
A problem related to microwaves propagating in the

atmosphere.

A. Nouri ∗

Abstract. A model is given for describing the formation of small plasmas
while a microwave field propagates in the atmosphere. An existence theorem
is derived.

Introduction. When a microwave pulse propagates in the atmosphere, it
can meet free electrons, being there because of photodetachment for instance
[7]. The equations of electrodynamics are linear with respect to the electric
and magnetic fields E, H and the velocity ve of the electron. For this reason,
the superposition principle holds. Any periodical field can be resolved into
harmonic components, so that it is sufficient to consider only sinusoidal
fields, all the more so because one deals with monochromatic fields and
waves. Depending on the physical situation we are trying to model, where
the dimensions of the plasmoid are small with respect to the wave length and
the skin depth [1], it is relevant to simplify the Maxwell equations, reducing
them to

curlE = 0, div(ε0E) = ρ = e(np − ne), (0.1)

where ε0, ρ, np and ne respectively denote the permittivity of the medium,
the density, the ion and the electron densities. Hence, E derives from a
potential

E = −5 V. (0.2)

Moreover, in the atmosphere, the electrons are few and far from each other.
Hence, at the wave passage, they generate electron avalanches, that are not
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extending much spatially. Denote l the plasma size, assumed small compared
to the wave lenghth L of the field. An electric field of the following type

E(t, x) = E0(t, x)e
i( t

ε
+β(εx)),

is looked for, where ε is a small parameter. We let B be a circular cylinder,
with radius r and axis in the x-direction. Moreover, the electron and ion
motions are described by the transport equations

∂ne

∂t
+ divϕe = S,

∂np

∂t
+ divϕp = S, (0.3)

where ϕe and ϕp are the electron and ion fluxes, and S the production rate
of charged particles. Combining (0.1)-(0.3) leads to

div(ε0
∂E

∂t
+ e(ϕe − ϕp)) = 0.

The ion current density eϕp is negligible with respect to the electron current
density, because the ion mobility is much smaller than the electron one.
Hence it remains

div(ε0
∂E

∂t
− eneve) = 0, (0.4)

where ve is the mean electron speed, obtained from

∂ve

∂t
= −

e

m
E − αve, (0.5)

and α is the electron-molecule collision frequency. To close the previous
set of equations, it remains to describe the electron density growth by the
transport equation

∂ne

∂t
− div(D 5 ne) − ν(| E |)ne + rnenp = 0.

D is the electron diffusion coefficient, ν is the ionisation frequency and r is
the ion-electron recombination coefficient. Quasi-neutrality is assumed, i.e.
ne − np << ne, so that the last equation is replaced by

∂ne

∂t
− div(D 5 ne) − ν(| E |)ne + rn2

e = 0. (0.6)

This paper focuses on the ionisation phenomenon, keeping aside the photo
ionisation of the gas that occurs once the plasma has arised. Indeed, there
is not a large amount of electrons created by photo ionisation. Rather, the
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main point with photo ionisation is that electrons can be created outside
the plasma, because of the large speed of propagation of photons, which
accelerates the plasma propagation.
As long as there is no plasma, the diffusion coefficient D equals the diffusion
for the free electrons De. But as soon as a plasma develops, D = Da, where
Da is the ambipolar diffusion coefficient, smaller than De, which takes into
account that ions prevent electrons from diffusing quickly. Da is defined by

Da =
µeDp + µpDe

µe + µp

,

where µe, and µp are the electron and ion mobilities and Dp is the ion
diffusion coefficient. Since µp is much smaller than µe and the electron

temperature Te = e
k

De

µe
is much bigger than the ion temperature Tp = e

k

Dp

µp
,

where k is the Boltzmann constant, it follows that Da can be approximated
by

Da =
µp

µe
De.

