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On the stationary Povzner equation in R"

By

L . ARKERYD and  A . NOURI

Abstract

The stationary Povzner equation is considered in  a  bounded and strictly convex domain of
R " . Existence theorems are established for a class of collision kernels in the case of hard
forces and for diffuse reflection boundary conditions. Generalizations with respect to  the
collision kernel and  boundary conditions are discussed.

1. Introduction

We consider the stationary Povzner equation fo r  a  strictly convex bounded.
C 1 domain Q  in  R",

v • V x f  (x , y ) = Q (f  f )(x , y ) ,  x e  Q ,  ye R . ( 1 . 1 )

T h e  details of the  co llision  operator Q ( f ,  f )  will be introduced below. The
boundary conditions are of diffuse reflection type

f (x, y) = M (x, v) I • n(x)If (x, y')dy' , ( 1.2)
v, n(x)<0

X  E as-2, v • n(x ) > O.

Here n (x ) denotes th e  inward norm al to  th e  boundary. W e shall restrict the
discussion to the  R 3 c a se  with n o  loss in  generality m eth o dw ise . M  is  a  given
normalized half-space Maxwellian

1
e -10 2 /2T( , )M (x, y) =

2n T 2 (x)

such that —

1  

is a  measurable function on aS2, uniformly bounded away from 0 and
oo

L et us first recall that in  the  case of the time-dependent Povzner equation

(f , +  y • V„f )(t, x, y) = Q ( , x, y), t  e R+ , X  E  Q, V  c R 3 ,

the Cauchy problem has been studied by a  number o f authors. Existence and
uniqueness results for global solutions in the whole space (i.e. Q  = R 3 )  have been
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given by Morgenstern [28] and Povzner [30]. Existence results for the Povzner
equation i n  a  bounded domain with periodic boundary conditions have been
proven by Lachowicz [23]. The existence of non-negative L  solutions to  the
Povzner equation in a bounded domain with a general type of boundary conditions
(including the maxwellian diffuse reflection case) has been established by Broman
[8 ].

In  this paper we concentrate on solutions to the stationary Povzner problem.
Stationary so lu tions are  of interest as cand ida tes fo r the  time asymptotics of
evolutionary so lu tions. They also appear naturally in the resolution of boundary
layer problems, when studying hydrodynamical limits of time dependent solutions.
However, they cannot be obtained by the techniques so fa r  used in  th e  time-
dependent case, since for the latter natural bounds on m ass, energy and entropy
provide the initial mathematical framework, whereas in  th e  stationary case only
bounds on m ass flow, energy flow and entropy flow through the  boundary are
easily available. Instead the crucial steps in  our proofs are  based on  estimates
involving the  entropy dissipation term . That requires a  m ore  delicate approxi-
mation approach than for time-dependent and earlier stationary kinetic problems.

Similar difficulties a re  faced when dealing with th e  stationary Boltzmann
equation. In the slab case mathematical results on boundary value problems with
large given indata a re  presented in  a  measure setting in  [1], [11] and in  an L l

setting in [3], [4]. F o r  t h e  nonlinear Boltzmann equation the long time behaviour
under constant temperature, diffuse reflection boundary conditions was treated in
[5]. I n  all these results except [11] and [4], the control of the mass was obtained
by introducing truncations in the collision operator fo r small velocities. In  this
paper, we do not introduce such truncations, but control the mass with the energy
and the  entropy production term.

We should also point out that a  number of results are known concerning the
non-linear stationary Boltzmann equation close to equilibrium, and solutions of the
corresponding linearized equation. There m ore general approaches can be uti-
lized. S o  e .g . in  an R " setting the solvability of boundary value problems for the
Boltzmann equation in situations close to equilibrium is studied in [18], [19] and
[20] in bounded domains, and for exterior regions in  [3 3 ] . Stationary problems
in  small domains for the non-linear Boltzmann equation are studied in [21], [29].
The unique solvability of internal stationary problems for the Boltzmann equation
a t large Knudsen numbers is established in  [27]. E xistence and uniqueness of
stationary solutions of the linearized Boltzmann equation in  a  bounded domain
is discussed in [26], and for the linear Boltzmann equation uniqueness in [31], [32],
and existence in [12] and others. A classification of well-posed boundary value
problems fo r  th e  linearized Boltzmann equation is given in  [1 6 ] . F o r  discrete
velocity models, in  particular the Broadwell model, there a re  a  number o f  sta-
tionary results in  two dimensions, among them [6], [7], [13], [14], [15].

Let us next recall a  few well known facts from the kinetic theory of neutral
gases, and some details about the collision term in the Povzner equation. The gas
is modelled a s  a  density at position  x  and  velocity y , a n d  represented by a
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nonnegative function f (x , v). I n  a  n u m b e r  o f  different kinetic equations the
evolution of f  is driven by collisions, and the rate of change is defined through the
collision te rm  Q .  In  the B oltzm ann equation, o n e  o f  th e  assumptions in the
derivation of the Boltzm ann collision opera to r is  tha t on ly  pair collisions are
significant and that each separate collision between two molecules occurs at one
point in space. Povzner [30] proposed a  modified Boltzmann collision operator,
considering a  'smearing' process for the  pair collisions. This modified Povzner
collision operator looks a s  follows,

Q(f , , f )(x ,y ) = ( f ' —  f  f ,,)B (x  —  y ,y
xR 3

where B  is the collision kernel and f  = f  (x , e), f  = f  (y , v * ) ,  f f  (x , v ') , f  =
f (y , y ) .  Here the post-collisional velocities y ' and v  are linear functions of the
pre-collisional velocities according to

= (I — a(x  — y ))v  + a(y  — x)v,„ v : =  a ( x  — y )v  + (I — a(y  — x))v,,

where a  is  a  3  x  3  matrix an d  /  th e  3  x  3  identity m atrix. These last relations
im ply the conservation of momentum y ' + v," = y +  v* . They also  im ply that
simultaneously interchanging x with y and y  with y * gives an exchange between Li'

and v .  The conservation of energy y'2 v 2 _ v 2 v  yields that a(C) = a( —()

and a* =  a ( ) .  In  this paper we consider a(C ) =  so  th a t

x —  y  x — y
= v — (v —

— —
x —  y  x — y

v: -= + (u —  v,) 
— — .12 1

(1.3)

That im plies in  particular that head-on collisions (when x  — y  and v * — e  are
parallel) exchange (x, v ), (y , v )  into (x, y*), (y,

The Povzner equation was first introduced for purely mathematical reasons
and usually ignored by the physicists. However, when considering the Grad limit
o f  a  system of N  interacting 'soft spheres', Cercignani [10] obtained a  hierarchy
of equations factorized by a Povzner-like equation. Lachowicz and Pulvirenti [24]
considered a  system of N  spheres colliding at a  stochastic d is tan ce . They proved
that when N  tends to infinity, the one-particle distribution function converges to  a
local M axwellian w ith density, velocity a n d  temperature satisfying the Euler
equations. A t a n  intermediate step the Povzner equation appears.

L e t u s  conclude this introduction by detailing our results a n d  methods of
p roo fs . L a te r in  th is section a central existence theorem  is stated fo r  th e  sta-
tionary Povzner equation in the case of maxwellian diffuse reflection boundary
conditions for the kernel B  =  1 .  It is then established that the stationary Povzner
problem is equivalent to another kinetic problem with collision frequency equal to
unity via a transform of the space variables and involving the mass, here called the
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sm -transform . T h e  transform was first introduced into radiative transfer and
boundary layer studies, later in  the  mid 1950s by M . K rook [2] into gas kinetic
fo r  th e  B G K  equation, a n d  recently used by C. Cercignani [11] for measure
solutions to the Boltzmann equation in a s lab . The second section is devoted to a
crucial construction of approximated solutions to the transformed problem with a
modified asymmetric collision operator in the case of maxwellian diffuse reflection
boundary conditions. The asymmetry introduced in the collision operator allows
monotonicity arguments which lead to uniqueness of the  approximate solutions.
Moreover, we prove pointwise bounds from below and from above of the mass
flow through the boundary by taking into account the diffuse reflection type of the
boundary conditions. In  the  third section the symmetry of the collision operator
is reintroduced. Weak compactness in L  (Q x R 3 )  is obtained by controlling the
approximate solutions inside Q x R 3 by their values at th e  outgoing boundary.
There the transformed situation is being utilized, enabling a pointwise boundedness
of the collision frequency. In  th e  last section the passage to  th e  lim it for a
solution of the transformed problem is performed. The mass of the transformed
approximations is controlled by using the bounds of the energy and the entropy
dissipa tion  te rm . T he  techn ique  o f obtaining compactness directly from the
entropy dissipation term without involving th e  entropy property was to our
knowledge first introduced in  [3] for a  slab problem, and  is here extended to a
higher dimensional c o n te x t. Towards the end of Section 4, generalizations from
B  = 1 to hard forces are also discussed in the m ain result of the paper, Theorem
4.8. With minor changes, but to the price of a few additional arguments the proof
can be carried through for the  orig inal equation without introducing th e  sm-
transform (cf [4] for such an alternative proof). T h e  approach of this paper can
also be used for given indata problems (cf [41) in both the hard and the soft force
cases.

Definition 1 . 1 .  f  is  a  weak solution to the stationary Povzner equations (1.1-2)
if  f  belongs to L' (Q x R 3 )  and for any  test function y9 c  C 1 (S2 x R 3 )  vanishing on
OS2-  U aQ°,

( fy  • V  +  Q(f , , f)q))dxdu
QxR 3

V  • n(x)M (x, v)(o(x, v)(1.I v '  •  n ( x ) I f ( x , v / )dv i  d x d v  = O.

