Soit $(E, \langle \cdot, \cdot \rangle)$ un espace euclidien de dimension $n \in \mathbb{N} \setminus \{0\}$, et soit f un endomorphisme orthogonal de E.

Notation: Pour $\theta \in \mathbb{R}$, on note $R(\theta) := \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \in \mathrm{O}_2(\mathbb{R})$.

Théorème 8

Il existe une base orthonormale ${\cal B}$ de ${\cal E}$ dans laquelle

$$\operatorname{Mat}_{\mathcal{B}}(f) = \left(egin{array}{cccc} \epsilon_1 & & & & & 0 \\ & \ddots & & & & & \\ & & \epsilon_r & & & & \\ & & & R(heta_1) & & & \\ & & & \ddots & & \\ 0 & & & & R(heta_s) \end{array}
ight)$$

où
$$r, s \in \mathbb{N}$$
, $\forall i \in \{1, \dots, r\}$, $\epsilon_i \in \{+1; -1\}$, $\forall j \in \{1, \dots, s\}$, $\theta_j \in \mathbb{R} \setminus \{k\pi \mid k \in \mathbb{Z}\}$.

Lemme 9

Soit F un sev de E.

Lemme 9

Soit F un sev de E. Si $f(F) \subset F$, alors $f(F^{\perp}) \subset F^{\perp}$.

Lemme 9

Soit F un sev de E. Si $f(F) \subset F$, alors $f(F^{\perp}) \subset F^{\perp}$.

Preuve du théorème 8 :

Lemme 9

Soit F un sev de E. Si $f(F) \subset F$, alors $f(F^{\perp}) \subset F^{\perp}$.

Lemme 9

Soit F un sev de E. Si $f(F) \subset F$, alors $f(F^{\perp}) \subset F^{\perp}$.

Preuve du théorème 8 : Par récurrence sur $n = \dim(E)$.

• n = 1:

Lemme 9

Soit F un sev de E. Si $f(F) \subset F$, alors $f(F^{\perp}) \subset F^{\perp}$.

Preuve du théorème 8 : Par récurrence sur $n = \dim(E)$.

• *n* = 1 : OK

Lemme 9

Soit F un sev de E. Si $f(F) \subset F$, alors $f(F^{\perp}) \subset F^{\perp}$.

- *n* = 1 : OK
- Supposons la propriété vérifiée pour tout entier naturel non nul < n.

Lemme 9

Soit F un sev de E. Si $f(F) \subset F$, alors $f(F^{\perp}) \subset F^{\perp}$.

- *n* = 1 : OK
- Supposons la propriété vérifiée pour tout entier naturel non nul < n.
 - **1** si f possède une valeur propre réelle $\lambda \in \mathbb{R}$:

Lemme 9

Soit F un sev de E. Si $f(F) \subset F$, alors $f(F^{\perp}) \subset F^{\perp}$.

- n = 1 : OK
- Supposons la propriété vérifiée pour tout entier naturel non nul < n.
 - **1** si f possède une valeur propre réelle $\lambda \in \mathbb{R}$:
 - \bullet $|\lambda|=1$

Lemme 9

Soit F un sev de E. Si $f(F) \subset F$, alors $f(F^{\perp}) \subset F^{\perp}$.

- n = 1 : OK
- Supposons la propriété vérifiée pour tout entier naturel non nul < n.
 - **1** si f possède une valeur propre réelle $\lambda \in \mathbb{R}$:
 - \bullet $|\lambda|=1$
 - soit $v \in E_{\lambda} \setminus \{0_E\}$,

Lemme 9

Soit F un sev de E. Si $f(F) \subset F$, alors $f(F^{\perp}) \subset F^{\perp}$.

- *n* = 1 : OK
- Supposons la propriété vérifiée pour tout entier naturel non nul < n.
 - **1** si f possède une valeur propre réelle $\lambda \in \mathbb{R}$:
 - \bullet $|\lambda|=1$
 - soit $v \in E_{\lambda} \setminus \{0_E\}$, on pose $F := \text{Vect}\{v\}$

Lemme 9

Soit F un sev de E. Si $f(F) \subset F$, alors $f(F^{\perp}) \subset F^{\perp}$.

- n = 1 : OK
- Supposons la propriété vérifiée pour tout entier naturel non nul < n.
 - **1** si f possède une valeur propre réelle $\lambda \in \mathbb{R}$:
 - \bullet $|\lambda|=1$
 - soit $v \in E_{\lambda} \setminus \{0_E\}$, on pose $F := \operatorname{Vect}\{v\}$ et F^{\perp} est stable par f

Lemme 9

Soit F un sev de E. Si $f(F) \subset F$, alors $f(F^{\perp}) \subset F^{\perp}$.

- n = 1 : OK
- Supposons la propriété vérifiée pour tout entier naturel non nul < n.
 - **1** si f possède une valeur propre réelle $\lambda \in \mathbb{R}$:
 - \bullet $|\lambda|=1$
 - soit $v \in E_{\lambda} \setminus \{0_E\}$, on pose $F := \operatorname{Vect}\{v\}$ et F^{\perp} est stable par f
 - $\dim(F^{\perp}) = n 1$: on applique HR.

Lemme 9

Soit F un sev de E. Si $f(F) \subset F$, alors $f(F^{\perp}) \subset F^{\perp}$.

- n = 1 : OK
- Supposons la propriété vérifiée pour tout entier naturel non nul < n.
 - **1** si f possède une valeur propre réelle $\lambda \in \mathbb{R}$:
 - $|\lambda| = 1$
 - soit $v \in E_{\lambda} \setminus \{0_E\}$, on pose $F := \text{Vect}\{v\}$ et F^{\perp} est stable par f
 - dim $(F^{\perp}) = n 1$: on applique HR.
 - si f ne possède pas de valeur propre réelle :

Lemme 9

Soit F un sev de E. Si $f(F) \subset F$, alors $f(F^{\perp}) \subset F^{\perp}$.