For estimating the transition from free diffusion to ambipolar diffusion, the
parameter ξ = λD

L
is used, where λD is the plasma Debye length defined by

λD =

√

ε0kTe

e2ne

,

and L is the largest size of the plasma. If ξ >> 1, the diffusion is free,
whereas if ξ << 1, it is ambipolar. Classically, the diffusion coefficient D is
defined by

D = Da
1 + ξ2

1 + Da

De
ξ2
. (0.7)

Since quasi-harmonic solutions E0e
i( t

ε
+β(εx)) are investigated for the electric

field, (0.4-5) become

div(εrE0e
iβ) = 0, (0.8)

where

εr = 1 − i
e2

mε0ω(α+ iω)
ne.
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Here we restrict to frequencies ω such that ω << α, so that

εr = 1 − i
ne

nc

ω

α
,

where nc = mε0ω2

e2 . Taking the modulus of (0.8) leads to

div[

√

1 + (
ne

nc

ω

α
)2E0] = 0. (0.9)

The initial condition is

n(t = 0, x) = n0(x),

whereas the boundary condition expresses that ouside of the given circular
cylinder B, and far enough from the small plasma inside B, the electric field
equals the given microwave field

E0(t, x, y, z) = E∞, y2 + z2 ≥ r2, (0.10)

lim
(x,y,z)∈B;|x|→∞

E0 = E∞. (0.11)

Since we neglect the spatial variations of ϕ in the present discussion, E0 can
be derived from a potential. With the help of (0.2), define ψ by

5ψ = E0 − E∞.

For the sake of simplicity, the constants
µp

µe
De, ( ω

ncα
)2, ε0kTe

e2 and r appearing
in (0.7), (0.9) and (0.6) are set equal to unity. Then the model describing
the formation and the expansion of a small plasma are

div(f(n) 5 ψ) = −div(f(n)E∞), (0.12)

and

nt − div(D(n) 5 n) − ν(| 5ψ |)n + n2 = 0, n(t = 0) = n0, (0.13)

where

f(n) = (1 + n2)
1

2 , D(n) =
n+ 1

n+ c
, c << 1,

and ν, n0 and E∞ respectively are a given function from IR+ into IR+, a
given function from IR3 into IR+ and a vector of IR3.
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1 The existence theorem.

First, the problem (0.12-13) will be solved with space variables in

Bj := {x ∈ B; | x |≤ j}.

The decoupled problems, i.e (0.12) for a given n and (0.13) for a given ψ are
solved. Then the whole problem (0.12-13) is solved, by passing to the limit
when j tends to ∞.

Lemma 1.1 Let n ∈ L∞((0, T )×Bj). Then there is a unique weak solution
ψ ∈ L2(0, T ;H1

0 (Bj)) of (0.12).

Proof of Lemma 1.1.

Restricting to Bj , (0.12) has the weak formulation

∫ t

0

∫

Bj

f(n)5 ψ · 5η = −
∫ t

0

∫

Bj

f(n)E∞ · 5η, η ∈ L2(0, T ;H1
0 (Bj)).

(ψ, η) →
∫ T
0

∫

Bj
f(n) 5 ψ · 5η is a continuous, coercive (since f(n) ≥ 1),

bilinear form defined on (L2(0, T ;H1
0 (Bj))

2, and

η → −
∫ T
0

∫

Bj
f(n)E∞ ·5η is a linear continuous form on L2(0, T ;H1

0 (Bj)),

since f(n) ∈ L∞(IR3) when n ∈ L∞((0, T )× IR3. Hence Lax-Milgram’s the-
orem yields the result of existence and uniqueness of ψ ∈ L2(0, T ;H1

0 (Bj)).

Definition 1.2 Let ψ ∈ L∞(0, T ;H1
0 (Bj)). A weak solution of (0.13) is

n ∈ L2(0, T ;H1
0 (Bj)) such that

∫ T

0

∫

Bj

nϕt −D(n) 5 n · 5ϕ+ [ν(| 5ψ |) − n]nϕ

=

∫

Bj

n0(x)ϕ(0, x)dx,

for any ϕ ∈ H1((0, T ) ×Bj), compactly supported in [0, T ) ×Bj .