H ere y ' and v  are  given by  (1.3) and

052-  := { (x, v) 00 x R 3; y • n(x ) < 01,

00 ° := {(x, y) e af2 x R 3 ; y • n(x ) = 01,

as2+ := {(x, r) E OS2 x R 3 ; y • n(x ) > 01.

L et us next state a  key result o f this paper.



On the stationary Povzner equation in R n1 1 9

Theorem 1.2. There is a  weak solution f  in L ' (Q x  R 3) w ith given total mass
k  to  the stationary  Povzner equations (1.1-2) when B  1 .

Extensions to more general pseudo-maxwellian and hard forces are given in
Theorem 4.8.

Remark. The theorem holds with an  analogous proof in  R", n > 2. It is
obvious from the proof that given indata problems can also be treated by the
method of this paper. In  that case some of the more elaborate arguments from
the present diffuse reflection case are not needed due to  the a priori control of
ingoing entropy flux.

Lem m a 1.3. ( i )  I f  f  is  a  weak solution in L!(S -2 x  R3 )  to  (1.1-2), then

F (X  , v) := f 
( f f  ( x ,  v )d x d v '

is a  weak solution to  the sm-transformed problem

1
v • V xF = f F(X , v)dX du

f  F  ( X  , v 1 ) F ( Y  , v : ) d Y d v *  —  F ,

(
X 

S2, E x R 3 ,
(f F(X , v)dXdv) 1/ 4  v

F (X , v) = M ( X

jw .n(x l(f  F(X ,v )dX (10 114 )<0
w • n

X
114)

(
(f  F(X ,v)dX dv)

F(X ,w)dw ,

 

((f  F(X ,v)dX dv) 114 '

(ii) Reciprocally, if  there is a  positiv e real num ber k  such that there is a  weak
solution F k  in  L+

1 (kS2 x R 3 )  to  the sm-transformed problem

v • V x Fk  = 
f  F k ( X ,

1

v )d X d v  
jFk(X ,v')Fk(Y ,v:)dY dv,, —  Fk,

(1.4)

( f F(X , v)dX dv) I /4

X
E af2+( 1 . 5 )

(
1).

 , v) e x  R 3 ,

Fk(X  , v) = M (—X  ,v )
■,..n(xgo<ci

  

(1.6)

X )
w • n(—

k
Fk(X ,w)dw,

   

3g2+, (1.7)

then there is a  w eak  solution f  e L!F (S2 x R 3 )  to  (1.1-2), with k = f f  (x, u)dxdv.
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P r o o f  (i) If f  is a  weak solution to (1.1-2) belonging to L(,S2 x R 3 ), then

F(X  ,v) :
( f f (x,Xv)dxdv  v )  is

 a  weak solution to

v • V  xF =
1

4  
F(X, v')F (Y  , v:)dY dv,. —  F,

(f  f  (x , v)dxdv)

( Xf f  (x ,v )dx dv  v ) 
e S2 x R 3 .

Then
4

F (X  , v)dX dv = (f f (x, v)dxdv)

implies (1.4). Finally, (1.5) is straightforward.
(ii) Reciprocally, if  fo r  some positive number k ,  the re  is  a  so lu tion  Fk

4 (k te l x R 3 )  to (1.6), le t u s  define the  L I (S2 x R 3 )  function f  by

k4
(x, v) =

Fk(X , v)dXdv F k ( k x ' v ) •
The function f  satisfies

v • Vx f  =  f f  (x, v').f(Y, v')dydv,, — k f , (x , y )  c  Q  x R 3 ,

and

k  = f  (x , v )dx dv ,

which implies (1.1). Finally, (1.2) follows from the definition of f  and (1.7).

2. Approximate solutions to  the transformed problem

Let k  > 0, r >  0  and j  E N  be  g iven . The aim of this section is to construct
solutions f "  to  the  following approximate problem

v • V Afj ' r  =  f hridy dx . X r(x  y , v , v )%
1 (x — y, v,

P'r
X r  P ' r (y , v)dydv,,

( x   v'jdydv,, f  I 

1  +  
P'f i ' r d y d v , ,

1 + r 

j

(

—
X  

1)) E x R 3 ,

' r  ( X ) (
, l l )  e 0Q+  ,

)  f a ( k t 2 )( x ) d x '
(2.1)
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where,

O r  (X ) =  ( f
w-n(•/k)<0

with the convolution

 

)

p r (.
, W )dif  *ç 61

A". (x ) ,

tv.n( /k)

suppv" f 1w.n(y/k)
:= 11) n fL r (y, w)ça(y)dwdy.

)

W • n( k
. )  P .

 r  (-, IV)dit' * ÇO (X )

Here, ço  is a  normalized density with support in a neighbourhood of x, defined as
follows. D ivide aQ  into 2" disjoint subdomains Sr each with area ISrl = 2 - "LOQI.
i 1 ,...,2 " , so  that the maximal diameter D„ of Sr, i  = 1 , . . . ,2 "  tends to  zero
when n —> oo. Denote the characteristic function o f  S'" by Xs ,. and define

2"
40 Z(Y) = loolx.57(x)xs,7(y).

T h e  functions z r  and J  a r e  C ,  invarian t under the transformations
(y, y* ) —> (y', u), (y, - - +  ( v * , y). They are defined from a  function i  o n  R. Take

—
1 

«  r, 0(s) = 0 for s < —1 , 0 (s) = 1 for s > —
1

, Ili(s) increasing from 0 to  1 in the
11 131

interval — 
I T /  

< s < —, 111 E  C .  D e f in e
ni

z r(x  —  y , t u * ) = O r (v)tli r (u,,)O r (11)0 r (u:)

— — y
v*i —

— v* x  —  y
— v*1 —) q i (

2
m ) .

w ith  '/(v)ocv l —  r). Analogously define

xi(x —  y, y, v) = (v)11J. (u* )11ii (u*'),

where qz-i(y) = —11,12
)  and  m  = 2.

In the paper 101 and 10521 denote volume in R 3 o f  0 , respectively area of aQ,
and D  is  the  diameter o f Q . D e fin e  s i- b y

(y, y) := inf {s > 0; (y  — su, u) c OS2+ 1, (y, E x R 3 ,

and

(y, u) := inffs > 0; (y  + su, y) c af2- 1, (y , y) E Q x R 3 .

Denote by

V (Zr :=   kflxR 3 Z rZi f  ( Y, iOdytit),

flif2xR3 (Y ,14)dydy*
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The following geometric property of Of2 w ill be  used  in the se q u e l. For
D

x e OS2, w c R 3 with Icoi = 1, w • n(x) < O, set y = x — s+ (x, co)co. W ith  
a )

the
Dy

Da ) .
Jacobian, the function co • n(x ) 

D y
 is uniform ly bounded as a function of x , y e

13Q .  Since the truncation zr will be removed only at the very end of the proof in
Section 4 , w e shall skip the index r  in xr =  x  f I =   j3 Jr = f Y , v J = v j  and
elsew here. Let 0 < a <  1  b e  g iv e n . Let K  be  the closed and convex subset of
L I (kS2 x R 3 ) x  L l (OkS2) defined by

K e L I (kS2 x R 3 ); 0 < f  (x, v) <

x  { p  e  L I (OkS2);0 p ( x ) ,  aka p(x )dx  = l} .

The boundary integral (2.1) is related to the total inflow condition Sa w  p(x )dx  = 1
in the definition of K.

For —

1  

> ô > 0  let 1.16 b e  a mollifier in r  w ith  support in Id 6. Denote by

1 f F f  
(F, f)(x , v) : F(x ,v  ) f  (y, v'jdydv,..

f  fdydv„ j 1 — 1 ±L

Let T  be  the map defined on K  b y  T (f ,p ) = (F, a), where F  is  the solution to

c(F v  • V F = Q + (F, *  , u 6 —  Fv(x, f), ( : , v )  c Q x R 3 ,

F (x, v) = M ,v)(p * W,!)(x),
 ( k x  v )  6  ° Q + (2.2)

and

Jv t - n (  / k ) < 0  W  •  n  ( --/CY )  
F(x,w)dw

t ( k S 2 ) -  

w  •  n  ( --Y

k

)  F(x,w)dwdx

Below we shall state the results with respect to  k , but for easy reading only
carry out the proofs for k  = 1.

Lemma 2.1. There is a positive lower bound c1 f o r f  F(x ,v )dxdv , with c1 in-

dependent of  0 < 1, 0 <  ô  < —
1

,  and  o f  (f , p) c K.

P ro o f  It follows from the exponential form of (2.2) and the boundedness
from above of 1, b y  1  th a t

F(x,v) > M(x —  s + (x,v)v,v)p * i„!(x — s+  (x,v)v)e -
(1 + ")s+
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And so  for, say, 1 < vi <  2  and for some c  independent of ( f ,p )  c K,

F(x ,v ) cp * goixl b (x b ),

where xb = x - s+ (x, v)v, and

F(x ,v )dx dv  c f  v  • n (x )s -  (x, v)p * g9xn (x)dxdv,
QxR3A

with

A  = { (x , v); xe al,1 2, v• n(x ) > 01.

