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Abstract. Strong L1-convergence towards a stationary solution when time
tends to infinity is established for the solutions of the time-dependent non-
linear Boltzmann equation in a bounded domain Ω ⊂ IR3 with constant
temperature on the boundary. The collisionless case is first investigated in
the varying temperature case.

Introduction. The initial boundary value problem for the Boltzmann
equation with large data when the behaviour at the boundary is either given
by a pointwise reflection law or by a mixing of specular or reverse reflection
with diffuse reflection was first studied by K. Hamdache [13]. In contrast to
the specular reflection and periodic cases, the diffusion reflection boundary
condition provides a well-defined boundary temperature. A later study by
L. Arkeryd and C. Cercignani [2] deals with the case of general diffuse re-
flection with varying boundary temperature under a restriction to bounded
velocities. The diffuse reflection case with unbounded velocities was solved
by L. Arkeryd and N. Maslova [4]. A serious extra complication in this case
in comparison with the specular reflection and periodic cases is the quite
delicate trace behaviour due to the integral connecting ingoing and outgo-
ing mass flows. A natural next question is the long time behaviour of the
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time-dependent solutions. Strong L1 asymptotics for the Boltzmann equa-
tion in the periodic case when t → ∞ was considered by L. Arkeryd [1] and
P. L. Lions [14]. In the case of reverse and specular reflection, L. Desvil-
lettes obtained weak convergence [10] when t → ∞. For other boundary
conditions the existence of stationary solutions becomes part of the prob-
lem. Under various cut-offs of the collision kernel for small velocities, the
existence problem for a slab in the stationary case was studied in a mea-
sure setting by L. Arkeryd, C. Cercignani and R. Illner [3], and in an L1

setting by L. Arkeryd and A. Nouri for given ingoing data as well as diffuse
reflection boundary with varying temperature [5]. In the context of diffuse
reflection on the boundary, C. Bose, P. Grzegorczyk and R. Illner studied
the asymptotic behaviour of the discrete velocity model of the Boltzmann
equation in the slab [6]. We are here going to consider the corresponding
asymptotics for the full Boltzmann equation with diffuse reflection at the
boundary when the boundary temperature is constant.
The first section of the present paper is devoted to the collisionless case
in a bounded domain with maxwellian diffuse reflection and varying tem-
perature at the boundary. Strong L1-convergence of the solutions for the
time-dependent equation inside the domain as well as on the boundary to-
wards the associated stationary time-dependent solutions is established. The
sole mechanism behind this convergence is the maxwellian diffuse reflection
boundary conditions.
The asymptotics for the time-dependent Boltzmann solutions with maxwellian
diffuse reflection and constant temperature on the boundary is studied in the
second section. Here the entropy dissipation term is essential for the asym-
potic properties. First a global in time control of the energy is achieved
by bounding the relative entropy with respect to the stationary solution,
using a Darrozes & Guiraud inequality [8]. This is then used to prove the
strong L1-convergence to a global maxwellian (i.e. independent of x and
t), uniquely determined by the boundary conditions and the conservation of
mass. Such a uniqueness result is still open in the periodic and specular
direct reflection boundary conditions cases.
Throughout the paper c denotes a constant which may have different values
at different places.
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1 The collisionless case.

The problem considered in this section is the asymptotic behaviour of the
solution of

∂f

∂t
+ ξ. 5x f = 0, t ∈ IR+, x ∈ Ω, ξ ∈ IR3, (1.1)

where Ω is a bounded convex open set of IR3, together with the initial
condition

f(0, x, ξ) = f0(x, ξ), x ∈ Ω, ξ ∈ IR3, (1.2)

and the maxwellian diffuse reflection at the boundary

f(t, x, ξ) = M(x, ξ)

∫
ξ′·n(x)<0

| ξ′ · n(x) | f(t, x, ξ′)dξ′,

t ∈ IR+, x ∈ ∂Ω, ξ ∈ IR3, ξ · n(x) > 0, (1.3)

where n(x) is the inward normal at x ∈ ∂Ω.

