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LATP, Université d’Aix-Marseillle I, Marseille, France

Received 13 April 2007; accepted 11 May 2007

Abstract

A class of kinetic BGK models for Bose–Einstein statistics are considered for the stationary frame in a slab. Existence of
bounded measure solutions is proven for Planckian diffuse boundary conditions with a given total inflow. Compactness properties
are extracted from the L1 part of the generalized Planckian distribution function and the boundary behavior.
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1. Introduction

The experiments realizing Bose–Einstein condensates in atomic vapors [1–3] ten years ago have renewed interest in
the theory of dilute quantum gases at low temperatures. Generalizing a work by Bose on photons [4], Einstein proved
that a non-interacting Bose gas at sufficiently low temperature undergoes a phase transition [5,6]. Part of the particles
falls into the ground state of zero momentum, to minimize the physical entropy. As pointed out by Volovik [7], ‘the
first quantization scheme for hydrodynamics was suggested by Landau in 1941 [8] when he developed the theory
of superfluidity in liquid He4. In his approach Landau separated liquid He4 into two parts: the ground state (which
we now call quantum vacuum) and quasi-particles — excitations above the ground state. The Landau approach was
essentially different from that of Tisza [9,10], who suggested separating the liquid He4 into the Bose condensate
and the non-condensate atoms. Tisza’s approach does make sense, especially for the dilute Bose gases where the
condensate fraction can be easily detected. However, it is important that the dynamics of the Bose condensate and
the exchange of energy and atoms between the condensated and non-condensated fractions belong to high energy
microscopic physics. On the other, hand the low-energy behavior of the superfluid liquids is governed by the Landau
hydrodynamic picture’.

So far, mathematical works in quantum kinetic theory have essentially focused on the time evolution of the
distribution function of bosons satisfying the kinetic equation introduced by Nordheim [11], and then by Uehling
and Uhlenbeck [12]. Results on the derivation of this equation from the interaction of a large system of bosons in
a weak coupling regime are given in Benedetto [13]. The difficulty in solving this equation comes from the fact
that the conservations of mass, momentum, and energy, and the physical entropy decrease, allow bounded measure
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solutions. Such solutions are even expected to describe Bose–Einstein condensation. It is then difficult to give a sense
to the collision term containing cubic terms in the distribution function. Mild solutions to the Uehling–Uhlenbeck
quantum equation are given by Lu [14] in a space homogeneous, isotropic in momentum space, for a collision kernel
with cut-off. Then distributional solutions for hard spheres are derived [15]. The definition of such solutions is made
possible by a Carleman representation [16], and the space homogeneous isotropic assumption. Existence results and
long- time behavior are also derived by Escobedo et al. [17] for space homogeneous and isotropic solutions, with
a truncation assumption on the physical kernel. The same equation, linearized around a power like steady state, is
studied in Escobedo [18].

Given the mathematical difficulty for solving the Uehling–Uhlenbeck equation in a space-dependent frame, it is
relevant to consider a relaxation model having similar properties. This has been done in the classical mechanics
frame when studying the BGK equation [19,20]. It is also used in numerical simulations [21] due to its simplicity as
compared to the Boltzmann equation. In quantum theory, Khalatnikov [22] suggested a relaxation model replacing
the Uehling–Uhlenbeck collision operator by the difference P − F , where P is a generalized Planckian distribution
function having the same momenta as F .

In this paper, we address the problem of solving a kinetic quantum BGK model in a space-dependent stationary
frame.

The rest of the paper is organized as follows. Section 2 is an introduction to quantum BGK models. In Section 3, a
first such model is introduced which, however, does not capture the zero-point energy aspect of the underlying physics.
The model is analyzed and a compactness result is proven. A variant of the model is introduced in Section 4, which
also captures the zero-point energy aspect, and an existence theorem is proven for that case.

The method can be used for the same equation with other boundary conditions. The paper also provides a
background for future developments, with work in progress for the Fermi–Dirac case and the stationary classical
(Boltzmann) BGK equation.

2. The model

A gas of bosons can be described by a modified Boltzmann equation which takes quantum effects into account. It
was introduced by L.W. Nordheim and by E.A. Uehling and G.E. Uhlenbeck, and writes

∂F

∂t
+ p · 5x F = Q(F(t, x, ·))(p),

where F = F(t, x, p) is the particle density in the momentum space at time t and space x , and

Q(F)(p) =

∫
(R3)3

W (p, p∗, p′, p′
∗)q(F)dp∗dp′dp′

∗,

q(F) = F(p′)F(p′
∗)(1 + εF(p))(1 + εF(p∗))− F(p)F(p∗)(1 + εF(p′))(1 + εF(p′

∗)),

W (p, p∗, p′, p′
∗) = w(p, p∗, p′, p′

∗)δ(p + p∗ − p′
− p′

∗)δ(p
2
+ p2

∗ − p
′2

− p
′2
∗ ).

Here, ε =
h3

8π3m3g
, where h is the Planck constant, m is the mass of a particle and g the statistical weight. In the

rest of this section, ε will be taken as equal to 1. The differential cross-section w is given, depending on the kind of
interactions between particles under consideration. The collision operator Q induces the conservation with time of
mass, momentum and energy, and the decrease of the physical entropy

∫
H(F)(t, x, p)dxdp, where

H(F) := F ln F − (1 + F) ln(1 + F).

