve~ [ i)

Then, by (1.2),

4
J fw)dv < ¢, J fv)dv < = me?, f
[o] > 1/e [o] < 1/e.f(v) <& 3

(2.2)

f(v) dU < CI'SZ’
ez
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so that, for ¢ small enough,

&
J flv)ydo > <.
o] < 1/, &% <f<ell” 2

Hence,
| Ve e f@)do > e
ol < 1/e lol < 1/, () < et 2
and so,
. (4 12 Z
v(go)(v) = 2n<; e /2 <3 nricl> > > gee‘l/%

for r,, small enough. Moreover, by the Cauchy-Schwartz inequality, v(g,) is bounded
in L.*. Hence g, is well defined, and

V(g () = C2J3(|U — 0y, 0) B(jvy — ul,)

X go (V' vy, t, W) go (Vi (v, us 1)) vy dpa du doo,

where

(v — u, )]

cos @ :=
vy — ul

>

Vivg ty W)=y — (0 — Wi, V(0o tt, )= u + (04 — u, .

By the change of variables (vy, u) — (V'(vy, u, ), Vi (v, u, 1)), it follows that

v(g1)(v) = 63JB(IU — V' (04 t, )|, @) B(Jvy — ul, 1) go (v4) go(u) dv, dew dudpu

2
=y [(JQO(U*)dU*> - J go(v4) go(u) dv, dw du
[0 — V' (vgout, )| < ryorcosO¢[sy,1 —s,]

Cyq 2
- |25 ([atvaaes)
[v, —ul <ryorcos@éls,l —s,]

for r, and s, small enough. The proof of (2.2) for k € [2, K] is analogous, once noticing
that the family of (g;) ;. r is weakly compact in L', by Lemma 2.1.

Theorem 2.3. Let ¢ > 0, K = 5 and a(d) a function such that lim;_, o a(d) = 0 be given.
There are functions (dy)o <« < x and (ex)s <« < x With

lim de(0) =0, lime,(3) = 0

0—0
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such that for every function f satisfying (1.2) and

Jf W)dv>e, and |ffi —f1i| <ald), (2.3)

outside of a set of measure a(d) in S, the functions (g;) defined by (2.1) belong to H(V,6)
and satisfy

IVI©) = o) < di(0),
outside of a subset of V, of measure d,(5). Moreover, for k > 5,

1940k, — Gicdk) <€),  (1.0,00) € Sy (24)
Remark. The second inequality in (2.3) implies that

NAENGEAIEVIZON (2.5)
outside of a set of measure a(d) in S,6. Indeed, either

JUF) + (1) < /Ta@)],
and then |\/(f£,) — /()] < /Ta(3)] holds. Or

UL+ ) = La@)],

and then

/ e 11
NI N A < J1a)].
Vi) =/ NEARAEINGA Via

Proof of Theorem 2.3. For any function f in the family, it follows from (1.2) and the
Cauchy-Schwartz inequality that

J gv)dv < ese™ 32, (2.6)
Vie

By assumption, there is a subset B, of S,;6, with meas(Bg) < a(d), such that

19090x — gogoul < /[(@)], (0,04, ) € Bo. 2.7

Hence,

fmvngo(v) — 1@)ldo < ay 6,

where a; is a function tending to zero when ¢ tends to zero. Indeed,

1
JXa(U)Kgo —g))|dv < — (X; + X, + X3)
io(e)
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with
Xi:= J 1e(V) 26 (V) 190905 — 90904 | dvdo, dw,
BO

X,:= J \ AeXexd 0904 dv dl)* dw, X3 = J XsXs*gbgb* dv dl)* do.

Bg Bg

First,

X, < %”3 <§>6 Jad).
Then, define

Q:= {w;meas {(¢v, v,); (v, vy, @) € B5 ) > \/[a(d)1}.
Then meas(Q) < +/a(), and, by (2.6),