Lemma 1.3 Let ψ ∈ L∞(0, T ;H1
0 (Bj)). In the class of functions in L2(0, T ;H1

0 (Bj))
satisfying

0 ≤ n(t, x) ≤| n0 |∞ e(1+|ν|∞)t,

there is a unique weak solution of (0.13).

The proof of Lemma 1.3 follows from [7, 8].
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Theorem 1.4 Let T > 0. Assume

(K1) ν is a convex function in W 1
∞(IR+),

(K2) n0 ∈ H1
0 (B) ∩ L∞(B).

Then there exists (ψ, n) ∈ (L2(0, T ;H1(IR3)))2 which is a weak solution of
(0.12-13) in the sense that

∫ T

0

∫

IR3

f(n)5 ψ · 5η = −
∫ T

0

∫

IR3

f(n)E∞ · 5η,

and
∫ T

0

∫

IR3

nγt −D(n) 5 n · 5γ + [ν(| 5ψ |) − n]nγ

=

∫

IR3

n0(x)γ(0, x)dx,

for every (η, γ) ∈ L2(0, T ;H1
0 (B))×H1

0 ([0, T )×B). Moreover (0.11) holds,
whereas (0.10) is satisfied in a weaker sense, i.e. ψ ∈ L2(0, T ;H1

0 (B)).

Proof of Theorem 1.4.

Denote

Kj := {n ∈ L2(0, T ;H1
0 (Bj)) s.t. 0 ≤ n(t, x) ≤| n0 |∞ e(1+|ν|∞)t},

which is a closed and convex set of L2((0, T ) × Bj). Define G| on Kj by
G|(\) = N , where N is the solution defined in Lemma 1.3 for ψ which is
the solution of Lemma 1.1 with n. A fixed point argument is now used.
First G| : L∈((′,T ) × B|) → L∈((′,T );H∞

′ (B|)) is continuous. Indeed, if
(ni), ni ∈ Kj , tends to ñ in L2((0, T ) ×Bj), then

∫

Bj

| 5ψi |
2≤

∫

Bj

f(ni) | 5ψi |
2

≤
∫

Bj

f(ni) | E∞ · 5ψi |

≤ c(

∫

Bj

| 5ψi |
2)

1

2 ,

so that (5ψi) is bounded in L2 and weakly converges in L2 to some 5ψ̃.
Moreover (5ψi) strongly converges to 5ψ̃ in L2. Indeed, (f(ni)) converges
in L2 to f(ñ), since (ni) converges in L2 to ñ and ni ∈ Kj (so (ni) is
bounded). Passing to the limit in

div(f(ni) 5 ψi) = −div(f(ni)E∞)
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implies

div(f(ñ) 5 ψ̃) = −div(f(ñ)E∞).

Hence
∫

Bj

f(ñ) | 5ψ̃ |2= −
∫

Bj

f(ñ)E∞ · 5ψ̃.

Then, since f ≥ 1,
∫

Bj
| 5ψi −5ψ̃ |2≤

∫

Bj
f(ni) | 5ψi −5ψ̃ |2

=
∫

Bj
f(ni) | 5ψi |

2 −2
∫

Bj
f(ni) 5 ψi · 5ψ̃ +

∫

Bj
f(ni) | 5ψ̃ |2

= −
∫

Bj
f(ni) 5 ψi ·E∞ − 2

∫

Bj
f(ni) 5 ψi · 5ψ̃ +

∫

Bj
f(ni) | 5ψ̃ |2,

and the right-hand side tends to

−
∫

Bj

f(ñ) 5 ψ̃ · E∞ −
∫

Bj

f(ñ) | 5ψ̃ |2= 0.