Moreover, for given mass, momentum, and energy, Bose–Einstein equilibrium distribution functions minimize the
entropy.

Lemma 2.1. For any N, E > 0, P ∈ R3, there is a Bose–Einstein distribution function

P̃(p) =
1

ea|p−
P
N |2+b+

− 1
+ b−δ P

N
,
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with a ∈ R+, b ∈ R3, b+
= max{b, 0}, b−

= max{−b, 0}, which satisfies

∫
R3


1

p −
P

N
1

2m

∣∣∣∣p −
P

N

∣∣∣∣2
 F(p)dp =


N
0

E −
P2

2m N

 . (2.1)

It is the unique solution of the entropy minimization problem

H(P̃) = min{H(F); F satisfies (2.1)}.

For a proof of Lemma 2.1, we refer to [17].
Similarly to the classical kinetic theory [23], a BGK type model can be introduced in the quantum case. It is the

following relaxation model,

∂F

∂t
+ p · 5x F = P̃(F)− F, (2.2)

where P̃(F) is the Bose–Einstein distribution function having the same momenta as F , introduced in Lemma 2.1. It
displays the right physical properties, i.e. the conservation of mass, momentum, and energy, together with the decrease
of the entropy. Indeed, multiplying (2.2) by ln 1+F

F and integrating on [0, t] × R3
x × R3

p gives∫
H(F)(0, x, p)dxdp −

∫
H(F)(t, x, p)dxdp =

∫ t

0

∫
(P̃(F)− F) ln

1 + F

F
dxdpds

=

∫ t

0

∫
(P̃(F)− F)

(
ln

1 + F

F
− ln

1 + P̃(F)

P̃(F)

)
dxdpds

≥ 0,

since ln 1+P̃(F)
P̃(F)

is a linear combination of 1, p and p2.

In this paper, we consider stationary solutions to (2.2) in the slab, i.e. distribution functions F(x, p) satisfying

p1
∂F

∂x
= P̃(F)− F, x ∈ [−1, 1], p ∈ R3, (2.3)

and Planckian diffuse reflexion boundary conditions

F(−1, p) = P−(p)
∫

p′

1<0
|p′

1|F(−1, p′)dp′, p1 > 0,

F(1, p) = P+(p)
∫

p′

1>0
p′

1 F(1, p′)dp′, p1 < 0.
(2.4)

Here, P−(p) =
1

eu− p2+v−−1
and P+(p) =

1
eu+ p2+v+−−1

are given Planckian distribution functions, chosen so that∫
p1>0

p1 P−(p)dp =

∫
p1<0

|p1|P+(p)dp = 1.

Moreover, F is required to have a fixed total inflow (e.g. equal to one),∫
p1>0

p1 F(−1, p)dp +

∫
p1<0

|p1|F(1, p)dp = 1. (2.5)

The model is further simplified by considering F(x, p) such that

P(x) :=

∫
pF(x, p)dp = 0, x ∈ [−1, 1].
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The property P1 ≡ 0 is justified by the integration of (2.3) with respect to p1, and the boundary conditions (2.4).
The property Pi ≡ 0, 2 ≤ i ≤ 3 is justified by the following remark. Introduce the functions K (x, p1) :=∫

p2 F(x, p)dp2dp3 and L(x, p1) :=
∫

p3 F(x, p)dp2dp3. They should be solutions to

p1
∂K

∂x
=
π P2

Na

∑
n≥1

1
n

e
−n
(

a(p1−
P1
N )

2
+b+

)
− b−

P2

N
δ

p1=
P1
N

− K ,

K (−1, p1) = 0, p1 > 0, K (1, p1) = 0, p1 < 0,

and a similar system for L . Since

P2(x) =

∫
K (x, p1)dp1, resp. P3(x) =

∫
L(x, p1)dp1,

a trivial solution to these systems is K = L ≡ 0. Choosing it leads to P2 = P3 ≡ 0.
Then the Bose–Einstein distribution P̃(F) having the same mass N and energy E as F is defined by

P̃(F)(p) = RN ,E (p)+ b−δp=0,

where

RN ,E (p) =
1

e
(
∫ q2

eq2+b+
−1

dq)
2
5 E−

2
5 p2+b+

− 1

,

β(b+) =
N

E
3
5

and b−
= 0, if

N

E
3
5

≤ 1,

b+
= 0 and b−

= N − E
3
5 , if

N

E
3
5

≥ 1.

(2.6)

Here, the function β is given on R+ by

β(s) =

∫ dq

eq2+s−1(∫ q2

eq2+s−1
dq
) 3

5

.

It is proven in [14] that β is a decreasing function from β(0) to 0. For the sake of simplicity, β(0) will be taken as
equal to 1 when suitable in the rest of the paper.

3. Analysis of the model

We consider solutions F to (2.3)–(2.5), which can be written

F(x, p) = F̄(x, p)+ n(x)δp=0,

where F̄ is a finite measure with zero measure at p = 0 and n a finite measure in the variable x . The purpose of this
section is to identify n and give a priori bounds on F̄ . In particular, it is shown that F̄ is an L1 function, and that n has
an arbitrary mass.