M(x, ξ) = (2π)−1θ2(x)exp(−.5θ(x) | ξ |2) (1.4)

is a maxwellian with prescribed inverse temperature θ(x), such that

0 < c1 < θ(x) < c2 < ∞. (1.5)

All along the paper, Ω is assumed to have a boundary ∂Ω of Lyapunov type,
and f0 ≥ 0 is assumed to satisfy∫

Ω×IR3

f0logf0(x, ξ)dxdξ < c,

∫
Ω×IR3

(1+ | ξ |2)f0(x, ξ)dxdξ < c.(1.6)

The existence of a unique solution of (1.1)-(1.6) can e.g.be deduced from [4].
Existence and uniqueness properties for the associated stationary problem
are stated in the following theorem.

Theorem 1.1 The stationary equation

ξ. 5x f = 0, x ∈ Ω, ξ ∈ IR3, (1.7)

together with the boundary condition

f(x, ξ) = M(x, ξ)

∫
ξ′·n(x)<0

| ξ′ · n(x) | f(x, ξ′)dξ′,

x ∈ ∂Ω, ξ ∈ IR3, ξ · n(x) > 0, (1.8)

has a non-negative solution in L1 ∩ L∞(Ω × IR3) with given total mass µ,
which is unique in L∞(Ω × IR3) as well as in L1(Ω × IR3).
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Proof of Theorem 1.1.

For (x, ξ) ∈ Ω × IR3, denote

s+(x, ξ) = inf{s > 0;x − sξ ∈ ∂Ω, ξ · n(x − sξ) > 0}.

Define a solution fs of (1.7)-(1.8) by

fs(x, ξ) = κM(x − s+(x, ξ)ξ, ξ), x ∈ ∂Ω, ξ · n(x) < 0,

and extend fs so that it is constant along the characteristics ending at
(∂Ω× IR3)− := {(x, ξ) ∈ ∂Ω× IR3s.t. ξ · n(x) < 0}, and choose κ such that

∫
Ω×IR3

ξ

fs(x, ξ)dxdξ = µ.

Then, for x ∈ ∂Ω,
∫
ξ′·n(x)<0 | ξ′ · n(x) | fs(x, ξ′)dξ′ = κ(2π)−1

∫
ξ′·n(x)<0 | ξ′ · n(x) |

θ2(x − s+(x, ξ′)ξ′)exp(−.5θ(x − s+(x, ξ′)ξ′) | ξ′ |2)dξ′

= κ
∫
e′·n(x)<0,|e′|=1 | e′ · n(x) | de′

∫ +∞
0 (2π)−1exp(−.5τ2)τ3dτ

= κ.

(1.9)

Hence fs(x, ξ) = κM(x, ξ) for x ∈ ∂Ω, ξ · n(x) > 0, fs satisfies (1.1) and
(1.3), and fs belongs to L1 ∩ L∞(Ω × IR3).
If there is another solution f in L1(Ω × IR3) or L∞(Ω × IR3), then the
boundary condition (1.8) implies that there exists a function K defined over
∂Ω, such that

f(x, ξ) = K(x)M(x, ξ), x ∈ ∂Ω, ξ · n(x) > 0.

Here

K(x) =

∫
ξ·n(x)<0

K(x − s+(x, ξ)ξ)M(x − s+(x, ξ)ξ, ξ) | ξ · n(x) | dξ.

Hence K is continuous. Also∫
e·n(x)<0,|e|=1

∫ ∞

0
(2π)−1θ2exp(−.5θs2) | e · n(x) | s3dsde = 1

independently of x in ∂Ω. It follows that K is a constant function, since at
each point it is a convex combination of the other K-values.
We now derive energy and entropy bounds for the solutions of the time-
dependent problem (1.1)-(1.6).
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Theorem 1.2 Let f be a solution of (1.1)-(1.3) under (1.4-6). Then∫
Ω×IR3

| ξ |2 f(t, x, ξ)dxdξ,

∫
Ω×IR3

f | logf | (t, x, ξ)dxdξ

are uniformly bounded with respect to time t in IR+. This also holds for the
mass and energy flows∫

[t,t+1]×∂Ω

∫
ξ·n(x)>0

ξ · n(x)f(t, x, ξ)dxdξdτ,

∫
[t,t+1]×∂Ω

∫
ξ·n(x)<0

| ξ · n(x) | f(t, x, ξ)dxdξdτ,

∫
[t,t+1]×∂Ω

∫
ξ·n(x)>0

ξ · n(x) | ξ |2 f(t, x, ξ)dxdξdτ,

∫
[t,t+1]×∂Ω

∫
ξ·n(x)<0

| ξ · n(x) || ξ |2 f(t, x, ξ)dxdξdτ.