Since 52 is strictly convex, bounded, and C 1,  it follow s that for some e1 > 0,

JQx R 3

F(x, v)dxdv  c i p ( y ) d y  C1.
D52

Lemma 2.2.

sup a(x) <
aka

with cm independent o f  a n d  o f  (f , p) c K  when

fka x R 3

 f  (y ,v )dy dv * >

P ro o f  Obviously in  (2.2),

sup p * sup yoxn <
aQ

and the gain term Q+(F, f) * 145 is bounded by

c 4n
.2

—  3 Ig2 1(/ + 1)3/2 •ci

So from the exponential form of (2.2), for r -  —

2  

< v i < ± 1,

0
—cts+ (x, y)F(x ,v ) = M (x  - s +  (x, v)v, v)p * — v(f)(x + st,,r )d syo" (x - s+  (x,v)v)e

J
o

eœs-r v ( f ) ( x ± "'" ) d r Q± (F , f) * p6 (x + sv, v)ds
-s+ (x  y), 

<  sup M (y , v) sup ç o yn (z)
C D

2 - / -
1
-
1 (V ).

ye052 y, z r -
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In  fact this estimate holds for all of Q x R 3 . Also an  estimate downward in the
exponential form o f outgoing F  by ingoing ones gives

ly • n(x)1F(x,y)dxdu Cr P ( Y ) d Y  =  Cr  > O.
052- 0 5 2

A nd so

ci(x) v1,„

for some cl l i independent o f  a  a n d  o f  (f , p) e K  w ith f f  (y, y)dydy,,

It follow s that T  maps

Kin = { ( f  p )  E K ;f f  d y d v *  CI, P  c in }

into itself. F o r (f ,p )  E Ki n ,  one solution F is obtained as the strong L I lim it  of
the nonnegative monotone sequence (F") , bounded from above, defined by F °  = 0
and

aFm+1 v  •  V F m + I = (Fin , f ) — F"1+1 v(x, f), ( x ,  y) e Q x R 3 .

F'" + 1 (x ,y ) = M (x ,y )(p * K )(x ), (x , y ) c OS2+  .

Moreover, F  is unique since if  there were another solution G , then

l(F —  G) + v V  (F —  G ) = (Q ±  (F , f) — Q+  (G, f )) * 145

— (F G )1 ,(x , f ), ( x , v)eQ x R 3 ,

(F — G)(x, =  0, ( x ,  y) e OS2+  .

Multiplying (2.3) b y  sgn(F — G ) and integrating it over Q x R 3 leads to

J
IF — G ldx dv  0 ,

QxR

(2.3)

which implies that F = G.
Let us prove that T  is continuous for the strong topology of L '. I f  ( f l , p i )

converges to  ( f ,p )  in L' (Q x R 3) x L ' (äQ), denote by (F),o-i) =  T (f i . p i ). It is
e n o u g h  to  p r o v e  th a t  t h e r e  i s  a  subsequence o f  (F1, p i ) converging to
(F,o-) = T ( f , p ) ,  because o f  t h e  uniqueness o f  th e  s o lu t io n  t o  (2.2). But
f a f f i dydv, and f fidydv * converge to  f zzlf dydv * respectively f f dydv,.. There is
a  subsequence, still denoted ( f i )  such that decreasingly G1 := sup„, 1 f , , , .  a n d
increasingly g/ :=  inf„ , i f ,„ converge to  f  i n  L L e t  ( S I )  a n d  (.s7) b e  the
sequences of solutions to
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and

S/ + y . Vx Si =  
1 f f SI t , GI

C f ç hdydv * j Z Z  
1 + '1'

1 ' ) G vidY dvL Y , *
1+  —

J. i

Si
f XXigt(Y ,lit)dydv,,

j
.

Gi(y, v*)dydv*
(x, v) e Q x R 3 ,

St (x, y) = M(x, u)(p * (19„.".)(x),( x ,  y )  E

1 (I/ au/ Ay • V =    s.(x, v ) ,  (y , v:)dydv,
Gidydv * I xxi + +

Sxx'Gi(y, v,)dydv * (x, y) E Q x R 3 ,
gi (y , v„)dydv *

si(x, M ( v)(p * go x (x, c ao+

(S i)  is  a  non-increasing sequence. Indeed, Si = ,  w ith  SI? 0  and
S r i so lu tion  to

(
1 f S'" , G1

Y 1 (x  y ' )  (y , t )dydv
1 +

f gidydv * J  / i +  sr ' " , *

.i l

+1  5 a_  s n , l gi(y, v * )dydv * (x , v) E Q x R 3 ,
If  Gi(y, v,)dydv *

S r  1 (x, y) = M (x , u)(p  *  y )(x ), (x , v ) e as-2+ . (2.4)

From (2.4) in exponential form it is easy to see that (S r ) / is nonincreasing in / for
any m .  Analogously, ( s i)  is  a  non-decreasing sequence. Moreover, it can be
proved from the iterates that si < F, < Si. Then (S i) decreasingly converges in L 1

to some S  and (s1) increasingly converges in L I to  som e s, which are solutions to

aS  + y  V S  = Q +  (S , )  *  –  S v ( z ,  ) ,  (x ,  y )  c Q x R 3 ,

S(x, y) M(x, u)(p * q) .D(x (x, v) E as2 (2.5)

and

-s = Q ±  (s f) * ,u, i –  sv (z , ) ,  ( x ,  y) e Q x R 3 ,

s(x , v) = M  (x , v)(p * ç)(x), (x, c i)S2+  • (2.6)

v v, sp+' =
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By the uniqueness of the solution to  the systems (2.5) and  (2.6), S  = s = F . I t
then follows that (F1) converges to  F  in  L I . Set

0
- as G(p x, u) : = M(x —  s + (x, v)v)(p i * goiAl.)(x — s+ (x, v)v)e

( )-  c p ( 9 v(fi )(x+rv, v)dr

F or x E 0,S2

lw • n(x) Fi(x,w)dw
wm(x)<0

J w  n(x )1G(p i , x ,w ) d ww .n ( x ) < 0  

' n(x)1 e
ats- %(1;)(x-Erw , w)dr Q+ (F1, fi )*,u8i (x+sw , w )ds dw ,

converges in L 1(0Q) to

J lw • n(x)1F(x,w)dw
it-n(x)<0

fw.n(x)<o l w  n ( x ) 1 G ( P ' x ' w ) c i w

0

4-fw.n(x)<Olw 
•  n (X )1 (1 .

r- v(j• )(x+rw , w)dr Q +
o

f )*/./6(x +sw ,w )ds dw .e a
-s+(x,w)

Hence (a.1) converges in L l (0Q) to a-, which ends the proof of the continuity o f T.
T he  compactness o f  T  i s  a  consequence o f  th e  following argum ent. Let

(Fm , m )  and ( f p )  be sequences in L i (Q x R 3 ) x L i (00 ) with (f,„„o„,) bounded

a n d  (Fm  , am ) T ( f ,  p „ , ) .  T he sequences F n i  

1 ±  F,J„ a s  well a s  ( v  V, 1
 F

±
n1

p.,n )
J

(X  k J  •I '
'  ' 1 f ( y, v)1.45 (f) — v)dydr,', d v /

. 1 ± .1 II 
l

is  compact in  L' (Q x R 3 )  b y  the  averaging lemma (cf [171). A nd s o  th e  ex-
ponential form o f  (2.2) for F,,, together with the compactness in  L i (Q  x  R3 )  of

a r e  u n ifo rm ly  b o u n d e d  in L ,  h e n c e  w e a k l y  com pac t in  L ' .  A l s o

(fxx i i
 f

. " fm (y,v,,' ),u6 (f., — v)dydv: is compact in L ',  a n d  so  the  sequence
1 -  J

f f„dlydv* f1  +  7F mF,„ (x , v/)Q+ (F,„ , f„) * 145(x, b) = 
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(G(pn i , f n ,)),,, E N  d u e  t o  the boundedness of (pm )  and the convolution with
implies that (F,n )  is  com pact in L I (0  x  R 3 ). M oreover,

fiv n(A)<0

is  com pact in L i ( 0 Q ) . Together with the  compactness o f  (Q± (F„„ f,„)* po )  in
L' (Q x R 3 ) ,  this makes (a m )  compact in L I (0Q).

T  is thus continuous and compact from the closed and convex subset Ki n  o f
L 1 (Q x  R 3 ) x  L' ( Q )  into a  bounded subset of Kj „, so by Schauder's fixed point
th e o r e m  i t  h a s  a  f ix e d  point ( F Œ , ) ,  s o l u t i o n  t o  ( 2 .2 )  w i t h  f  =  f ,
p  =  a " .  A rguing sim ilarly  to  the preceeding analysis o f  T , w e can  a lso  by
compactness pass to the  lim it w hen  a  tends to  z e r o .  T hat lim it F 6  is  th e n  a
solution to

In order to remove the po convolution, we shall next prove that the family (F 5 )6 , 0

is strongly c o m p a c t  in  L '. Denote by

' F5 F6
q6  (x , v ) := iz z ' F o  (x, v') F o (y ,v )dy dv * .

1 + — 1 + —
.1 .1

T o  p ro v e  th e  compactness o f  th e  family (VE(F 5 , F 5 ) ) ,  a n d  again  using  the
previous compactness argum ent for Q± (Fm , f„) * po ,  it rem ains to  show that

j 1Q+  (F 5 , F 5 ) * p  -  Q± (F6 , F 5 ) Idxdv -> 0 (2.8)
QxR3

when 6 - > 0  (cf [25]). Similarly to the earlier analysis o f  T , the  compactness of
(Q+(F 5 , F 5 )) 6 , 0  im plies the  compactness o f  (F 5 )6 , 0 .