Proposition 3.1. The F̄ part of F satisfies

p1
∂ F̄

∂x
= RN̄ ,Ē − F̄, N̄ ≤ Ē

3
5 ,

F̄(−1, p) = P−(p)
∫

p′

1<0
|p′

1|F̄(−1, p′)dp′, p1 > 0,

F̄(1, p) = P+(p)
∫

p′

1>0
p′

1 F̄(1, p′)dp′, p1 < 0,∫
p1>0

p1 F̄(−1, p)dp +

∫
p1<0

|p1|F̄(1, p)dp = 1,

(3.1)
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where N̄ (x) =
∫

F̄(x, p)dp and Ē(x) =
∫

p2 F̄(x, p)dp, whereas the n(x)δp=0 part of F is given by

n = χ
N̄=Ē

3
5
(max{N , Ē

3
5 } − Ē

3
5 ), (3.2)

for any L1 function N.

Proof of Proposition 3.1. Since p1 F = p1 F̄ , Eq. (2.3) writes

∂

∂x
(p1 F̄) = RN ,E − F̄ + (b−

− n)δp=0. (3.3)

Let ϕ1 be a test function in C1([−1, 1]). Let a sequence (ϕ j
2 ) of C1 functions with compact support in R3 satisfy

ϕ
j
2 (p) = 1 for |p1| ≤

1
j −

1
j2 and ϕ j

2 (p) = 0 for |p1| ≥
1
j . Let ϕ j (x, p) = ϕ1(x)ϕ

j
2 (p). Multiply (3.3) by ϕ j and

integrate on [−1, 1] × R3. First,〈
∂

∂x
(p1 F̄), ϕ j

〉
= −〈p1 F̄, ϕ′

1(x)ϕ
j
2 (p)〉 → j→+∞ 0,

since F̄ is of zero measure at p = 0. Analogously,

lim
j→+∞

∫
(RN ,E − F̄)ϕ j dxdp = 0.

Then,

〈(b−
− n)δp=0, ϕ

j
〉 = 〈b−

− n, ϕ1〉.

And so,

〈b−
− n, ϕ1〉 = 0, ϕ1 ∈ C1([−1, 1]).

It is then a classical argument to conclude that b−
− n = 0. Consequently, F gives

F = F̄ + χ
N≥E

3
5
(N − E

3
5 )δp=0,

with F̄ of zero measure at p = 0. Integrating the previous equation with respect to p implies that

N̄ = N if N ≤ E
3
5 ,

and

N̄ = E
3
5 if N ≥ E

3
5 .

Since E = Ē , this shows that N̄ ≤ Ē
3
5 . Finally, b+

N ,E = b̄+

N̄ ,Ē
. Indeed, either N ≤ E

3
5 , then β(b̄+) =

N̄

Ē
3
5

=
N

E
3
5

=

β(b+). Or N ≥ E
3
5 , then b+

= 0 and N̄ = E
3
5 , so that b̄+

= 0. This proves that RN ,E = RN̄ ,Ē , so that F̄ should

be solution to the closed system (3.1). Then the sets {N ≥ E
3
5 } and {N̄ = Ē

3
5 } are equal. Indeed, it has just been

seen that {N ≥ E
3
5 } ⊂ {N̄ = Ē

3
5 }. Reciprocally, N < Ē

3
5 implies that N̄ = N < Ē

3
5 , so that N̄ 6= Ē

3
5 . And so,

F = F̄ + χ
N̄=Ē

3
5
(max{N , Ē

3
5 } − Ē

3
5 )δp=0. �

Remark. Solving (3.1) provides the location in space of the Dirac part of F at p = 0, namely

{x ∈ [−1, 1]; N̄ (x) = Ē
3
5 (x)}.

This does not capture the zero point energy aspect of the Dirac part coming from the Heisenberg uncertainty relation.
In Section 4, a variant of the model is introduced that includes a zero point energy aspect. Also, the restriction of N

to the set {N̄ = Ē
3
5 } remains undetermined.

The condition N̄ ≤ Ē
3
5 reflects a phase transition in terms of a critical energy.
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Proposition 3.2. Let (A j ) be a given sequence of L1([−1, 1]) functions. Let (B j ) be a bounded sequence in
L1([−1, 1]), and (α j ), (β j ) (resp. (γ j ), (η j )) be uniformly equi-integrable sequences in L1((0,+∞)) (resp.
L1((−∞, 0))). Let (G j ) (resp. (H j )) be solutions to

p1
∂G j

∂x
=

∫
RA j ,B j dp2dp3 − G j , x ∈ [−1, 1], p1 ∈ R,

G j (−1, p1) = α j (p1), p1 > 0,

G j (1, p1) = γ j (p1), p1 < 0,

(resp.

p1
∂H j

∂x
=

∫
(p2

2 + p2
3)RA j ,B j dp2dp3 − H j , x ∈ [−1, 1], p1 ∈ R,

H j (−1, p1) = β j (p1), p1 > 0,

H j (1, p1) = η j (p1), p1 < 0.