Proof of Theorem 1.2.

(∂t + ξ · 5x)(flog
f

fs
) = 0,

where fs denotes the solution of the stationary problem introduced in The-
orem 1.1. Integrating over [0, t] × Ω × IR3 leads to

∫
Ω×IR3 flog f

fs
(t, x, ξ)dxdξ −

∫ t
0

∫
∂Ω×IR3 ξ · n(x)flog f

fs
(τ, x, ξ)dτdxdξ

=
∫
Ω×IR3 f0log

f0

fs
(x, ξ)dxdξ,

(1.10)

so that, taking into account the non-positivity of the boundary term in
(1.10) (see Darrozes & Guiraud inequality in [8]),

∫
Ω×IR3

flog
f

fs

(t, x, ξ)dxdξ < c. (1.11)

Hence∫
Ω×IR3

flog+f(t, x, ξ)dxdξ −

∫
Ω×IR3

f | log−f | (t, x, ξ)dxdξ

−

∫
Ω×IR3

f(t, x, ξ)logfs(x, ξ)dxdξ < c.

It implies that∫
Ω×IR3

flog+f(t, x, ξ)dxdξ −

∫
Ω×IR3

f | log−f | (t, x, ξ)dxdξ

+c̃

∫
Ω×IR3

| ξ |2 f(t, x, ξ)dxdξ < c. (1.12)
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But for every positive real ε, (see [7]),
∫

IR3
ξ

f | log−f | dξ

=

∫
f≤e−|ξ|ε

f | logf | dξ +

∫
e−|ξ|ε<f≤1

f | logf | dξ

<

∫
|ξ|≤1

dξ +

∫
ξ>1

e−|ξ|ε | ξ |ε dξ +

∫
f | ξ |ε dξ,

so that∫
f | log−f | dξ < c +

∫
| ξ |ε fdξ. (1.13)

It follows from (1.12-13) that
∫
Ω×IR3

flog+f(t, x, ξ)dxdξ −

∫
Ω×IR3

| ξ |ε f(t, x, ξ)dxdξ

+c̃

∫
Ω×IR3

| ξ |2 f(t, x, ξ)dxdξ < c.

Hence ∫
Ω×IR3

flog+f(t, x, ξ)dxdξ

+
c̃

2

∫
Ω×IR3,|ξ|2−ε≥ 2

c̃

(| ξ |2 −
2

c̃
| ξ |ε)f(t, x, ξ)dxdξ

−

∫
Ω×IR3,|ξ|2−ε≤ 2

c̃

| ξ |ε f(t, x, ξ)dxdξ

+
c̃

2

∫
Ω×IR3,|ξ|2−ε≤ 2

c̃

| ξ |2 f(t, x, ξ)dxdξ

+
c̃

2

∫
Ω×IR3

| ξ |2 f(t, x, ξ)dxdξ < c,

which implies
∫
Ω×IR3

flog+f(t, x, ξ)dxdξ +
c̃

2

∫
Ω×IR3

| ξ |2 f(t, x, ξ)dxdξ < c. (1.14)

(1.13-14) end the proof of the boundedness of
∫
Ω×IR3 | ξ |2 f(t, x, ξ)dxdξ

and
∫
Ω×IR3 f | logf | (t, x, ξ)dxdξ. Then bounds on mass and energy flows

through ∂Ω follow from [4, Lemma 4.1].
The entropy flow of the trace of f(t, ., .) on the boundary is studied in the
following lemma.
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Lemma 1.3

∫
[t,t+1]×∂Ω

∫
ξ·n(x)>0

ξ · n(x)flogf(τ, x, ξ)dτdxdξ

and ∫
[t,t+1]×∂Ω

∫
ξ·n(x)<0

| ξ · n(x) | flogf(τ, x, ξ)dτdxdξ

are uniformly bounded with respect to t in IR+.

Proof of Lemma 1.3.