It follows from the convergence of (5ψi) to 5ψ̃ in L2 and from ν ∈W 1
∞(IR+)

that (ν(| 5ψi |)) converges to ν(| 5ψ̃ |) in L2((0, T ) × Bj). On the other
hand, (Ni) := (G|(\〉)) weakly converges in L2(0, T ;H1

0 (Bj)). Indeed,

1

2

∫

Bj

N2
i (t, x)dx+

∫ t

0

∫

Bj

| 5Ni |
2

≤| ν |∞

∫ t

0

∫

Bj

N2
i (τ, x)dτdx +

1

2

∫

Bj

n2
0(x)dx,

so that (Ni) weakly converges in L2(0, T ;H1
0 (Bj)) to some Ñ . Indeed (5Ni)

is bounded in L2((0, T )×Bj). Moreover, under the hypothesis n0 ∈ H1
0 (B),

it follows by the theory of parabolic equations that ((Ni)t) is bounded in
L2((0, T ) × Bj). Hence, up to a subsequence the convergence of (Ni) to Ñ
is strong in L2((0, T ) ×Bj). Passing to the limit in

(Ni)t − div(D(Ni) 5Ni) − ν(| 5ψi |)Ni +N2
i = 0

leads to

Ñt − div(D(Ñ ) 5 Ñ) − ν(| 5ψ̃ |)Ñ + Ñ2 = 0,

so that Ñ = G|(
♥\). That ends the proof of the continuity of G|.

Let us prove the compactness of G|. Let (ni) be a sequence in Kj , there-
fore bounded in L2((0, T )×Bj). Then (Ni) is bounded in L2(0, T ;H1

0 (Bj)),
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whereas by the previous parabolic argument ((Ni)t) is bounded in L2((0, T )×
Bj). It follows that (Ni) is precompact in L2((0, T ) ×Bj).
Finally the Schauder fixed point theorem applied to every G| proves the
existence of a sequence (ψj , nj) ∈ (L2(0, T ;H1

0 (Bj)))
2 that satisfies

∫ T

0

∫

Bj

f(nj) 5 ψj · 5η = −
∫ T

0

∫

Bj

f(nj)E∞ · 5η,

η ∈ L2(0, T ;H1
0 (Bj))

and
∫ T

0

∫

Bj

njγt −D(nj) 5 nj · 5γ + [ν(| 5ψj |) − nj]njγ

=

∫

Bj

n0(x)γ(0, x)dx,

γ ∈ H1((0, T ) ×Bj), compactly supported.

In the rest of the proof, c will denote constants that do not depend on j.
First by Gronwall’s lemma,

∫ T

0

∫

Bj

n2
j+ | 5nj |

2≤ c.

Moreover,

∫ T

0

∫

Bj

| 5ψj |
2≤

∫ T

0

∫

Bj

f(nj) | 5ψj |
2

=

∫ T

0

∫

Bj

[div(f(nj)E∞)]ψj

=

∫ T

0

∫

Bj

nj
√

1 + n2
j

ψjE∞ · 5nj

≤ c ‖ ψj ‖L6

≤ c[‖ ψj ‖L2 + ‖ 5ψj ‖L2 ]

due to the continuous imbedding of H1
0 (Bj) into L6(Bj). This in turn is

bounded by c ‖ 5ψj ‖ from the Poincaré inequality, here applicable since Bj

is bounded in the y, z-directions. Hence (5ψj) is uniformly in j bounded in
L2((0, T )×Bj). Extend ψj and nj by 0 outside of Bj. It follows from a diago-
nal extraction that there exists n and a subsequence still denoted (nj) of (nj),
which converges to n in L2(0, T ;H1

loc(IR
3)) weak and in L2(0, T ;L2

loc(IR
3))
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strongly. Analogously there exist ψ and a subsequence, still denoted (ψj) of
(ψj), with (5ψj) converging to 5ψ in L2(0, T ;L2

loc(IR
3)) weak. Moreover,

the same way as in the proof of the continuity of G|, it can be proved that
(ν(| 5ψj |)) strongly converges to L2((0, T ) × IR3). It is then possible to
pass to the limit in the weak formulations respectively satisfied by 5ψj and
nj, which proves that (ψ, n) is a weak solution of (0.12-13) in the sense of
Theorem 1.4.
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