Then (G j ) (resp. (H j )) is weakly compact in L1
loc([−1, 1] × R), and for every ψ in L∞(R) with compact support,

(
∫
ψ(p)G j (x, p1)dp1) (resp. (

∫
ψ(p)H j (x, p1)dp1)) is relatively compact in L1([−1, 1]).

Proof of Proposition 3.2. Denote by

S j (x, p1) =

∫
RA j ,B j dp2dp3, T j (x, p1) =

∫
(p2

2 + p2
3)RA j ,B j dp2dp3,

a j (x) =

(∫
u2du

eu2+b+ j (x) − 1

) 2
5

(B j (x))−
2
5 ,

b+ j
= 0 if A j

≥ (B j )
3
5 , β(b+ j ) =

A j

(B j )
3
5

else.

Notice that

S j (x, p1) ≤ c(B j (x))
2
5
∑
n≥1

1
n

e−na j (x)p2
1 , a.a. x ∈ [−1, 1]; b+ j (x) ≤ 1, a.a. p1 ∈ R,

S j (x, p1) ≤ c(B j (x))
2
5 , a.a. x ∈ [−1, 1]; b+ j (x) > 1, a.a. p1 ∈ R,

T j (x, p1) ≤ c(B j (x))
4
5 , a.a. x ∈ [−1, 1], p1 ∈ R.

(3.4)

Indeed,

S j (x, p1) =
1

2a j

∑
n≥1

1
n

e−n(a j p2
1+b+ j ).

Hence, the first equation of (3.4) holds. Then

S j (x, p1) ≤
1

2a j

∑
n≥1

e−nb+ j
=

1

2a j (eb+ j
− 1)

=
(B j (x))

2
5

2
(∫ u2du

eu2+b+ j
−1

) 2
5
(eb+ j

− 1)

.

For x such that b+ j (x) > 1, it holds that(∫
u2du

eu2+b+ j
− 1

) 2
5

(eb+ j
− 1) ≥

(∫
u2e−u2

du

) 2
5

(e
3
5 b+ j

− e−
2
5 b+ j

) ≥ c.
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Hence,

S j (x, p1) ≤ c(B j (x))
2
5 , a.a. x ∈ [−1, 1]; b+ j (x) > 1, a.a. p1 ∈ R.

Analogously,

T j (x, p1) =

∑
n≥1

e−n(a j p2
1+b+ j )

∫
(p2

2 + p2
3)e

−na j (p2
2+p2

3)dp2dp3

=
1

2(a j )2

∑
n≥1

1

n2 e−n(a j p2
1+b+ j )

≤
c

(a j )2
e−b+ j

= c
(B j (x))

4
5 e−b+ j(∫ u2du

eu2+b+ j
−1

) 4
5

≤ c
(B j (x))

4
5 e−

1
5 b+ j(∫

u2e−u2 du
) 4

5

≤ c(B j (x))
4
5 .

Then, multiplying the equation satisfied by G j (resp. H j ) by (G j )
1
4 (resp. (H j )

1
4 ) and integrating it over (−1, 1) ×

[−µ,µ], for a fixed positive µ leads to∫
|p1|<µ

(G j )
5
4 (x, p1)dxdp1 =

∫
|p1|<µ

S j (G j )
1
4 (x, p1)dxdp1

≤
4
5

∫
|p1|<µ

(S j )
5
4 (x, p1)dxdp1 +

1
5

∫
|p1|<µ

(G j )
5
4 (x, p1)dxdp1,

and analogously for H j . Hence,∫
|p1|<µ

(G j )
5
4 (x, p1)dxdp1 ≤

∫
|p1|<µ

(S j )
5
4 (x, p1)dxdp1

≤

∫
|p1|<µ,b+ j (x)>1

(B j (x))
1
2 dxdp1 +

∫
b+ j (x)<1

(B j (x))
1
2

×

∫ (∑
n≥1

1
n

e−na j (x)p2
1

) 5
4

dp1dx

≤ cµ+ c
∫
(B j (x))

7
10 dx

∫ (∑
n≥1

1
n

e−nq2
1

) 5
4

dq1 ≤ c,

since

∫ (∑
n≥1

1
n

e−nq2
1

) 5
4

dq1 ≤

∫
|q1|<1

dq1
√

|q1|

(∑
n≥1

1

n
6
5

) 5
4

+

∫
|q1|>1

dq1

(eq2
1 − 1)

5
4

≤ c.

Similarly,∫
|p1|<µ

(H j )
5
4 (x, p1)dxdp1 ≤

∫
|p1|<µ

(T j )
5
4 (x, p1)dxdp1 ≤ c.

And so, (G j ) and (H j ) are locally equi-integrable with respect to the variable p1. Moreover, (G j ) and (p1
∂G j

∂x )

(resp. (H j ) and (p1
∂H j

∂x )) are bounded in L1
loc([−1, 1] × R). The use of an averaging lemma [24] ends the proof of

Proposition 3.2. �
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4. An existence theorem for a kinetic quantum BGK equation.

In this section, we consider the slab [−
η
2 ,

η
2 ], and denote by IF (resp. OF ) the total influx (resp. outflux) of a

distribution function F at the boundaries, i.e.