T h e  p ro o f o f  (2 .8 )  com es back  to  p rov ing  th e  strong L I translational
equicontinuity in  the  y  variab le  of (g 5). U se  the  H ilbert-C arlem an  parametri-
zation

slx, (v'-vViv' - vi) F6
tt ) (x, y) =

(

S
2

1 ± F 6  ( x ± s  1 vv:
 —  

VV1
 '  

V i ) d S )-s+(x, (v,-,mt ,'- t,1)

1 F6
2f E , a i  +( x ,  ) d v '  d v '* *

lw • n(x)1G(p,n , f ,n , x, w)dw

v • V P5 = Q 4 I (F 6 , F 6 ) * po  -  F 6 1, (x, F6 ), ( x ,  v )  E Q x R 3 ,

ftv.n(.)<olw • n(*)1P  5 e,w)cily
(F 6  (x ,y ) = M (x ,v )

)
Sao- lw ' n(Y )1F6 (Y  , w)dwdY  * ( I / x l  (x ) '

(x, v) E 0Q +  . (2.7)



128 L. Arkeryd and A . Nouni

w here  E„,,,, i s  the p lane containing y and orthogonal t o  y — W e split
q6 ( X , y ± h) —  ( X , y) into A 6 ' h  (X , V ) + 136 'h  (X , y), where

(
à,  F y' — y

Ab'h(x ,y ):=  f  fs - 
F 6  (x + s iv , _ v r y')ds
1 + -

J

x ( f

Fo
J E

dui F.
E r{-12,r' 1 111—  11

1
2 X X F 6  (X

1 '
 v * )

1 +

*
bti

°
IV/  -  

2 F6
1 + 7

(x, v ))d y '

and

 

B6  h (X ,

\
F °

x + s  y'—v—h , v , F°
Fo —Y—hl   x + s v

Fo
ds

1 + — 1 + —
J J

 

x ( j

F ° 

E111+h,1' 11)1 hi2 XX F6 v du'.t')
1 + 7

10 (5
'
1'1121,2 c j  dO fdxdv11),,C6 (x, v + Oh )12 ,

dv'*F °
C° (x,y + Oh) := (x, v)(x, y + Oh) • h.

iv'
2

vl

x x  

1 ±  F 6

Hence by [34],

First

where

F 6   )
111 1 6 , h 112L2C 0 1 2

f2xM ±  F5

2

(x,v)dxdy,

which tends to  zero when h  tends to  zero . This proves the translational equi-
continuity of the A h -term.

The B "  estimate is connected to averaging. We give a direct p ro o f . F o r  h
small



ds, (2.10)

 

where
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1.86 ' h  (X, 1))1

F
.°
  ( x  +  s   v '  —  v  —  h

F a v' — v 
, v

,)
— — Fo 

( x  +  s  

 —1 + —
F°

1 +
j j

Write the difference within absolute values in (2.9),

< f fs2 ds dy' .

(2.9)

F° v' — v — h F° v' — vs2   x  + s v F, X  ±  S  v ds,
1 + — J

-

F6
w ith each term  F o  i n  m ild  f o r m . Then there first appears a  difference of

1 + - T
boundary terms whose integral tends to  zero when h  tends to  zero, essentially
because of the convolution with go". There also appears a  difference of gain terms
along characteristics. There finally appear differences for the loss terms and for

F \ 2

1 ± w hich  can  be  trea ted  analogously  to  th e  differences in  the  gain

term,only sim p le r . The gain term contribution to  B "(x , y) is a  y ' integral of an
expression of the type

(C -0/1C -0 )
S

2
fo F o  
J

ds i x x i
1 ±

  

, Fo(x  x  + y ' —  y  —  h
's I'd+ sly , v ih ) (y i , vç h* )dy i dw 1

1 + —
F °

fo F6as, 1. )0 (.1
1 ± —

F 6

(
1 ±  —

j

V
1h*

( X  S
—

±  Si V I
, v', ,

(
,

V I h : = I/
v' — v — h

X  ±  S ±  SI V , Y1, v
ly' — y — hl '

f IX x  ± s v / — v + sly ,v i

)  

,
F6 

F 6 . (y i ,vçjd y i dw i

v' — v — h
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v
v ' -y

+ s + Y 1,1/

x + s v' v=
+ s ly  y i , , WI: 

We split (2.10) into a  difference in the x x i terms which tends to zero when h -> 0,
and the sum of

J

s-

(x,

(v' - vViv' - v1)
S

2

_ ,+ (x ,w -v v ic -L o

  

y '  -  -  h
 (

' c  s  -  y  -1 + —
J

+  V ' , V i
i h )

  

v' - v
+ v;)

l +

F a

FJ(.5 
( x  +  s  

iv' - v i

 

(.1) v ih .)dY  i dw idsdsi, (2.11)
1 + 6

     

J

(v'-vViv'-u1) 2 JO 6F -
fX X j

(

x  +  s  

 Iv ' -  v l

+ sl y ,y i )
J-s+(x,(c -vvIc -0) -s+(x+sw-1,-hvic-v-hp,c) 1 +

( F `5  
x (Y ), )

F 6  
(Y1, V; * 1 d Y  id W id S d S 1 ,

F a Ih*
1  +  — 1  +  —

and

J

s- (x,(C - 0/1C -
E
,

)

2

-s+(x, (v' - v)/Iv' - v)
f-s+(x+s(v'-ollY '-Y1,y')

Z Z  F6' ( x s v i s l y '  ' v ii )i - s+(x+s(v' - v- h)/113, - v- hi,c) ±

  

F 6

,
(Y i 1)/ )dy idw idsdsi.1*

1 +

The contribution of the integral in y' of (2.13) to the integral over Q x R 3 of /3 6 , h

tends to zero when h tends to zero, because the volume of integration tends to zero
with h. As for the two differences in brackets in (2.11) and (2.12), we repeat the
procedure of expressing them in  mild f o r m . Terms like

j .

(2.12)

(2.13)



to

v • V FL " -= Q± (FL ", FL ") -  FL " (x, FL ") , (x , y )  c Q  x R 3 ,

(

=  M (x ,  v )  
L.n(.)<0 lw ' n(•)IFL " (- , w)dw
f a t 2 _ 1w • n(y)IFJ,"(y , w )dw dy  * ço(x),

( x ,  y )  e as2+. (2.14)
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[f s-  (x, (v' —0/1C-0 ) s2 f  0

i—,s+ (x, (v' —011r' —r1) i — s+(x+s(v'— r— h)lir'— r— hi,t1

t o
d   F 6  A  x + s i h L+  s 2 v u ,*  v2 h )

f _s+(x ± sw _v _hv iv ,_v _h i± siv ,,t,„--s2 1 +  F " ( Iv' - v "I

f , F ° v  -  v
as2  x  + s + + s2v 1

1,,,14)
-s+ (x+s(v ,- v i + s i v r , v ) ± F ° ( -

   

F° Fo
v2' h * )dy i dw i dy 2 dw2dsi ds

F
6 (Y 11 Fo (Y2,

1 — +
J j

-  v  -  h
w ill appear. Sets where 

v'
 y', and v h ,, are close to parallel can be made

- v  -
as small as desired, to make the corresponding integrals as small as desired because

F 6v '  -  v  -  h
of the uniform boundedness of Except for the sets where  v,

F —  —  hl

and are close to parallel, we can perform a change of variables with uniformly
bounded Jacobians

v ' - v  - h
s, , s2) -* X  := x  s

Iv i - v  - hi + sly ' + s2v; h * ,

as well as a similar change of variables in the term without h. We end up with a
difference of volum e integrals integrated over volumes differing by clhi and
integrals containing the difference of the Jacobians. Each such term tends to zero
when h  tends to zero.

We can now pass to the limit in (2.7), when 6 tends to zero. The limit F i , "  is
a solution

Ff'"(x, v)

The aim of the present section to construct a solution to the approximate problem
(2.1) has then been achieved.

Lemma 2.3. L e t f  = f L  r , n  denote a  so lu tio n  to  the  approx im ate problem
(2.14), and for x  e OW  set

p(x) :=
v.n(x1k)<0

f (x,v)dv, a ( x )  P ( x )  
f a k Q  p(x)21x.

jxxi
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Then

0-(X ) C 1  >  0, X  E  3k,Q,

w ith cl only  depending on 3S2 and M  but not o n  , r, n.

P ro o f  The ingoing mass flow equals o n e .  Fix a  ball a inside Q  and with
centre  xo. For each xs  e  Of 2, the line I through xs and x o intersect OM in between
at x e ea with (antipodal) intersection x„ c am and x t e  3Q. Choose a  symmetric
polar cap on a l with centre at x , such that its projection S  in 00 around xs  has
area = Make a similar polar cap on OM around xa  with projection T to
a f 2  around x t a n d  a r e a  IT1=41as21. Cover as-2  w ith  N  such domains

= 1, , N, so that the corresponding Tj 's also cover Q. Clearly, for at least
one j,

1
a * q),"dx —

N .s,

Also for x e Ti , y • n(x) < 0,

(  of (x,y) __ f (x — s+  (x,v)v,y) e x p  —  f v(x + sv, v)ds
-,,, (x, 0

and  so for x c

p(x ) > Iv • n(x)1M (x — (x, v)v, v)o- * yo,"(x— s+  (x, v)v)
A,J

x exp v(x+sv, v)ds dv,

with

A  = { v  E  R 3 ; x — s+  (x, v)v E Si  , v • n(x) < 0,1 < 101.

Also

m in  in f  in f
j  x e T i  v e A x i

=  C 2  > 0,

 

inf M(x, y) = c3 > 0,
_11/1 _10,xed5 -2

inf exp ( 0— r v(x + sv, y)ds
(x, I)) e 5 2 ,  1 it, 1 10 J—s±(x,y)

(xi') e dS2 - , 1 10
inf exp( —s+ (x, y)) = e4 >0.

Set y = x  — s+ (x, v)v and change variables

„  V
= Iv' —

Iv l 
= to) —+ (t, y), dv = t 2 dt

Du)
Dy

dy.
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By the properties assumed fo r 0 ,

 

m in  in f  in f
1 j < N  XE Tj  V E A , )

Dw
Dy

=  C 5  >  O.

Hence for x c Tj

  

c5c4c3c2p(x ) > c5c4c3c2a* 49j
n,(Y )dY N

s;

=  C 6 .