By Theorem 1.2 and (1.10) the uniform boundedness of the outgoing flow
follows from the uniform boundedness of the ingoing flow. Denote by q

q(t, x) :=

∫
ξ·n(x)<0

| ξ · n(x) | f(t, x, ξ)dξ, t ∈ IR+, x ∈ ∂Ω. (1.15)

Then, for x ∈ ∂Ω and ξ ∈ IR3 such that ξ ·n(x) > 0, the boundary condition
(1.3) implies that

flogf(t, x, ξ) = f(t, x, ξ)logM(x, ξ) + M(x, ξ)(qlogq)(t, x).

By Theorem 1.2, the ingoing flow of flogM is uniformly bounded as well as
the ingoing and outgoing mass and energy flows. So

∫ t+1

t

∫
∂Ω

∫
ξ·n(x)>0

ξ · n(x)flogf

is uniformly bounded in t if and only if

∫ t+1

t

∫
∂Ω

∫
ξ·n(x)>0

ξ · n(x)Mqlogq

is uniformly bounded in t. The boundedness of the log− part follows from
qlog−q ≤ 1

e
. So it remains to prove that

∫ t+1
t

∫
∂Ω

∫
ξ·n(x)>0 ξ · n(x)Mqlog+q

is uniformly bounded in t. But uniformly in x
∫

ξ·n(x)>0
ξ · n(x)M(x, ξ)dξ ≤ c

∫
Ax

ξ · n(x)M(x, ξ)dξ

with

Ax = {ξ;
1

ε
>| ξ |> ε, ξ · n(x) > ε | ξ |}.
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Hence
∫ t+1

t

∫
∂Ω

∫
ξ·n(x)>0

ξ · n(x)Mqlog+q ≤ c

∫ t+1

t

∫
∂Ω

∫
Ax

ξ · n(x)Mqlog+q.

For (x, ξ) ∈ Ω × IR3 denote

s−(x, ξ) = inf{s > 0;x + sξ ∈ ∂Ω, ξ · n(x + sξ) < 0}.

Then

inf
A

s− > 0, sup
A

s− = S < ∞,

where

A = {(x, ξ);x ∈ ∂Ω, ξ ∈ Ax}.

Now the lemma holds if

I =

∫ t+1

t

∫
A

s−(x, ξ)ξ · n(x)Mqlog+qdxdξdτ

is uniformly bounded in t. But

I =

∫ t+1

t

∫
A

∫ s−(x,ξ)

0
ξ · n(x)flog+ f

M
dxdξdτds

≤

∫ t+1+S

t

∫
Ω

∫
IR3

flog+ f

M
dxdξdτ,

which is uniformly bounded in t by Theorem 1.2.
Let us now state the main result of this section.

Theorem 1.4 Let f be a solution of (1.1) with the boundary condition (1.3)
and initial data satisfying (1.6).
Then for all T > 0 the family of functions fτ (t, x, ξ) := f(t + τ, x, ξ) for
τ ≥ 0 converges when τ → ∞ in L1([−T, T ]×Ω× IR3) to the solution fs of
the stationary problem (1.7)-(1.8) with total mass

∫
f0dxdξ. Moreover, the

traces of fτ on the boundary ∂D+ := [−T, T ] × ∂Ω × {ξ ∈ IR3; ξ · n(x) > 0}
(resp. ∂D− := [−T, T ]× ∂Ω×{ξ ∈ IR3; ξ · n(x) < 0}) converge in L1(∂D+)
(resp. L1(∂D−) to the traces of fs on ∂D+ (resp. ∂D−).

Proof of Theorem 1.4.

It is enough to show that for every sequence tn tending to infinity, there
exists a subsequence tnk

such that fnk
(t, x, ξ) := f(t + tnk

, x, ξ) converges
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in L1([−T, T ]×Ω× IR3) to the solution fs of the stationary problem for all
T > 0 (where for a given T we only consider tn with tn > T ). Theorem 1.2
and Lemma 1.3 imply for all T > 0 the weak compactness in L1([−T, T ] ×
Ω × IR3), L1(∂D+) and L1(∂D−) of f(tnk

+ t, ., .) and its traces over ∂D+

and ∂D− respectively, so that subsequences converge to some g, g+ and g−

respectively. Let us first prove that
∫

ξ·n(x)>0
ξ · n(x)fnk

dξ, (resp.