IF =

∫
p1>0

p1 F
(
−
η

2
, p
)

dp +

∫
p1<0

|p1|F
(η

2
, p
)

dp,

OF =

∫
p1<0

|p1|F
(
−
η

2
, p
)

dp +

∫
p1>0

p1 F
(η

2
, p
)

dp.

We move the Dirac part in the Planckian distribution function in Sections 2 and 3 from p = 0 to p = ±( 1
n , 0, 0). For

any positive r , denote by Pr

Pr (p) =
1

eap2+b+
− 1

+
1
2

b−
(
δp1=r,p2=p3=0 + δp1=−r,p2=p3=0

)
,

with a, b+ and b− defined as in (2.6). Hence,∫
Pr (p)(1, p2)dp = (N , E + r2(N − E

3
5 )χ

N≥E
3
5
). (4.1)

Theorem 4.1. For some n0 and any n > n0, and for η small enough, there is a distribution function F ∈

M([−
η
2 ,

η
2 ] × R3) is a solution to

p1
∂F

∂x
= P

1
n

NF ,EF −
1

n2 (NF −(EF )
3
5 )χ

NF ≥(EF )
3
5

− F, x ∈

[
−
η

2
,
η

2

]
, p ∈ R3,

F
(
−
η

2
, p
)

= P−(p)
∫

p′

1<0
|p′

1|F
(
−
η

2
, p′

)
dp′, p1 > 0,

F
(η

2
, p
)

= P+(p)
∫

p′

1>0
p′

1 F
(η

2
, p′

)
dp′, p1 < 0,

IF = 1.

Remark. Theorem 4.1 states the existence of a solution to the quantum BGK equation with Planckian diffuse
boundary conditions and total inflow equal to one. This fixed total inflow is a driving mechanism in the proof of
the theorem.

Proof of Theorem 4.1. The proof of Theorem 4.1 requires two preliminary lemmas.

Lemma 4.1. Let (α, γ ) ∈ L1([−1, 1])× L∞([−1, 1]) be given, such that

α∗ ≤ α(x), γ∗ ≤ γ (x) ≤ M,

where

α∗ = min
{∫

p1>0
P−(p)e

−
η
p1 dp,

∫
p1<0

P+(p)e
η
p1 dp

}
,

γ∗ = min
{∫

p1>0
p2 P−e

−
η
p1 dp,

∫
p1<0

p2 P+e
η
p1 dp

}
,

and M > 0 is given. Then there is a distribution function F and a positive number λ such that

p1
∂F

∂x
= P

λ
1
3

n

λα,λ
5
3 γ

− F, x ∈

[
−
η

2
,
η

2

]
, p ∈ R3,
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F
(
−
η

2
, p
)

= P−(p)
∫

p′

1<0
|p′

1|F
(
−
η

2
, p′

)
dp′, p1 > 0,

F
(η

2
, p
)

= P+(p)
∫

p′

1>0
p′

1 F
(η

2
, p′

)
dp′, p1 < 0,

OF = 1.

Moreover,

λ∗ ≤ λ ≤ λ∗,

with λ∗ (resp λ∗) only depending on α∗,
∫
α(x)dx, γ∗ and M.

Proof of Lemma 4.1. Let λ > 0 be given. Let F0 = 0. Define (Fl)l≥1 by induction as the solutions to

p1
∂Fl

∂x
= P

λ
1
3

n

λα,λ
5
3 γ

− Fl ,

Fl

(
−
η

2
, p
)

= P−(p)
∫

p′

1<0
|p′

1|Fl−1

(
−
η

2
, p′

)
dp′, p1 > 0,

Fl

(η
2
, p
)

= P+(p)
∫

p′

1>0
p′

1 Fl−1

(η
2
, p′

)
dp′, p1 < 0.

It defines a monotone Cauchy sequence in L1, since Gl := Fl − Fl−1 satisfies

p1
∂Gl

∂x
= −Gl ,

Gl

(
−
η

2
, p
)

= P−(p)
∫

p′

1<0
|p′

1|Gl−1

(
−
η

2
, p′

)
dp′, p1 > 0,

Gl

(η
2
, p
)

= P+(p)
∫

p′

1>0
p′

1Gl−1

(η
2
, p′

)
dp′, p1 < 0,

with ∫
p′

1<0
|p′

1|Gl

(
−
η

2
, p′

)
dp′

=

∫
p1>0

p1e
−

η
p1 P−(p)dp

∫
p′

1>0
p′

1Gl−1

(η
2
, p′

)
dp′,∫

p′

1>0
p′

1Gl

(η
2
, p′

)
dp′

=

∫
p1<0

|p1|e
η
p1 P+(p)dp

∫
p′

1<0
|p′

1|Gl−1

(
−
η

2
, p′

)
dp′,

hence being convergent series. And so, (Fl) converges in L1 to some Fλ, solution to

p1
∂Fλ
∂x

= P
λ

1
3

n

λα,λ
5
3 γ

− Fλ,

Fλ
(
−
η

2
, p
)

= P−(p)
∫

p′

1<0
|p′

1|Fλ
(
−
η

2
, p′

)
dp′, p1 > 0,

Fλ
(η

2
, p
)

= P+(p)
∫

p′

1>0
p′

1 Fλ
(η

2
, p′

)
dp′, p1 < 0.