Here c 6  only depends on M  and Q . U sin g  the lower bound c 6 fo r p  on 7", (and n
large) by a similar argument p(x) c 7  >  0 for x E Sj , with c7 only depending on M
and  Q . F in a lly  u s in g  th e  geometrical fact that x  E af 2\(S i  U Tj )  is  " fa r"  from
either Sj  o r  1 1 ,  as well as the lower bounds c6 and c7 for p  on S., and T,, gives in
the same way a  lower bound for p  on all of aQ  independent of j ,  r and (large) n.
By Green's formula for (2.14) the outflow is bounded by the  inflow,

p(x )dx Jo -  * yo(x )dx  = 1,
052

and the  lemma follows.

3. Reintroduction of the gain-loss symmetry

In  this section we shall remove the asymmetry between the gain and the loss
terms by taking the lim it j  —+ cc. The smooth increase o f  0 from zero to  one

[in  th e  interval —  —
1

, —
1 

w as needed in  S e c tio n  2  fo r  th e  R a d o n  transform
ni m

argum ent. That smoothness will also be removed from x r by keeping r fixed, but
letting m = j  —> co.

Lem m a 3.1. If  F.1 i s  a solution to (2.14), then for any  r> 0,

(x, v)dxdv < c8e 2 k p lr , (3.1)
M > r

and

v)dxdv <  c9e2kDlr. (3.2)

P ro o f  Multiplying (2.14) by 1 and 10 2 respectively, and integrating over Q x
R3 implies that

1 n ( x ) 1 F i  ( x ,  v ) d x d r <  v  •  n ( x ) F i  ,  v ) d x d v
3.(2-  0 5 2 +

= al(x )dx  = 1, (3.3)
Of2
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and

f Iv • n(x)11v1 2 Fi (x, v)dxdv f v • n(x)10 2 Fi (x, v)dxdv
(352- a f 2 +

=  e10 f od (x)dx = c w 1. (3.4)
052

Also (2.14) implies that

so that

d
ds

F-1 (x + sv, v ,(x +rt,,v )dt > 0,

J s - )

F' (x, y) < F' (x + s -  (x , v)v , v)e i(x+tv, Octr

< F' (x  + s(x ,v )v , v )e D 1 r,v  >  r .

Then

t2 x fv;Id
(x, v)dxdv

f f0

I I Fi (y + sv, v)dslv • n(y)Idydvr _ s * ( x , r )  

< e D  rF i  ( y ,  v ) s ±  (x, v)Iv • n(y)Idydv
a - , r

<  e 2D / r Fi (y, v)iv • n(y) dydv,
as2- r

which is bounded by (3.3) uniformly in j. T he proof of (3 .2) can be derived
analogously.

Lemma 3.2. T he sequence o f  solutions (F i)  t o  (2.14) is w eak ly  com pa ct in
L '(k Q  x R 3 ).

P ro o f  B y L em m a 3 .1 , ( .J.,1 > rC I X d y )  is uniform ly bounded. A lso
uniformly in j

dx dv  < (sup M (x, v)
v  

n(x ))dv
vi r - 1

)
firl I /I, t, n(x)>0 11)1

x  (D  f * yox" (x)dx) c,
. op
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and analogously for f ly r _ ziI  A d v .  L et us p rove  tha t (F7 )  is uniformly
equiintegrable. It follows from the exponential form of (2.14) for F i  that

( , , v )
v.,(x-Erv,v)dr ( x  y )  e Q x  R 3 .(x, v) < ( x  +  ( x ,  v ) v ,  Oda

Hence

J Fl log F'(x,v)dxclv
O xfiv  _6}

D .
<  e (

t
D 1 6  7 ..F i  ( X  ±  , S .— (X, V)V, v)dxdu

“ xlit,i _ SI

+ 6} Fylog (x  +  s -  (x, v)v, v)dxdvQ .{10)

eDA 5 (D
Iv • n(y)(Ff(y, v)s±  (y, v)dydv

u 052 -

+J n ( y ) F lo g  ( y ,  Os+  (y,v)dyclv)
0.(2-

<  eD I6  
D

iv . • n(y)IF1 (y  v )(—
D  

+ log F' (y, v))dydv. (3.5)
6  ao - 6

Here by (3.3) the first term  to the right is uniformly in j  b o u n d e d . As for the
second term  the following holds.

Multiplying (2.14) by log F'  an d  integrating over .(2 x R 3 implies

4  fQxR3 (x, v)dxdv f522 xR 6

V • n(x )Fi log Tv (x, v)dxdv +
052xR 3

e(F1 , F')( x, y, y, 14)

F1 (x, (y, v * )
(F ]v )Fi (y , 14) — (x, v')Ff ( y, ) )  log

 F i  ( x ,  v ') F 1  ( y ,

Fi
1f

J ]
 ( x  v i )  

F i

( y ,  I.
,
'  )Arl :=  XXf F f dydv, J522 x R6F i  '

1 + —

F i *
1  +  —i

J

FJ
x  (F' (x , v ') + (y, v *

/ ) + 
( x ,  v ' )

(y, ) )  log F' (x, v)dxdydvdv*.

1
e(F. Fl)(x , y, v, v* )dxdydvdv.

where

and
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Then

1 p i
X i <  j •

Ff  
(x, y)  (.3),1)'.)f  Fidydv . xie,p( ,„ +

, (x, y ')
x (F-/ (x, v i ) + (y, + (y, )  log - Fy (x, Y )Idxdydvdv * .

Now using Lemma 2.3,

(x, v ) > a-1 *  " ( x  -  s +  (x, y)v) in f M (x , v)ci .

This is bounded from below by a positive Maxwellian M o .  So uniformly in j ,  the
denominator in  X i  is bounded from  below, a n d  log - Fqx, /2) is bounded from
below by c l + c 2 1v12 . It follows that uniformly in j,

c  Fi(1 + I v*12 )dydv* c.

This in turn implies that the outflow of entropy through 0 0 -  (together w ith the
entropy dissipation) is uniformly bounded with respect to  j ,  since the  inflow is
uniformly bounded with respect to j  (for n  fixed). W e  c o n c lu d e  th a t a lso  the
second term to the right in (3.5) is uniformly bounded with respect to j. Since Fi

is  constant along characteristics fo r  Iv < r -  -

1 

and  uniformly bounded o n  052+

w ith respect to  x, y, j  (for n  fixed), this ends the proof o f compactness.

Lemma 3.3. The sequence (Q + (FJ,P)) E is  w eak ly  compact in L 1 (k t2 x R 3 ).

1
P ro o f  The sequence (

v ) d y d y *  
is uniformly in j  bounded from

,fQx R3  F j CY,

above, since given A > 0 , by  the exponential form o f f 7  a n d  Lemma 2.3,

F'( x , y) > M (x  - (x, v)v, v)o- i - (x, v)v)e - s+ ( x. v) .

> cM (x  - s + (x, v)v, v), x  E Q 1  Id 2 .

Hence, it is sufficient to prove the weak L'-compactness of

(L x R3
 'F ' (x, v')Ff (y, )d y d v ,,)  .

By (3.2) the total mass of F l  in i i  > A tends to zero uniformly in j ,  when ), co.
S o  it rem ains to  study  th e  equiintegrability fo r  domains o f  integration, where
(x, y') , (y, )  e  Q x {v c R 3 ; I vi < A}. But there the equiintegrability in (x, y) is an
immediate consequence o f  Lemma 3.2.

xedg2
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We are now in a position to remove the asymmetry between the gain and the
loss term by taking the limit j  ->  co. Let us start from the weak formulation of
(2.14), i.e. for any test function 4E  x  R 3 )  vanishing on 052- ,

(v•V „ )F' (x, v)dxdv + f d1 ydv * L2 „R 6QxR3

x  ( (x, y')
1 + — 1 +

*
(y , v ' ) - F (y, vs.) C(x, v)dxdydvdv,

=  - v  n(x)M  (x ,v )(o -i * )(x)((x, v)dxdv. (3.6)
052+

First (for subsequences),

lim XXj
F F1

 (x, v')  (y, v' )(x, v)dxdvdy s.dv
j . 0 0 f5 - 2 2  x R6 *

1+ - 1+

= lim (x, v')Fi (y, v *
/ )((x, v)dxdvdydv,,,

‘22 xR 6J- '±ac 

by the weak L'-compactness of (F 1). Then, by the change of variables (u. ->
(y', v ),

Fi (x , v ')F (y , v ) (x, v)dxdvdydv *

x R 6

J X X j  Fj
 , v )Fi (y , v ' ( x ,  y ,  v ,  v * ))dxdvdydv * .

. 2 . R 6  

(Fi), as well as (t> • 17x F i)  are weakly compact in L I (S2 x R 3 )  by Lemmas 3.2-3.
Consequently, v ia  averaging, ( fR 3 (y, v * )C(x, v' (x, y, v, v,.))dv s.dy ) is  compact in
L l (Q x  R 3 ) and converges to  

SR
3 F (y, v * ) (x, v' (x, y, v, v* ))dv * dy, where F is a weak

L I lim it  of (17 ). Hence

lim xxi (x , v)fy  (y ,v ,.)C(x, (x , y , v , v ,,))dxdydvdv *
J- >+°° 522 xR 6

= F (x  )F (y , v * )C(x, (x, y, v, v * ))dxdydvdv * .
p 2 xR6

M oreover, (y + Fi) converges u p  t o  a  subsequence to (y + F), since  ( F i )  and
(1) • V F )  a r e  weakly compact in  L i (Q x  R 3 ) . H ence w e can pass to the limit
when j -> + c c  in  (3.6) and obtain
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f f lx R 3 ( l l  
• V,C)F(x. v)dxdu r v*)dydv,,J.QxR 3 F (Y1

x x (F(x ,v ')F(y ,v )
0 2 xR 6

—  F(x,v)F(y,v))C(x,v)dxdydvdv,,

= — v • n(x) M(x, v)(p * g9 r
x

i )(x)((x,v)dxdv,
as2+

which means that F := F "  is a  weak solution to the  stationary sm-transformed
Povzner problem

1
•Vx F "  =

f  Frndydv*f  
v r Fr,n ( x  v I)Fr,n ( y ,  v ) F r , n  ( x  F r , n  ( ll ,) )d y c lv * ,, 

(x, y) e Q x R 3 ,

F" (x , y ) M  (x , v ) (p "  *  v ) (x ) , ( x , y )  e af2+ ( 3 . 7 )

A nd so the  aim o f  this section has been achieved, to obtain a solution for an
approximate equation with gain and loss terms of the  same type, and with the
truncation x r a  characteristic function.