∫
ξ·n(x)<0

| ξ · n(x) | fnk
dξ)

strongly converges in L1([−T, T ] × ∂Ω) to
∫

ξ·n(x)>0
ξ · n(x)g+dξ, (resp.

∫
ξ·n(x)<0

| ξ · n(x) | g−dξ).

Because of the boundedness of the energy flow through the boundary estab-
lished in Theorem 1.2, and the boundedness of the entropy flow of Lemma
1.3 it is sufficient to prove that for arbitrary ε > 0

∫
ξ·n(x)≤−ε,ε<|ξ|≤ 1

ε

ξ · n(x)fnk
dξ

strongly converges in L1([−T, T ] × ∂Ω) to
∫

ξ·n(x)≤−ε,ε<|ξ|≤ 1

ε

ξ · n(x)g+dξ.

It is enough to prove translational equicontinuity of the sequence in sL1.
This criterium is easily defined for translations in IRn. A strong enough
substitute can be defined with respect to ∂Ω as follows. Fix a sphere in
Ω. Connect x ∈ ∂Ω to the centre of the sphere by a line segment, and
let x′ be the intersection with the sphere. Rotating the sphere takes x′ to
x′

t and thereby defines a corresponding image xt ∈ ∂Ω for each x ∈ ∂Ω.
At an outgoing point (t, x, ξ) the value of f equals the one at the ingoing
point (t − s+(x, ξ), x − s+(x, ξ)ξ, ξ), where s+(x, ξ) = inf{s > 0;x − sξ ∈
∂Ω+}. For xt choose ξt so that xt − s+(x, ξ)ξt = x − s+(x, ξ)ξ. Using
the uniform continuity of M and a change of variables from ξ to ξt in the
unperturbed integral gives the desired equicontinuity in sL1. The argument
for translation in time is similar. Since for x in Ω

fnk
(t, x, ξ) = M(x − ξs+(x, ξ), ξ)∫

ξ′·n(x−ξs+(x,ξ))<0 | ξ′ · n(x − ξs+(x, ξ)) | fnk
(t − s+(x, ξ), x − ξs+(x, ξ), ξ′)dξ′,

9



fnk
converges in L1([−T, T ]× Ω × IR3) to g, and the traces of g are g+ and

g− which satisfy (1.3).
It remains to prove that g, g+ and g− are respectively equal to the stationary
solution fs with total mass µ =

∫
f0(x, ξ)dxdξ, the trace of fs on ∂Ω+ and

the trace of fs on ∂Ω−. From Egoroff’s theorem, there exists for every
positive real ε a subset Aε of [−T, T ] × ∂Ω, the complement of which is
of measure smaller than ε, and such that

∫
ξ·n(x)>0 ξ · n(x)fnk

dξ uniformly

converges to
∫
ξ·n(x)>0 ξ · n(x)g+dξ on Aε. But

∫ t+T

t
dτ

∫
∂Ω

dx[

∫
ξ·n(x)<0

| ξ · n(x) | f(t + τ)log
f(t + τ)

fs
dξ

−

∫
ξ·n(x)>0

ξ · n(x)f(t + τ)log
f(t + τ)

fs
dξ] +

∫
Ω×IR3

f(t + T )log
f(t + T )

fs
dxdξ

=

∫
Ω×IR3

f(t)log
f(t)

fs
dxdξ.

The boundary integral in the left hand side is positive and increasing with
T by the Darrozes & Guiraud inequality, which guarantees that its inner
bracket [...] is non-negative. It follows that

∫
Ω×IR3 f(t)log f(t)

fs
dxdξ is de-

creasing with time. But the mass of f is conserved, and by Theorem 1.2
its energy uniformly bounded in time. So by [7]

∫
Ω×IR3 f(t)logf(t)dxdξ is

bounded from below. Using (1.5) and Theorem 1.2 it follows that also∫
Ω×IR3 f(t)log 1

fs
dxdξ is bounded from below. Hence the decreasing function∫

Ω×IR3 f(t)log f(t)
fs

dxdξ has a finite limit when t tends to infinity. It follows
that

lim
k→∞

∫ T

−T
dτ

∫
∂Ω

dx[

∫
ξ·n(x)<0

(fnk
log

fnk

fs
+ fs − fnk

)dξ

−

∫
ξ·n(x)>0

(fnk
log

fnk

fs
+ fs − fnk

)] = 0.