Let

µ̃λ =

∫
p1>0

p1 P−(p)e
−

η
p1 dp

∫
p1<0

|p1|Fλ
(
−
η

2
, p
)

dp

+

∫
p1<0

|p1|P+(p)e
η
p1 dp

∫
p1>0

p1 Fλ
(η

2
, p
)

dp,
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and

Y =

{
y ∈

[
−
η

2
,
η

2

]
;
α

γ
3
5

(y) ≥ 1

}
.

µ̃λ is a continuous strictly increasing function of λ, since it holds for the first iterate OG1 and the scheme is monotone.
Then the total outflow of Fλ is given by

OFλ = µ̃λ +

∫ η
2

−
η
2

∫
p1>0

e
y−

η
2

p1 + e
−

η
2 +y
p1

e
(
∫ q2dq

eq2+b+
−1
)

2
5 λ

−
2
3 γ

−
2
5 p2+b+

− 1

dpdy

+ λ

∫
Y
(enλ−

1
3 (y−

η
2 ) + e−nλ−

1
3 (y+

η
2 ))(α − γ

3
5 )dy,

with b+ independent of λ. Hence, it is a continuous and strictly monotone function of λ, such that OF0 < 1 and
limλ→+∞ OFλ = +∞. Consequently, OFλ = 1 for a unique λ. Moreover,

β(b+) =
α

γ
3
5

≥
α∗

M
3
5

,

so that b+
≤ b∗ for some b∗. Then,

a = λ−
2
3

(∫
q2dq

eq2+b+
− 1

) 2
5

γ−
2
5 ∈

λ−
2
3

(∫
q2dq

eq2+b∗
− 1

) 2
5

M−
2
5 , λ−

2
3

(∫
q2dq

eq2
− 1

) 2
5

γ
−

2
5

∗

 .
The property OFλ = 1 implies that

∫
Y

∫
p1>0

e
−

η
2 −y
p1

ea(y)p2
− 1

dpdy +

∫
Y c

∫
p1>0

e
−

η
2 −y
p1

ea(y)p2+b∗
− 1

dpdy ≤ 1.

Hence,

λ

 γ∗∫ q2dq

eq2
−1

 3
5 ∫ ∫

q1>0

e
−

(
1
γ∗

∫ q2dq

eq2
−1

) 1
5
λ

−
1
3
η
2 −y
q1

eq2+b∗
− 1

dqdy ≤ 1.

And so, λ is bounded from above by a constant λ∗ only depending on γ∗ and M . Analogously,

1
2

(
1 − min

{∫
p1>0

p1 P−(p)dp,
∫

p1<0
|p1|P+(p)dp

})
≤

1 − µ̃λ

2

≤

∫ η
2

−
η
2

∫
p1>0

1

eap2
− 1

dpdy + λ

∫
Y
(α − γ

3
5 )(x)dx

≤ λ

(
γ

3
5

∗ +

∫
α(x)dx

)
.

And so, λ is bounded from below by a constant λ∗ only depending on
∫
α(x)dx and γ∗.

Let

Λ =

{(
α1, α2, γ +

1

n2 (α1 + α2 − γ
3
5 )χ

α1+α2≥γ
3
5

)
;α∗ ≤ (α1 + α2)(x),

∫
α1(x)dx ≤ 1,

α2(x) ≤ M, γ (x) ≤ M

}
,
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where the constant M will be fixed during the proof of Lemma 4.2. Let T be the map that maps (α1, α2, γ +
1

n2 (α1 +

α2 − γ
3
5 )χ

α1+α2≥γ
3
5
) ∈ Λ into

(α̃1(x), α̃2(x), γ̃1(x)) =

(∫
|p1|<δ

F(x, p)dp,
∫

|p1|>δ

F(x, p)dp,
∫

p2 F(x, p)dp

)
,

where δ will be fixed during the proof of Lemma 4.2, and F is the solution of

p1
∂F

∂x
= P

λ
1
3

n

λ(α1+α2),λ
5
3 γ

− F,

F
(
−
η

2
, p
)

= P−(p)
∫

p′

1<0
|p′

1|F
(
−
η

2
, p′

)
dp′, p1 > 0,

F
(η

2
, p
)

= P+(p)
∫

p′

1>0
p′

1 F
(η

2
, p′

)
dp′, p1 < 0,

OF = 1,

as defined in Lemma 4.1. �

Lemma 4.2. There are constants δ and M such that T maps Λ into itself.

Proof of Lemma 4.2. Consider constants δ strictly smaller than λ
1
3
∗

n . Then∫
α̃1(x)dx =

∫
|p1|<δ

P
λ

1
3

n

λα,λ
5
3 γ

(x, p)dxdp +

∫
|p1|<δ

p1 F
(
−
η

2
, p
)

dp −

∫
|p1|<δ

p1 F
(η

2
, p
)

dp

≤

∫
|p1|<δ

dxdp

ea(x)p2
− 1

+ cδ,

with

cδ =

∫
0<p1<δ

p1 P−(p)dp +

∫
−δ<p1<0

|p1|P+(p)dp.