4 .  End of proof o f Theorem 1.2. The main theorem

We now have solutions F r 'n  corresponding to the remaining approximations
o f  (1.3-4) involving Z r  a n d  v n .  We will work with subsequences (rp )  mono-
tonically decreasing to z e ro . T h e  boundary convolution with v n, and the  small
velocity truncation xr will no longer be used to control weak L I compactness. Now
that the gain-loss symmetry is reintroduced, that control will be taken over by the
entropy production term a n d  by estimating integrals along characteristics. In
particular the  boundary convolution will be removed through Jensen type argu-
m ents. In  Theorem 4.1 the  entropy production term will be used to gain r, n-
independent m ass co n tro l. There we c a rry  o u t th e  analysis f o r  a n  arbitrary
element of the sequence (ç ) (and uniformly over n), but in Proposition 4.3 about
weak L' compactness, subsequences (F r"' n )  are being considered. Proposition 4.3
is used for obtaining a  last limit in the approximation scheme, thereby completing
the proof of Theorem 1.2. Finally in the m ain theorem of the paper, Theorem
4.8, the  generalization to hard forces is carried out.

Theorem 4.1. T h e  m ass  o f  (F")  is bounded uniformly w ith respect to r. n.

P ro o f  Consider a  sequence (rp )  monotonically decreasing to z e ro . If  th e
mass of the corresponding sequence (F P )  is not uniformly bounded, then there is a
subsequence (F P )  such that
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FP (x, v)dxdv 3c,e
2 p D

, (4.1)
Q xR 3

with ca e2 D  >  1 Set V p { V  E R 3 ; r p < Then using (3.1)

FP(x,v)dxdv > 2c,e 2PD  > 2 FP (x, v)dxdv,
52x I/P}

so that

Qx V.
FP (x, v)dxdv >

2
FP(x,v)dxdv.

-5  Q x R 3

By (3.1-2), V P  is integrable, for any  com ponent of y. Green's formula can
then be used for the equation (3.7). Let / i x° denote the plane through xo c Q and
orthogonal to  the ç  direction. By Green's formula for one of the subregions into
which Q is divided by II x o ,  it holds that

x R3

 2 FP(x,v)dxdv < c,

with c  only depending on M  of (1.4). Hence,

JQ x R3

 2 FP(x,v)dxdv < c.

Analogous estimates hold for the integrals of F P  time the square of any component
of v. H e n c e

JQ x R3 
1v12 FP(x,v)dxdv < ch . (4.2)

Moreover,

FP (y, v * ) > FP (y  -  ( y ,

M(y - s+ (y, v * )v* , v* )(pP * P)(y  - (y, v * )v * )e - '+ ("*)

> c, 1 lv,k 1

by Lemma 2.3. Using that type of estimate for FP (y ,v )  but from above with
respect to outgoing boundary, for geometric reasons the following holds. For y  in

an x-dependent subset Q  p  Q w ith  1,Qp1 
'

>  -  there is S2py with
-  2

7r(A3 -  1 ) -

and there is Qp y , O p y  w ith  I-S-2p y x l » 1 , such that,

/ ( x -  y ) x -  y  v* (x, y, y , y ) : v* + (v  - v*)
- -

e c V p , v ,  e Qp y x .
Yi Q P Y

Here the following lemma is needed to complete the proof of Theorem 4.1.
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Lemma 4.2. U nder th e  hy pothesis (4.1) f o r  th e  sequence  (FP), there  are
Sp  Q ,  an d  f o r a.a. X E  S p ,  y  e Qp ,  there  are  Sp x  V p  a n d  Qp y x c Q p y  with
1Qpyxl> 1, such that

and

1
FP (x ,v)dxdv > FP (x, v)dxdv,

f2xR 3

FP (x, v) > p 3 FP (x,v'(x, y, v, v.)),  x  e  S p , v  E  S p x ,
 y  E  Qp , v .  c  Q p y x ,

( x -  y )  x -  y
w here v '(x , y, y, v .)  := -  ( t )  -  v .)

- -

P r o o f  Using the previous discussion, it is enough to prove the existence of
Sp  c  Q  and for a.a. x E Sp  the existence of Sp ,- VP  a n d  Vp'x  ty ':  1  <  v 'l  <  2 1
with lV J  <  1 , such that

and

1
FP (x, v)dxdv - FP (x,v)dxdv,

6 QxR 3

FP (x, v) p 3 FP (x,v / ), x  e Sp , v Sp x , V;x.

Let U :=  ; A l and

Sp  :=  { x  ,S 2 ;1  FP(x, y)dy  p FP(x , y )dy} .
vp

Then

J FP (x, v)dxdv p FP (x,v)dxdv
Q\Sp Vp , Q \ S p  U

< pc c e2 1 )  <  p e 2 ( I - P ) D f  F P  (X , l l)d X d ll .
Q  V p

Hence

fsp fvp
FP (x, v)dxdv (1 -  p e

2 ( 1 - p ) D

FP (x,v)dxdv !

J
F P  ( x ,  v ) d x d v ,

Q  V ,, -5 f2x123

for p  large enough.
Let x E Si,, be fixed. By rearrangement, there are nonincreasing, nonnegative

and left-continuous functions E f and Fx.P  respectively, defined on [0 ,  '!J  an d
[0474/1 3  -  1 ) ]  such that

e Vp ; -  d a  FP (x ,v )  <a+ dcI

= lp e [0, l Vp l]; a -  d a F  ( a +
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and

ly U ;  —  c/a < FP(x, y) + dŒ

= c [0 ,1 7 (/13
 —  

1 )]; — F  (II) <  +

Let us divide the interval 0 < ,u < IV A  into two intervals /1, h in increasing order,
so that

1
,u = — FP (x, v)dv, v E {1, 4

2 Vp

For any j sm aller than  the right endpoint of I I ,

c  -
P - ( f 1 ) (ii)1/21 f'/,! (P)dP = —1 FP (x,
2p 3" 2  v r

n (4/3)74,13-1)
12f FP (x,
2  u

=
z

F xP (p)d,u.
o

Hence, for any smaller than the right

C
F .Px ( fi ) P

endpoint of I I  and any fi E [ 1 4 741 3 — 1 ) ] ,

- P - P  -Fx (11 )0 PF v (P),

which implies

0

F ) P  F I!,, (Ti ) ,

for p  large e n o u g h . Let

Sp x  : =  fy  c  Vp ; FP(x, y) (fi) for some /4

smaller than the right endpoint o f  111.

Then

1JF P  (x, y)dxdv = P (p)dp.=
sp fs,v fsp L f vp 

Fp(x,v)dxdv

> FP (x, v)dxdv.
6 f2x143

End of proof of Theorem 4.1. Multiplying (3.7) with log F P  and integrating
over Q x R 3 implies

1 
4 f FPdydv  L 2 xR6 

e(FP FP)(x , y, y, v)dxdydydy.

t O x R 3

 y .  n(x)FPlog FP (x, y)dxdy
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= f
F P

V • n(x)FPlog —  (x v)dxdy
ao x R 3 M

+ y • n(x)Flog M(x,v)dxdv.
x R3as2 

F(x ,v )F(y ,y*)
e(F , F) := z r(F(x ,v )F(y ,v *) - F(x ,v ')F(y ,v :)) log 

F ( x , v ' ) F ( y , y , . ) .

y • n(x)FPlog M(x,v)dxdy
Of2x R 3

JV  •  n(x)FP (b(x) + c(x)1v1 2 )dxdv c pP (x)dx =
aQxR3 

c,
as2

FP
y . n (x )Flog (x, v)dxdv = p" * K (x) log(pP * K )(x )dx

ag2

< j ç * (pPlog pP)(x)dx = pPlog pP (x)dx,
. OQ

by Jensen's inequality. Again by Jensen's inequality (see [9]),

pP (x)log pP (x)dx n(x)1FP1og —

F P  

(x v)dxdv,
052 052- M

since

pP (x) = Iv •
n x < 0

n(x)1M —

F P  

(x
'
 v)dv.

My . ( )  

Hence

1 
.1F p d y d v , ,22 x R6 

e(FP , FP)(x, y,v,v.)dxdydvdv *c  <  o o

This together with Lemma 4.2 implies

1
FP (x ,v )dx dy  > -,f FP (x,v)dxdy

S p  f Spr f2x12'

c e(FP FP)(x, y ,v ,v)dxdydvdv*
Q2 x R 6

> c e(FP , FP)(x, y,v,v,)dxdydvdv,.
e  S ,„  e  Sr ,  , y  E  (2,„ e

Here

Also

and
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The inequalities

FP (x, y ) > p 3 FP (x, v'), c  F P <  1,

c < FP (y, < 1, x  c  S 11 , V  E  Sp .„, y  e Qp , V  E  Qpyx,

imply that

FP(x ,v )FP(y ,v ) —  FP(x ,C)FP(y , > cFP(x , y ),

and

FP(x , y )FP(y , v . )  >  c p 3 ,

FP (x , v ')FP(y , v )

so that

e(FP , FP)(x, y, y, cxrP FP (x, Y ) log p.