X, < co/[ald)]e™3 + Y,
where

Y= J J 7:(0) 2:(04) gog o dv dvydo.
Q° J(0,04);(v,v4,0) € B§

For w € Q°, define
W, :={(v, v); (v, v, ®) € By}

Then meas (W,,) < ./a(d), and so,

Y< J J YeXexdogos dvdv, do
Q¢ J vimeas({v,: (v,v,) € W,,}) > a(d)'*

+ f J TeXexdogos dvdvy do.
Q° J v;meas({vy; (v, v,) € W,,}) < a(d)"/*

Since
meas ({v; meas ({v,; (v, v,) € W,,}) > a(d)''*}) < a(6)'*

and for any real number K,

1
| 0u(0)do < Ka(0)"* + 1 [ o gl
v;meas({vy; (v,0,) € W,}) > a(0)'/* InK
taking K = a(5)~ /8 leads to
J £g@)do < a(@)1’s +
vimeas({vy; (v,vy) € W,}) > a(0)'/* - |1n Cl(é) |
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and so,

8¢
Y < 4n( a(s)'® !
”(“( ) |1na(5)|>’

The term X5 can be handled analogously. Hence,

ng(v)l(go —g9)©)]dv < a,(9),

where lim;_,q a4(0) = 0. Consequently,

R(©) =1(g0 — 1)) < /a1 (9), (2.8)

outside of a subset W, of Vs of measure smaller than \/ a,(9). Moreover,

~3/2
< cqe 32,

L

HD"JB“U — Uy, 0) 2:(v4) g (v) dvy dow

so that, together with Lemma 2.1,
lgillm < cslio 267 + i *e™°).

Hence, by the Sobolev imbedding of H'(R?) in L*(R%) and the Cauchy-Schwartz
inequality, for any subset P of R3,

12
ng(wdvs( J g%(v)dv) P2 < eglig e + ig e %) P12, 29)
P P

and so,

JX&X&* |g1g1* - gllgll*|dl] dU*dCL)

< AeXex

J‘(v, V4o ) € Bon (W5 x W§ x S2);(v, ) € W x W§

x| + R) (95 + Ry) — (¢' + R) (9% + Ry)|dvdv, do

N oy
v Lilon 91914 + 1 61.) oo, doo
(v, v, w);veWiorv, e Wyorv' e Wyorv, e Wy

+ f YeXew | 91915 — 9191/ dv dv,do.
.

0

By (2.5), (2.6) and (2.8), the first term of the right-hand side in bounded from above by

(5] ) Vator + e + i
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By (2.9), the second term of the right-hand side is bounded from above by
crolip 2673 +ig *e~©)Y2ay(0)"*. By (2.9), the third term of the right-hand side is
bounded from above by a function tending to zero when 0 tends to zero. Hence,

JXSX&*'QIQI* — 91914/dvdv, do < by (d)

with lim;_, b;(d) = 0, and so,

191915 — 919715 < /[b1(8)] =dy(9),

outside of a set B{ of measure d,(6). The procedure used to construct g; can be
repeated from ¢, instead of g, and d; (0) instead of \/ 0. When repeated k times,
1 < k < K it leads to functions (g;); <« < x> such that

gk € H*, v(gi) (v) = ix(e),a.a. ve Vies
(g0 — g0 (V)| < di(9),
except on a set Bj of measure smaller than d,(d), and

9k Gix — GkGixe| < ar(0),

outside of a set of measure a,(d), with a,(d) tending to zero when d tends to zero.
Moreover, | gl g+ is bounded from above by a polynomial expression in || f | and
lgllL:, and so by a constant depending on ¢ and independent of the family of functions
f. Hence, by a Sobolev imbedding, there is for k > 5 a constant () such that

lgllw= < Zk(e).
Moreover, for any (v, v, ) € By, there is (9, 0, ®) € B, such that
o — 5] < di(0), [y — B < di*(0), | — @] < di*(0).

Expressing ¢ (v) = (9i(v) — gi(?)) + gi(D), ..., allows to bound |gygis — giGis| from
above by terms like

19(0) — gi(©) gi(v4) < IDGHloclv — v4llgil o, < 22 (2) di (),

that tend to zero when ¢ tends to zero.

Lemma 2.4. There are an integer k = 8 and a positive constant my, such that for every
Sfunction f satisfying (1.2), the associated function g, defined by (2.1) satisfies

gi() = my, ve V.

Proof. By Lemma 2.2 and Theorem 2.3, the function gg belongs to H® and satisfies
27TJ gs(vy)dvy, > ig(e), ve Vs,
lo— vyl =

Copyright © 2000 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci., 23, 561-574 (2000)
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and so, by the Lipschitz regularity of gg, there are a vector vy, a number R > 0 and
a constant c¢q(e) such that

gs(v) > cq11(e), v —vol < R.