Moreover,∫
|p1|<δ

dxdp

ea(x)p2
− 1

=

∫
a−

3
2 (x)

∫
|q1|<

√
a(x)δ

dq

eq2+b+
− 1

dx

≤ ηλ∗M
3
5

(∫
q2dq

eq2+b∗
− 1

)−
3
5
∫

|q1|<λ
−

1
3

∗ (
∫ q2dq

eq2
−1
)

1
5 γ

−
1
5

∗ δ

dq

eq2
− 1

.

Hence∫
α̃1(x)dx ≤ cδ + c1ηλ

∗M
3
5 c̃δ, (4.2)

with cδ and c̃δ tending to zero when δ tends to zero. Then∫
α̃2(x)dx ≤

1

δ2

∫
p2 F(x, p)dp. (4.3)

The control of
∫

p2 F(x, p)dp is done by studying
∫

p2
1 F(x, p)dp and

∫
(p2

2 + p2
3)F(x, p)dp separately. First,∫

p1 F(x, p)dp =

∫ x

−
η
2

∫
P

λ
1
3

n

λα,λ
5
3 γ

(x, p)dxdp −

∫ x

−
η
2

∫
F(x, p)dxdp,
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so that∣∣∣∣∫ p1 F(x, p)dp

∣∣∣∣ ≤

∫ η
2

−
η
2

∫
P

λ
1
3

n

λα,λ
5
3 γ

(x, p)dxdp.

Then,∫
p2

1 F(x, p)dp =

∫
p2

1 F
(
−
η

2
, p
)

dp −

∫ x

−
η
2

∫
p1 F(y, p)dydp

≤

∫
p2

1 F
(
−
η

2
, p
)

dp + η

∫ η
2

−
η
2

∫
P

λ
1
3

n

λα,λ
5
3 γ

(x, p)dxdp.

Moreover,∫
p2

1 F
(
−
η

2
, p
)

dp ≤

∫
p1>0

p2
1 P−(p)dp +

∫
−1<p1<0

|p1|F
(
−
η

2
, p
)

dp +

∫
p1<−1

|p1|
3 F
(
−
η

2
, p
)

dp.

Multiplying the equation satisfied by F by p2 and integrating it leads to∫
p1<0

|p1|p2 F
(
−
η

2
, p
)

dp ≤ c2 +

∫ η
2

−
η
2

∫
p2P

λ
1
3

n

λα,λ
5
3 γ

dxdp,

for some constant c2. And so,∫
p2

1 F(x, p)dp ≤ c3 +

∫ η
2

−
η
2

∫
(p2

+ η)P
λ

1
3

n

λα,λ
5
3 γ

dxdp,

for some constant c3. Then,∫ η
2

−
η
2

∫
p2P

λ
1
3

n

λα,λ
5
3 γ

dxdp = λ
5
3

∫ η
2

−
η
2

(
γ +

1

n2 (α1 + α2 − γ
3
5 )

)
(x)dx

≤ λ
5
3

(
2ηM +

1

n2

)
,

and ∫ η
2

−
η
2

∫
P

λ
1
3

n

λα,λ
5
3 γ

dxdp = λ

∫ η
2

−
η
2

(α1 + α2)(x)dx ≤ λ(1 + ηM).

And so,∫
p2

1 F(x, p)dp ≤ c3 +
1

n2 (λ
∗)

5
3 + η

(
2(λ∗)

5
3 M + λ∗(1 + ηM)

)
. (4.4)

Let

H(x, p1) :=

∫
(p2

2 + p2
3)F(x, p)dp2dp3,

T (x, p1) :=

∫
(p2

2 + p2
3)P

λ
1
3

n

λα,λ
5
3 γ

(x, p)dp2dp3.

Then

p1
∂H

∂x
= T (x, p1)− H,

and (cf. Proposition 3.2)

T (x, p1) ≤ c4(λ
5
3 γ (x))

4
5 , a.a. x ∈

(
−
η

2
,
η

2

)
, p1 ∈ R.
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Hence,∫
p1>0

H(x, p1)dp1 ≤ c5 +

∫ x

−
η
2

∫
p1>0

1
p1

e
y−x
p1 T (y, p1)dydp1

= c5 +

∫ x

−
η
2

∫
p1>ε

1
p1

e
y−x
p1 T (y, p1)dydp1 +

∫ x

−
η
2

∫ ε

0

1
p1

e
y−x
p1 T (y, p1)dydp1

≤ c5 +
1
ε

∫ x

−
η
2

∫
p1>0

T (y, p1)dydp1 + c4λ
4
3 M

4
5 ε.