Moreover, I L a n d  fo r  a .a .  x  e  Sp ,  y 1Qpyr1 a re  bounded from below,
uniformly with respect to  p  a n d  x , y . Hence,

VirP FP (x, v)dxdy > c log p tlirP FP (x, v)dxdv,
Sp S „,

which leads to a  contradiction. This ends the proof o f Theorem 4.1.

Remark. In this step the condition of the diffuse reflection being Maxwellian
was used to obtain

y  n(x )FP(x ,y ) log M (x ,y )dx du < c.

A  number o f  generalizations a re  obviously also possible, including the one of
replacing M  by normalized functions 0  with

n(x)FP (x, y) log 0(x, v)dxdy c.

The key Theorem 1.2 will easily follow from the  previous results together with
weak sequential compactness o f  (Fr'").

Proposition 4 .3 .  A ny sequence (FN'") w ith lim„, r n =  0 is weakly  compact in
L'(1(52 x R 3 ).

P r o o f  T he statement follows if the  sequence (F r " )  is uniformly equiinte-
grable . G iven e , there is K , such that

Fr"'n(x,v)dxdY  < e.

So if the proposition does not hold, then there is e  > 0, a  subsequence (F")  and a
sequence o f domains (A n )  w ith (A„) S 2  x  { r„ <1 v 1  < K ,} , such that
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L. Fn (x, v)dxdv e, 1-4,71 < n - 3  .

Let us first discuss the case of

A n g  x  V  =  Q  x {v  E 123 ; rn ivi

By Theorem 4.1 , for some co > 0,

F' v)dxdv co G co,
t x R 3

independently of r, n. And so

F" (x, v)dxdv e — Fn (x, v)dxdv.
Qx V„ CO QxR3

We can then proceed as in the proof of Theorem 4.1 introducing S2n , Q n y  and Ony x.
We will also need a variant of Lemma 4.2 , namely

Lemma 4.4. There are S n Q ,  and for a.a. x E Sn , y  E O n , there are Sn x  V n ,
O n y x c  O n y  w ith 1‘2 ,,1>  1 , such that

J —4ec o  0><R,s,fs„, 
F"(x, v)dxdv Fn (x, v)dxdv,

and for X E S ,  VESn ,  y e g2„, V EQ n y x ,

F"(x, v) n 2 F" (x, v' (x, y, v,

P ro o f  It is enough to prove the existence of Sn  Q  and for a.a. x  E S„ the
existence of Sn x V n and V , {v'E R 3 ; 1 < 2} w ith  1V::,1 < 1 such that

I .1 4co QxR 3

F" (x, v)dxdv — F" (x, v)dxdv,
s„ s,,,

and
F"(x,v) >  n 2 F"(x ,v / ), x  E  S n , v  S n x ,

Let U := {v E R 3 ; 1 AI and

Sn  :=  {x e F" (x, v)dv F" (x, v)dv}
v,, u

Then by (4.2),

J F"(x, v)dxdv F"(x,v)dxdv
O\ 5,, f V,, ZCh fQ\S„ U

1
-
2 Q

F" (x, u)dxdv.
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Hence

1
F n (x, v)dxdv f f 2  v  F"(x ,v )dxdv

> (x, v)dxdv.
zco t x R 3

Given x E Sn , introduce the rearrangements E , and F," as in the proof of Lemma
4.2 and conclude as there that for any f i  smaller than the right endpoint of /1 and
any ft e [1,174.13

 —  1)],
E —n

—

c  

F
-  

1 (14) >
n 34 c h  x

Hence, for large n,

(ft)

Let

Snx  := { v  E  V „;F"(x ,v )> 'PA M  f o r so m e  ft

sm aller than the right endpoint of

Then

JJ F" (x, v)dxdv = P,n(p)dp =
1

F" (x, v)dxdv
s„ s„ L  s„ v„

> — Fn (x,v)dxdv.
4e0

Continuation of the proof  of Proposition 4.3. From the proof of Theorem 4.1,
we know that uniformly with respect to  n,

e(F" , F")(x, y, v, v„)dxdydvdv„. c  < 00,
Q 2 xR 6

which this time using Lemma 4.4 leads to the same contradiction as in the proof of
Theorem 4.1. W e have thus proved that given E > 0 , there is n , such that

F"( v )dx dv  < E.
InI

It rem ains to  p rove  the uniform e-equiintegrability for (F " )  on S , = Q x
{v e R 3 ; n »  <  v  <  K,}. Assume that in the set S , there is a sequence (A „) with

< n- 3  such that

Ft' (x, u)dxclu > c.L.
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Then A „ = An i U A n 2 ,  with

A n i : = { (x , y) c An ; meas{ w c R3 ; (x, w) c An} <

A,„2 : = •

Arguing similarly to the earlier case of v < ,  there is no E N  such that

F" (x, y)dxdu < n> no.2
(4.3)

It rem ains to  exclude the possibility that 
Syln2  

Fn(x, y)dxdu > -
2  

fo r an  un-

bounded sequence of n. For this we first prove the weak L l (0‘2) compactness of
( p " ) .  That result is a direct consequence of the following two lemmas. Write I l l =

G "  H ", where

(x) := g n (x , v)dv,
vm(x)<0

ovn(x+sr , v)dsg n (x , y) := 1r • n(x)1 M  (x  - s+  (x, v) v, Op" * (x  - (x, y)y)e

1 e- r  v„(x-Erv.v)drH n (x ) :=  Iv • n(x)1
f  F"dydv .t.,,(,) < 0 

x  x rn  ( x  s u  -  y, V. y )F"(x  su , y ')F"( y , )dy dv  *duds.

Lemma 4.5. (G ")  is strongly com pact in  O a t -2).

Lemma 4.6. (H i')  is weakly compact in  0 0 5 2 ).

Pro o f  o f  L em m a 4.5. (G " )  is u n ifo rm ly  i n  x  a n d  n  bounded by
c fa  2 p"( y )dy  = c, thus w eak ly  L I -com pact. N ex t, (G " )  i s  an equicontinuous
fam ily , uniform ly w ith  respect t o  x c Q .  I n d e e d ,  f o r  a  fixed x c a t2 ,  let

A x  :={ 1, e R 3 ; 0 < -  —
v  • n(x) 6 }  ,  B , := { v  e R3 ; 0 < -v • n(x), lid 6}, and G  :=Lid

{y c 12 3 ;(5 < - -v  • n(x),6 < 11)1 < K } . The M-factor makes the contribution from
I vl

Iv( > K  arbitrarily small for K  large enough. W riting .1) in polar coordinates r =
It* ,  w c S 2 , and bounding from above the exponential term by one, implies that

gn (x, v)du ico • n(x)i(p" * yox")(x  - (x, (0 ) (0 )
A, we S 2 :0 < —0»n(x) 6

+co
X 1V1

3

M(X — (X , (0 )(0 , IVICO)dIVIdC0

0

< f (I)" *  . )(x 8 +  (X ,  C D ) C ° )  IC° •  n(x)Idco
E s2 <  6
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Dco
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By the change of variables co —> y = x  — ( x ,  co)o) E

gn(x,v)dv (Pn * ço.iv1 )(Y)1(0  • n(x)1
A , fy e 0s2,o - (x -y )/ lx -y l ,n (x ) , 5

< c (  n  * K)(AdY,i P
ye

Dcosince 1w • n(x)1 
D y

 is  u n ifo rm ly  b o u n d e d . T he above weak L I -compactness of

(G ") is all from  the present lemma, that is used in  the  proof o f  Lemma 4.6 to
prove the weak L I -compactness o f (1-1'1), thus o f ( p " ) .  That in  turn implies the
uniform in n convergence to  zero of SA , gn (x, v)dv, w h e n  —p O. The contribution
o f Bx  t o  Gh  i s  in  the  same way bounded by

f
ko • n(x)I(p" * yox")(x — s+  (x,

co e S2 :0 — upn(x)
)w )

a
X  J o Iv1 3 M(x — s± (x, co)w, luko)c/IvI)dco

< ce5 w .  n(x)1(p *  , c11 ) ( x  — (x,co)co)dco
s2

< Cd.

There remains to study the contribution from  Cx  t o  G".

gn (x + h, v)dv = ico • n(x + h)lp" * yox"+11 (x + h — s+  (x + h,co)co)
C hx+ —co.n(x+h)>6

X  (15 IVI 3 M ( X  h — s+  (x h,co)o),IvIco)

e
-(il f F"dydv,) (,+h,v1.) x '  (x-} -h+sMco— y,r1w,v4F"(y,t,*)dydv*ds 

c l I v I ) d c o .

Set

uh = lh + s+ (x + h,v)vl •

Obviously Duh =  identity for h = O. B y  con tinu ity , the convergence to this valueDco
when h —+ 0 is uniform with respect to  X E  af2, V  E C .  A ls o

lim co • n(x + h) — oh • n(x) = 0,
h—■0

h + s+ (x + h, v)v
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uniformly in  x e aS2,
0

l i m ( e
-(1/5F"dydv.) f xr"(x+h+sA w— y,1v1(0,14)F'(Y ,v)dydv.ds

e
- ( I I d y d  

r
s+, .  f (x+01(0 — Y, 1v10), )F"(y, v.)dydv*ds

)  =  0 ,— F n
v . )  

uniformly with respect to  x E as2, V  c C .  Set

G (x ) = gn (x,v)dv,
c v

and change variables from do) to duh in  G(;1 (x). It follows that limh—oGS(x + h) —
G75 (x )  = 0 (6 ) , uniform ly w ith respect t o  n EN, x  aQ, 0 < p E L 1 (3Q) with
S3g2 pdx = 1.