Since the inner bracket [...] is non-neggative the same holds if [−T, T ]× ∂Ω
is substituted by Aε. Hence with q given by (1.15) for f = g− we have

∫
Aε

∫
ξ·n(x)<0

| ξ · n(x) | (g−log
g−

fs
+ fs − g−)(τ, x, ξ)dτdxdξ

≤ lim
k→∞

∫
Aε

∫
ξ·n(x)<0

| ξ · n(x) | (fnk
log

fnk

fs
+ fs − fnk

)(τ, x, ξ)dτdxdξ

= lim
k→∞

∫
Aε

∫
ξ·n(x)>0

ξ · n(x)(fnk
log

fnk

fs

+ fs − fnk
)dτdxdξ

10



=

∫
Aε

∫
ξ·n(x)>0

ξ · n(x)(Mqlog
q

κ
+ κM − Mq)dτdxdξ.

(1.16)

From the Darrozes & Guiraud inequality,

∫
Aε

∫
ξ·n(x)>0

ξ · n(x)(g+log
g+

fs
+ fs − g+)dτdxdξ

≤

∫
Aε

∫
ξ·n(x)<0

| ξ · n(x) | (g−log
g−

fs
+ fs − g−)dτdxdξ,

so that (1.16) implies that

∫
Aε

∫
ξ·n(x)>0

ξ · n(x)(g+log
g+

fs
+ fs − g+)dτdxdξ

+

∫
Aε

∫
ξ·n(x)<0

ξ · n(x)(g−log
g−

fs
+ fs − f−)dτdxdξ = 0.

Moreover,

∫
[−T,T ]×∂Ω

∫
ξ·n(x)>0

ξ · n(x)(g+log
g+

fs
+ fs − g+)dτdxdξ < c,

and
∫
[−T,T ]×∂Ω

∫
ξ·n(x)<0

| ξ · n(x) | (g−log
g−

fs
+ fs − g−)dτdxdξ < c.

Therefore
∫
[−T,T ]×∂Ω

∫
ξ·n(x)>0

ξ · n(x)(g+log
g+

fs
+ fs − g+)dτdxdξ

+

∫
[−T,T ]×∂Ω

∫
ξ·n(x)<0

ξ · n(x)(g−log
g−

fs
+ fs − g−)dτdxdξ = 0.

And so by the equality case for the Darrozes & Guiraud inequality there is
a function q(t, x) defined over [−T, T ] × ∂Ω, such that

g+(t, x, ξ) = fs(x, ξ)q(t, x), (t, x, ξ) ∈ ∂D+,

and

g−(t, x, ξ) = fs(x, ξ)q(t, x), (t, x, ξ) ∈ ∂D−.
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Since Ω is a convex set, and g satisfies

(∂t + ξ5x)g = 0,

q is independent of x and t. Moreover, because of the mass conservation,
this constant is equal to one.

Corollary 1.5 Theorem 1.4 holds under the weaker assumption that the
initial data only satisfy the mass and energy bound of (1.6).

Proof of Corollary 1.5.

The problem is linear and monotone. The truncated initial values fn
0 = f0∧n

for | v |≤ n, fn
0 = 0 otherwise, satisfy (1.6). The corresponding solutions are

a monotone increasing sequence with mass conservation
∫

fn
t =

∫
fn
0 . This

implies that the L1-limit f(t) = limn→∞ fn(t) is uniform in time, hence that
f satisfies Theorem 1.4.

Remark.

The above approach via (1.6) was chosen (instead of more regular fn
0

′s,
such as fn

0 ∈ L∞) to connect with kinetic aspects also useful in more gen-
eral contexts.