And so,∫
H(x, p1)dp1 ≤ c6 +

η

ε
(λ∗)

5
3 M + 2c4(λ

∗)
4
3 M

4
5 ε. (4.5)

Taking (4.4–4.5) into account, Lemma 4.2 is proven by first choosing δ ∈]0, 1[ such that cδ < 1
2 . So then

M =
10
δ2 (c3 + c6), and then n > (λ∗)

5
6

δ

√
10
M ; thus

ε < M−
4
5 δ2

20c4
(λ∗)−

4
3 , and finally η ∈ ]0, 1[ such that

η < min

 δ2

(λ∗)
5
3

(
1
ε

+ 2 + (λ∗)−
2
3 (M−1 + 1)

) , 1

2c1λ∗M
3
5 c̃δ

 . �

End of the proof of Theorem 4.1. The map T maps the closed, bounded, and convex set Λ into itself. Its continuity
for the L1 topology follows from the continuity of the map that maps (α1, α2, γ ) into λ1 such that OFλ1

= 1 and the
continuity of λ1 into (α̃1, α̃2, γ̃1). The continuity of λ1 with respect to (α1, α2, γ ) follows by the strict monotonicity
of OFλ and its continuity with respect to λ. The map T is compact for the L1 topology. Indeed, let (αi

1, α
i
2, γ

i ) be a
sequence in Λ. First,

α̃i
1 = β i

+ β̄ i
+ µi

+ µ̄i
+ eb,

where

β i (x) =

∫
0<p1<ε

∫ x

−
η
2

e
y−x
p1

p1(ea(y)p2+b+(y) − 1)
dydp,

µi (x) =

∫
p1>ε

∫ x

−
η
2

e
y−x
p1

p1(ea(y)p2+b+(y) − 1)
dydp,

eb(x) =

∫
p1>0

P−(p)e
−

η
2 +x
p1 dp

∫
p1<0

|p1|F
(
−
η

2
, p
)

dp

+

∫
p1<0

P+(p)e

η
2 −x
p1 dp

∫
p1>0

p1 F
(η

2
, p
)

dp,

and β̄ i (resp. µ̄i ) defined analogously to β i (resp. µi ) for −ε < p1 < 0 (resp. p1 < −ε). For ε small enough,∫
β i (x)dx can be made arbitrarily small, uniformly with respect to i , since∫

β i (x)dx ≤ λ∗

(∫
q2dq

eq2+b∗
− 1

)−
3
5

M
3
5

∫
0<q1<(λ

∗)
−

1
3 (
∫ q2dq

eq2
−1
)

1
5 γ

−
1
5

∗ ε

q1dq

eq2
− 1

.

The sequence (µi ) is bounded in W 1,1([−1, 1]), and hence compact in L1. Consequently, the sequence (α̃i
1)

is compact in L1. Analogously, (α̃i
2) and (

∫
p2

1 F i (x, p)dp) are compact in L1. Then the L1 compactness of
(
∫
|p1|<λ

(p2
2 + p2

3)F
i (x, p)dp) for any λ > 0 follows from Proposition 3.2. Finally, (

∫
|p1|>λ

(p2
2 + p2

3)F
i (x, p)dp) is
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compact in L1. Indeed, for any l ∈ ]0, η2 [, it holds that∫ η
2 −l

−
η
2

∣∣∣∣∫
p1>λ

(p2
2 + p2

3)
(

F i (x + l, p)− F i (x, p)
)

dp

∣∣∣∣ dx

≤ η

∫
p1>λ

(p2
2 + p2

3)F
i
(
−
η

2
, p
)
(1 − e

−
l

p1 )dp +
1
λ

∫
(p2

2 + p2
3)

(∫ x+l

x

dy

eai (y)p2+b+i (y) − 1

)
dxdp

+
η

λ

∫
(p2

2 + p2
3)

(∫ η
2

−
η
2

dy

eai (y)p2+b+i (y) − 1

)
(1 − e

−
l

p1 )dp

≤ cl.

A similar treatment of the integral over p1 < −λ can be carried out.
A fixed point of T is a solution F to Theorem 4.1, since the integration w.r.t. (x, p) ∈ (−

η
2 ,

η
2 )×R3 of the equation

satisfied by F , and the Planckian diffuse reflection boundary conditions satisfied by F , imply that λ = 1. Moreover,
it follows from the integration of (4.2) on (− η

2 ,
η
2 )× R3 that IF = OF = 1. �

Remark. Using analogous techniques as in the proofs of Lemma 4.2 and Theorem 4.1, the limit when n → +∞ can
be performed in Theorem 4.1 for the L1 part of the distribution function. If the solution Fn to Theorem 4.1 is split
into

Fn(x, p) = F̄n(x, p)+ αn(x)δp1=
1
n ,p2=p3=0 + βn(x)δp1=−

1
n ,p2=p3=0,

it can be proven that (F̄n) is weakly compact in L1
loc((−

η
2 ,

η
2 )× R3), and that its limit F̄ is solution to

p1
∂ F̄

∂x
= R̄ − F̄, x ∈

[
−
η

2
,
η

2

]
, p ∈ R3,

F̄
(
−
η

2
, p
)

= P−(p)
∫

p′

1<0
|p′

1|F̄
(
−
η

2
, p′

)
dp′, p1 > 0,

F̄
(η

2
, p
)

= P+(p)
∫

p′

1>0
p′

1 F̄
(η

2
, p′

)
dp′, p1 < 0,

IF̄ = 1,

for some function R̄ of type (2.6) satisfying
∫

R̄dxdp =
∫

F̄dxdp. However, the effect on the L1 part of the P
1
n from

the Dirac part of Fn , might still be present in the limit R̄. The Heisenberg uncertainty relation is also captured in that
way.
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