Then

4o 0) f B(lo — v,,0)gs(¢")gs(¢l) vy, doo

" V(gs)(0)

> (nr(e) f Bllo — v,1,0)dv, deo

(Vs @)V — vo| < R,Jvf — vol <R
= c12(8), [0 —vol <R
The end of the proof of Lemma 2.4 will use the following lemma.

Lemma 2.5. There is a constant ¢q3 and, for each v satisfying

/10
|U—UO|E:|R,—R:|,

3
a subset S(v) of
{0 0) ER* xS v — vy | =1y, cOsOE[sy, 1 —s,]}
with |S(v)| = c¢y3, such that
[V —vo]l SR, | —vo| <R, (vy,w)e S(v)
End of the proof of Lemma 2.4. By Lemma 2.5,

>
[v(gs) .-

2
> ol <Y 0
Iv(gs) - 3

4o(0) f 95(0)gs () dv, doo
S(v)

Repeating the same procedure from go, a finite number of iterations leads to some
k = 8 and positive constant my, such that

giv) = my, ve V.

Proof of Lemma 2.5. Take v, = 0 for the sake of clarity. Denote by

e=1——.
l)2

Copyright © 2000 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci., 23, 561-574 (2000)
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Note that e € ]0,5]. In an orthonormal basis with v/|v| as third vector, let v — v, and
o be respectively parametrized by

v — v, = A(cosa cos f3, sino cos B, sinf), A >0,
@ = (COS A COS i, Sin A COS i, sin ).

Consider those v,, and w such that
Ge| 0.5, peuelo®
s M1 5 B 5 U 5 5 .

V2= —(v— v, oo <R?

Then,

is equivalent to

(v — vy 0)* — 2Jv| (sin ) (v — vy, W) + v2 — R? <0,

ie.

sin?pu > e
and

A(cos(oe — A)cos fcosu + sinfsinpu) = (v — vy, ®)

e [vl(sin p — /(sin? st — @)), lol (sin 1 + \/(sin® i — €)].
Moreover,

vZ =v— (@ —vy) + v — v, 0)o* < R?
is equivalent to
(v — vy )* — 20| (sin ) (v — vy, ) — A* + 2 || (sin f) A — (¥ — R?) =0,
which follows from the sufficient condition
A? —2v|(sin B) A + v* — R? + v?sin? u < 0.
This last inequality holds if and only if
sin? = sin*pu +e
and

A e [|v|(sinf — \/(sinzﬁ — (sin® u + €))), |v| (sin B + \/(sinzﬁ — (sin® u + e)))].
(2.10)

Copyright © 2000 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci., 23, 561-574 (2000)
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Hence the inequalities v'> < R? and v}? < R?, with |[v — v,| > 7y, cos 0 € [s,,1 — s,]
follow from the sufficient condition (2.10) together with
2

(ﬁ,me[o,g[ : (ﬁ—u,ﬁ+u)e[0,§[ :

sinu>e, sin’f>sin*u+e, A>r,—tanftanu

S Lo
—————— Max«< Sy, |V e \/(sm n=o < cos(ax—4)
cos ffcos i A
1 . sinu + \/(sinz,u —e)
<—t t —_— 1— . (211
anfitanu + cosﬁcos,umm{ Sy |U] 4 (2.11)

There is a subset S(v) of positive measure satisfying
|U,| < Ra |U/>l<| < Rs (U — Uy (U) € S(U)i

as soon as

1 1 3
UE :|Arcsin 2\/2’2[’ e }Arcsin2 \/<2>, g[,

and the following compatibility conditions for (2.11) hold:

R R 3
(1 —sy)sinff>sinp, COS(f — ) > Sy, Py Sy <——, Fye < = \/<>,
22 24 \2

which is true for r, and s, small enough.

3. A functional inequality
Theorem 3.1. Let a family F of functions from R® with values in R, satisfying (1.2) and

such that f > 0 almost everywhere. Given ¢ > 0, there are 6 €10, ¢[ and a function a(d)
tending to zero when § tends to zero, such that if

|f(0)f(vy) =S () f(v}) < a(d)

in S5 outside of a subset of measure bounded by a(9), then there is a Maxwellian M; such
that | flv] — M;(v)| < & outside of a subset of V, of measure bounded by e.