2 Asymptotics for the Boltzmann equation

This section studies the asymptotic behaviour of the solution of the Boltz-
mann equation in an open bounded convex domain Ω ⊂ IR3, with Lyapunov
type boundary,

(∂t + ξ · 5x)f = Q(f, f), t ∈ IR3, x ∈ Ω, ξ ∈ IR3, (2.1)

where Q denotes the collision operator, together with an initial condition

f(t, x, ξ) = f0(x, ξ), x ∈ Ω, ξ ∈ IR3 (2.2)

satisfying (1.6), and maxwellian diffuse reflection on the boundary

f(t, x, ξ) = M(ξ)

∫
ξ′·n(x)<0

| ξ′ · n(x) | f(t, x, ξ′)dξ′,

t ∈ IR+, x ∈ ∂Ω, ξ · n(x) > 0. (2.3)

M is a normalized maxwellian with a constant temperature 1
θ

> 0,

M(ξ) = (2π)−1θ2exp(−.5θ | ξ |2). (2.4)
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The relevant equilibrium solution is fs = cM with

c =
1

| Ω |

∫
Ω×IR3

f0(x, ξ)dxdξ. (2.5)

An existence result for (2.1-3) from [4] is recalled in the following theorem,
where the collision operator is of the full generality in [4].

Theorem 2.1 There is a function

f ∈ C(IR+, L1(Ω × IR3)), f ≥ 0,

satisfying (2.1-2) in DiPerna-Lions sense and (2.3) for the traces, possibly
with inequality, the left hand side being greater than or equal to the right
hand side.

Actually the relevant result from [4] Theorem 6.1 states slightly less, but the
proof of Theorem 6.1 also implies the trace inequality as formulated here.
Energy and entropy bounds are also derived in [4], but on finite intervals of
time, the bounds depending exponentially on time. Bounds uniform on IR+

are derived in the following theorem.

Theorem 2.2 Let f be a solution of (2.1 − 4). Then
∫
Ω×IR3

| ξ |2 f(t, x, ξ)dxdξ,

∫
Ω×IR3

f | logf | (t, x, ξ)dxdξ,

∫
[t,t+T ]×∂Ω

∫
ξ·n(x)>0

| ξ |2 ξ · n(x)f(τ, x, ξ)dτdxdξ,

∫
[t,t+T ]×∂Ω

∫
ξ·n(x)<0

| ξ |2| ξ · n(x) | f(τ, x, ξ)dτdxdξ,

∫
[t,t+T ]×∂Ω

∫
ξ·n(x)>0

ξ · n(x)f(τ, x, ξ)dτdxdξ,

∫
[t,t+T ]×∂Ω

∫
ξ·n(x)<0

| ξ · n(x) | f(τ, x, ξ)dτdxdξ (2.6)

are uniformly bounded for t varying in IR+.

Proof of Theorem 2.2.

Formally

(∂t + ξ · 5x)(flog
f

M
) = Q(f, f)log

f

M
+ Q(f, f).
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Integrating this over [0, t] × Ω × IR3 and using (2.2-3) gives

∫
Ω×IR3

(flog
f

M
)(t, x, ξ)dxdξ −

∫ t

0

∫
∂Ω×IR3

ξ · n(x)(flog
f

M
)dτdxdξ

+

∫ t

0

∫
Ω×IR3

e(f)dτdxdξ

≤

∫
Ω×IR3

f0log
f0

M
(x, ξ)dxdξ,

where

e(f) =
1

4

∫
IR3

∫
B+

B(| ξ − ξ∗ |, u)(f ′f ′
∗ − ff∗)log

f ′f ′
∗

ff∗
dξ∗du.

This inequality strictly holds (see [4]). Since e(f) ≥ 0 and Darrozes &
Guiraud’s inequality holds for the boundary term, it follows that

∫
Ω×IR3

flog
f

M
(t, x, ξ)dxdξ < c, (2.7)

and

0 ≤

∫ +∞

0

∫
Ω×IR3

e(f)(t, x, ξ)dtdxdξ < c. (2.8)

From here the proof proceeds as the proof of Theorem 1.2 from (1.11) on.
For the solutions of Theorem 2.1, the asymptotic behaviour of a solution
of the Boltzmann problem (2.1-3) can be derived, if we require that the
collision kernel B of Q is nowhere vanishing.

Theorem 2.3 Let f be a solution in the sense of Theorem 2.1 of the initial
boundary value problem (2.1 − 3) with nowhere vanishing collision kernel.
Then when t tends to infinity f(t, ., .) converges strongly in L1(Ω × IR3) to
the global maxwellian cM , where M is defined in the boundary condition

(2.3) and c gives the conservation of mass (c =

∫
f0∫
M

).

Proof of Theorem 2.3.