Proof of  Lemma 4.6. If follows from the earlier discussion of 'small velocity
mass for P " ,  that in the definition of H "(x ) it is enough to consider domains of
integration w ith 1v5 v * 1, 1v/, 114 > 6 > 0, a n d  from  th e  uniform  bound for
51v1

2

Fn (x, v)dxdv that it is enough to consider dom ains o f  integration with

Iv.i,10,1 1):,1< It also follows from the (A n i ) part that it is enough to discuss as
v v'

domains of integration, sets w ith 1 —6  >  —
1v1

. . Let L5 b e  the characteristic

function of these v, v , y', v . S o  w ith  B,„ a set in as2 of measure < m- 2 , instead of
I m  = H "(x )dx , it is enough to discuss

/6'n =
fo

5Fndy dv * B„
1) n(x)I

,xR31
• 

L .R 3 h
1

x F"(x  + sv . v ')F"(y ,v )e -  r P"d r dsdydv * dxdv,

since (using the argument in (4.3)) the contribution outside supph tends to  zero
with 6  uniformly in  n. F or s, v, v' fixed, F"(x  + sv , v ') can also be expressed in
exponential form as an  ingoing boundary value plus a gain term integral along a
characteristic. The contribution from its boundary term to ic'in gives—similarly to
the proof of Lemma 4.5—a contribution to  /,'5 1 which tends to  zero when m op,
uniformly with respect to n. Another 45 truncation also removes an integral in the
gain part, uniformly with respect to  n  small of order o(1) in 6. Repeating once
again the procedure o f expressing the latest remaining gain term  in  exponential
form, leads to a boundary contribution tending to zero when m co, uniformly in
n, and an inner integral. Taking into account that all the occuring exponentials of
collision frequencies a re  bounded by one, this inner integral is bounded by

Kr" := 
1

3 F "  ( y 1 , V i',i )F" (y 2 , 17 )F" (y 3 , I/
(f Fn d y d v ,)  z

x  F"(x  + siv  + s31/, V 3');dz idxdvdy 123 dv 23* ds I 23 ,
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where d-YI23 -  dy 1 dy 2 dy 3 ,  and analogously  dv i23 , ds123. A ls o ,

v'(x + si v, Yi v*) ,

1/ := v i (x + si + s2 VII , Y2, VI' , V1*),

:= 1.1' (X + Si + S2 Vit + S3 V2I , y3, V21 , V2*),

and analogous definitions for the *  variables, and

Z  : =  (X, V, Y1, Y2 , Y3, VI*, V2*, V3*, S I S2, S3); X E Bm,

v ER 3 Y i E R 3 , V* ; E R 3 , i = 1, 2, 3, s i[ - s + (x, y), 0 ] ,

s2 e  [-s +  (x + s i y, , 0], s3 E [- s + (x + si +  s2 V ), 0]}.

For (X, Si , S2, S3, YI, Y2 , y 3 ) fixed, by the successive changes of variables (y,
(V(, V 1') , ,v i)  -> ( V , v2) -> 11*), A dv * I23 is  rep laced  by
dV 3/d171'* d * dV 3

1
* . Hence K m  is bounded by

< 
F d y d v )

3 F n (Y1 , V (* )F n (Y2 , V 2.)F n (Y3 , V 3*)(f n *

X F n ( x  s i c ± S2 V( + S3 V , V 3
I )dxdV3'  dr - *1 2 3  d Y123 dS12 31

where now y , 17 (  and 1 /  are functions of (x, 17 1%, lq„ 17
* , y i , y 2 , y 3 , si ,s-,.s3 ).

For (x, V3', 1/1'* , fixed, let us make the change of variables

(s i , S2, S3) -› z  =  X  +  Si y + S2 1/( ± S3 V .

T he set {z = x + s i v + S2 + S3 V2; (X, V, Y1 , Y2 , Y3 , V1*, V2*. V3*, SI , S2, S3) E Z }  i s  a
Ds

volume in R 3 a n d  th e  Ja c o b ia n  -

D z  

is bounded from  above due t o  the x6

truncations giving

y VI'
ivi

  

V1' 1/. .
117[1

  

so that

ciBm1 F"(z ,V D d z d  < cm - 2 .
QxR3

W e conclude that (H " )  is weakly compact in L I (0f2).

End of  proof of  Proposition 4.3. It remains to study SA F"(x ,v )dx dv , where

meas{x e f2; ]t, c R 3 s.t.(x, y) E A,,, } < n - 2 .

Write F "  in exponential form as the sum of an ingoing boundary value term B"
and a characteristic gain term integral C " .  For the integral of B " over A „,, again
given y, split the x'es of A „,, into those x o where (x0 , y) e A n ,  and the set of x =
x0 +  tv  such that (x , y )  e A „,, has m easure sm aller than n - 1  ( s m a l l  set along
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characteristic), a n d  th e  rest which projected into a  p la n e  o r th o g o n a l t o  y
have measure smaller than n- 1  (sm all set of characteristics). The B " integral for
the  first subset o f  A „ is bounded by cn - I ,  with c  independent o f  n. T h e  B"
integral over the second subset of A n ,  tends to zero when n o c  by the  com-
pactness o f  (p"). So l i m ,  SA B "  0. A s  fo r  th e  (C ")  sequence, th e  same
type of arguments that proved thé compactness of (H " )  in Lemma 4.6, gives that

A „ 2  
C" = 0. This completes the  proof of the proposition.

( 1  Lemma 4.7. The sequence
Fndydv ,  f k 5 2 x 1 1 '  

x r"F"(x , Y ')F"(y ,v ')dy d t,,,)  is
weakly com pact in LI (kS2 x R 3 ).

P ro o f  The proof o f Lemma 4.7 is similar to the  proof o f Lemma 3.3.

Pro o f  o f  T heorem  1.2. Consider t h e  w eak  L ' l im i t s  o f  (F r" '" )  and
p r n p n  0  xn Using th e  w eak L '-compactness of Proposition 4.3 and
Lemmas 4.5-7, w e can  p ass to  th e  lim it in  th e  w eak formulation of (3.7),
analogously to the end of Section 3. The weak limit of (p") is by the usual trace
arguments equal to the  outgoing flux of the limit F  o f  (F " ) .  Hence F  satisfies
the sm-transformed problem (1.5-6), and so Theorem 1.2 follows by an application
o f  Lemma 1.3.

The discussion so fa r  was restricted to the collision kernel in the Povzner
collision operator being identically equal to 1. We shall now finally in the main
theorem of the paper extend the results to more general collision kernels. Here
te s t  functions f o r  th e  weak form  o f th e  P o v zn e r equation a r e  functions in
L"(S2 x R 3 ) ,  continuously differentiable along characteristics a n d  vanishing on
052-

Theorem 4.8. There exists a  weak solution f  in LI (S2 x R 3 )  with given total
mass k >  0  to  the boundary  value problem  (1.1 - 2 )  when the collision k ernel is a

(
.-_, x y

strictly positive f unction hi —  , v  v ,, , b o u n d e d  in  L '(S 2 x  R 3 )  (of pseudo-
Ix — Yi

maxwellian ty pe), o r is  o f  hard force type

( x  Y   , Y . )  — 1:3( x  —
—

v.,)1v — ydfi, 0  <  ) 5' < 2. (4.4)
— 

P ro o f  First, the existence of a weak L+
I so lu tio n  to  the Povzner equation

—
in the case of a positive, bounded C "  collision kernel B y

, Y . )  can be
\jx —y

proven in  the  same way as for Theorem 1.2 in  the  previous sections, where the
collision kernel was identically equal to o n e . L e t u s  next consider the case when
the collision kernel B  is bounded and  measurable. L e t (Bp )  be a  sequence of
bounded C "  functions uniformly converging to B  outside of sets of measure E  for
all e > 0. The existence of a solution FP to the Povzner equation with collision
kernel Bp  an d  to ta l m ass  k 4  for the sm -transform  is already clear. Then the
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arguments in the proof of Theorem 4.1 and Proposition 4.3 apply to (FP), so that
(FP)  is weakly compact in  L '. U sing  th is w eak  com pactness, a s  well as the
uniform convergence of (Bp )  outside of arbitrarily small sets, one can pass to the
lim it in  the  weak formulation satisfied by FP.

Consider next the  case  of a  co llision  kernel o f  th e  ha rd  force type (4.4).
Lemma 1.3 holds also in this c a s e .  Namely, solving the original Povzner problem
(1.1) under (4.4), is equivalent to solving the following transformed problem

5(1 + Iv.1)fiF( Y, v ) d Y d v i  (IX  — 37 1' v  v * )

1 X  — Y
u•V x F(X ,u )=

x F(X ,t2')F(Y ,v)dY du* —  F(X  ,v)
BF(Y  ,v)dY du *

where

F(X  ,y ) := f
X X 

5( 1 + IvI)fif (x , v)dxdv u ) 5(1 + IvI)flf (x, v)dxdu 6  ‘2 '
v e R 3 .

The proofs o f  th e  preceeding two steps im ply the existence of solutions FP to
such  transfo rm ed  p rob lem  w ith  collision kerne ls Bp  = min(B, p )  a n d  with
5(1 + I V  F (X , v)dXdv = k 4 . W e  c a n  p a s s  to  the lim it in  the  weak formulation
satisfied by (FP) when p —> co by once more applying the proofs of Theorem 4.1
and Proposition 4.3.

Remark. Other generalizations can also be treated by this approach, such as
given indata boundary conditions, there also the soft force case w ith —3 <13 < 0
by involving the renormalized solution concept, as well as more localized situations
such as

B(x — y,v — v * ) :=  h ( x  u
—

v*)1v — u,,I f ix(x — y), —3 < fi < 2,

where z  is  the characteristic function o f  a  neighbourhood of zero.
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