Proof. The theorem follows from Section 2 together with arguments that can be found
in [2]. Let e€]0, 1[ and 0 > 0 be given. Either

J fv)dv < &2

Copyright © 2000 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci., 23, 561-574 (2000)
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and then M, = 0 is suitable. Or erf (v)dv > &2 Then, let g, be the function associated
to fin Theorem 2.3 and Lemma 2.4, that satisfies

(Vf = 90 )] < did),
outside of a subset of Vs of measure dy(J),
|9kgks — GiGis| < €x(0), (1,04, @) € Sy
and
g () =my, ve V.
Define
S.= {0 0) = (V' — (V — Uy, 0) 0,V + (V) — Uy, @), @),
(v, Uy, ) € Sy and (v, vy, w) € Sy ).

Define ¢ :=logg,. Then

lp) + ¢(vy) — @) — @) < crae(d), (v, vy, ) €S.

Takingv=0,v, =U + V,v' = U, v, =V, with (U, V)e V,, x V,, and (U,V) =0, it
holds that

l9(0) + (U + V) — (U) — o(V)| < c14€x(9).
Define
G(U):= o(U) — 9(0), K(U):=3(G(U) + G( — U)),
B(U):=3(G(U) — G(—U))
and by
M,:={(U. V)€ Vya x Vi (U, V) = 0},
Study of K. For any (U, V) e M, .,
IGU + V) —G(U) = G(V)| < ci4e,(9),
IG(=U—=V) = G(—U) = G(— V)| < c1aex(0),
IG(—U+V)=G(—U)—=G(V)| <c1se(9),
IG(U = V) = G(U) — G(—= V)| < cr4ex(0),

Copyright © 2000 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci., 23, 561-574 (2000)
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so that

ko232 -+(57)
o232+

for any (py, p,) such that p? = p3. Hence,

< cq46x(9),

< c14€x(9)

IK(p1) — K(p2)| < 2c14€(9), pi=p3.
Hence there is a function K defined on (0, 1/¢2) such that
K(p) = K(p*) + K(p)
with |[K(p)| < 2¢,4¢,(9), for all p e V,, and so,
IK(U? + V%) — K(U? — K(V?)| < Teyqei(0), (U, V)e M,,.
It follows from [9] that there is a constant d such that for every x e [0, 1/¢2],
IK(x) — dx| < ¢;5e(d).
Hence,
|K(p) — dp?| < [K(p) — K(p?)| + [K(p?) — dp?|
<ci6ex(0), peV,.

Study of B. Let (ey, e, e;) be an orthonormal basis of R3. Then, for any
(U, V) = (urey + uze, + uzes, viey + vy¢5 + v3es) € My,

[B((uy + vy)ey) — B(ugeq) — B(viey)
—{ — B((uz + vy)es) — B((us + v3)es) + B(uzes) + B(vse,) + B(uses)

+ B(vses)}| < Tciaex(0)

and
|B((u; + vy)ey) — B(uyeq) — B(vyiey)
+ { — B((uy + vy)e;) — B((us + v3)es) + B(uze,) + B(vse,) + B(uses)
+ B(vaes)}| < Teiaen(0).
Hence,

|B((uy + vy)ey) — Blugey) — B(vieq) < 14ciqei(6), (U, V)e M,),.

Copyright © 2000 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci., 23, 561-574 (2000)
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Define b(x):= B(xe;), x € [ — 1/¢, 1/¢]. Then

bk + ) — by — by(y)] < ler4erld), (x,y>e[—1,1T, x+ye[—1,1}

It follows from [9] that there is a constant b, such that

~ 11
|by(x) — byx| < cq7ex(0), xe[_s’:|'

&

Analogous results are obtained for B(u,e,) and B(uses), and so, there is a constant
vector b such that

|B(U) — (E» U)| <cyger(d), UeVy,.
Finally, there are constants a:= ¢(&o) — (b, &o) — dé3, b:=b — 2d¢, and d such that
lp(v) — {a + (b,v) + dv*}| < cioei(0), vEV,.

Choosing 6 small enough so that cyee(0) <& and di(0) <e, ends the proof of
Theorem 3.1.
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