It is enough to show that for every sequence tn tending to infinity there
exists a subsequence tnk

such that fnk
(t, x, ξ) := f(t + tnk

, x, ξ) converges
in L1([0, T ] × Ω × IR3) to cM for all T > 0. The weak L1([0, T ] × Ω × IR3)
convergence of a subsequence of fn follows from Theorem 2.2. Given (2.8)
and Theorem 2.2 and arguing as in [1] or [14] we may conclude that the limit
is of strong L1-type, that it satisfies the Boltzmann equation in mild sense,
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and is a local maxwellian m(t, x, ξ) since the collision kernel B is nowhere
vanishing. By [10] it follows that a maxwellian solution of the Boltzmann
equation has the form

m(t, x, ξ) = exp{d0 + C1 · (x − ξt) + c3 | x − ξt |2 (2.9)

+C0 · ξ + c2(x − ξt) · ξ + c1 | ξ |2 +Λ0(x) · ξ}, (2.10)

where d0, c1, c2, c3 ∈ IR+, C0, C1 ∈ IR3, and Λ0 is a skew-symmetric tensor.
The proof of Theorem 6.1 in [4] can also be applied with the fnk

satisfy (2.3)
with inequality

fnk
(t, x, ξ) ≥ M(ξ)

∫
ξ′·n(x)<0)

| ξ′ · n(x) | fnk
(t, x, ξ′)dξ′

on the boundary. The conclusion is that also the traces of m satisfy the
same inequality

m(t, x, ξ) ≥ M(ξ)

∫
ξ′·n(x)<0

| ξ′ · n(x) | m(t, x, ξ′)dξ′,

t ∈ IR+, x ∈ ∂Ω, ξ · n(x) > 0.

But the collision term of the Boltzmann equation for m is L1-integrable (ac-
tually zero). Since the mass

∫
m(t, x, ξ)dxdξ is time-independent, Green’s

formula (see [4]) gives that the inflow of mass of m on ∂Ω over a time in-
terval [0, T ] equals the corresponding outflow. Hence there is for a.e. (x, t)
equality in (2.3). This together with (2.9) gives that m(t, x, ξ) is a global
maxwellian.
Remarks.
In contrast to the periodic and specular or direct reflection boundary condi-
tion cases, here the maxwellian is uniquely determined by the initial value
and the boundary condition. This uniqueness of the maxwellian under dif-
fuse reflection at the boundary was first noticed by C. Cercignani in [9]
The driving mechanism behind the maxwellian asymptotic behaviour for the
Boltzmann equation with a strictly non-vanishing collision kernel in Theo-
rem 2.3 (see also [15] for the linear case) is the entropy dissipation term.
This should be compared with the collisionless case of Theorem 1.4 where
the maxwellian diffuse reflection boundary condition is the sole underlying
agent.
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7. T. CARLEMAN, Théorie cinétique des gaz, Almqvist & Wiksell, Up-
psala, 1957.

8. C. CERCIGNANI, The Boltzmann equation and its applications. Springer
Berlin, 1988.

9. C. CERCIGNANI, Equilibrium states and trend to equilibrium in a
gas, according to the Boltzmann equation, Rend. di Matematica 10,
(1990), 77-95.

10. L. DESVILLETTES, Convergence to equilibrium in large time for
Boltzmann and B.G.K. equations, Arch. Rat. Mech. Anal., 110
(1990), 73-91.

11. R. J. DIPERNA, P. L. LIONS, Y. MEYRER, Lp regularity of velocity
averages, Ann. I.H.P. Anal. Non Lin., 8 (1991), 271-287.

16



12. F. GOLSE, P. L. LIONS, B. PERTHAME, R. SENTIS, Regularity of
the moments of the solution of a transport equation, J. Funct. Anal.,
76 (1988), 110-125.

13. K. HAMDACHE, Weak solutions of the Boltzmann equation, Arch.
Rat. Mechs. Anal. 119 (1992), 309-353.

14. P. L. LIONS, Compactness in Boltzmann’s equations via Fourier in-
tegral operators and applications, J. Math. Kyoto Univ. 34 (1994),
391-427.

15. R. PETTERSSON, On weak and strong convergence to equilibrium for
solutions to the linear Boltzmann equation, J. Stat. Phys. 72 (1993),
355-380.

17