- n = 1 : OK
- Supposons la propriété vérifiée pour tout entier naturel non nul < n.
 - **1** si f possède une valeur propre réelle $\lambda \in \mathbb{R}$:
 - $|\lambda|=1$
 - soit $v \in E_{\lambda} \setminus \{0_E\}$, on pose $F := \text{Vect}\{v\}$ et F^{\perp} est stable par f
 - dim $(F^{\perp}) = n 1$: on applique HR.
 - si f ne possède pas de valeur propre réelle :
 - on pose $h := f + f^*$:

Lemme 9

Soit F un sev de E. Si $f(F) \subset F$, alors $f(F^{\perp}) \subset F^{\perp}$.

- n = 1 : OK
- Supposons la propriété vérifiée pour tout entier naturel non nul < n.
 - **1** si f possède une valeur propre réelle $\lambda \in \mathbb{R}$:
 - \bullet $|\lambda|=1$
 - soit $v \in E_{\lambda} \setminus \{0_E\}$, on pose $F := \text{Vect}\{v\}$ et F^{\perp} est stable par f
 - dim $(F^{\perp}) = n 1$: on applique HR.
 - 2 si f ne possède pas de valeur propre réelle :
 - on pose $h := f + f^* : h$ est symétrique

Lemme 9

Soit F un sev de E. Si $f(F) \subset F$, alors $f(F^{\perp}) \subset F^{\perp}$.

- n = 1 : OK
- Supposons la propriété vérifiée pour tout entier naturel non nul < n.
 - **1** si f possède une valeur propre réelle $\lambda \in \mathbb{R}$:
 - $|\lambda|=1$
 - soit $v \in E_{\lambda} \setminus \{0_E\}$, on pose $F := \text{Vect}\{v\}$ et F^{\perp} est stable par f
 - dim $(F^{\perp}) = n 1$: on applique HR.
 - si f ne possède pas de valeur propre réelle :
 - on pose $h := f + f^* : h$ est symétrique
 - soit $\lambda \in \operatorname{Sp}(h)$,

Lemme 9

Soit F un sev de E. Si $f(F) \subset F$, alors $f(F^{\perp}) \subset F^{\perp}$.

- n = 1 : OK
- Supposons la propriété vérifiée pour tout entier naturel non nul < n.
 - **1** si f possède une valeur propre réelle $\lambda \in \mathbb{R}$:
 - $|\lambda| = 1$
 - soit $v \in E_{\lambda} \setminus \{0_E\}$, on pose $F := \text{Vect}\{v\}$ et F^{\perp} est stable par f
 - dim $(F^{\perp}) = n 1$: on applique HR.
 - si f ne possède pas de valeur propre réelle :
 - on pose $h := f + f^* : h$ est symétrique
 - soit $\lambda \in \operatorname{Sp}(h)$, soit $v \in E_{\lambda} \setminus \{0_{E}\}$

Lemme 9

Soit F un sev de E. Si $f(F) \subset F$, alors $f(F^{\perp}) \subset F^{\perp}$.

- n = 1 : OK
- Supposons la propriété vérifiée pour tout entier naturel non nul < n.
 - **1** si f possède une valeur propre réelle $\lambda \in \mathbb{R}$:
 - \bullet $|\lambda|=1$
 - soit $v \in E_{\lambda} \setminus \{0_E\}$, on pose $F := \text{Vect}\{v\}$ et F^{\perp} est stable par f
 - dim $(F^{\perp}) = n 1$: on applique HR.
 - 2 si f ne possède pas de valeur propre réelle :
 - on pose $h := f + f^* : h$ est symétrique
 - soit $\lambda \in \mathrm{Sp}(h)$, soit $v \in E_{\lambda} \setminus \{0_E\} : F := \mathrm{Vect}\{v, f(v)\}$ est de dimension 2

Lemme 9

Soit F un sev de E. Si $f(F) \subset F$, alors $f(F^{\perp}) \subset F^{\perp}$.

- n = 1 : OK
- Supposons la propriété vérifiée pour tout entier naturel non nul < n.
 - **1** si f possède une valeur propre réelle $\lambda \in \mathbb{R}$:
 - \bullet $|\lambda|=1$
 - soit $v \in E_{\lambda} \setminus \{0_E\}$, on pose $F := \text{Vect}\{v\}$ et F^{\perp} est stable par f
 - dim $(F^{\perp}) = n 1$: on applique HR.
 - 2 si f ne possède pas de valeur propre réelle :
 - on pose $h := f + f^* : h$ est symétrique
 - soit $\lambda \in \mathrm{Sp}(h)$, soit $v \in E_{\lambda} \setminus \{0_E\} : F := \mathrm{Vect}\{v, f(v)\}$ est de dimension 2 et est stable par f

Lemme 9

Soit F un sev de E. Si $f(F) \subset F$, alors $f(F^{\perp}) \subset F^{\perp}$.

- n = 1 : OK
- Supposons la propriété vérifiée pour tout entier naturel non nul < n.
 - **1** si f possède une valeur propre réelle $\lambda \in \mathbb{R}$:
 - \bullet $|\lambda|=1$
 - soit $v \in E_{\lambda} \setminus \{0_E\}$, on pose $F := \text{Vect}\{v\}$ et F^{\perp} est stable par f
 - $\dim(F^{\perp}) = n 1$: on applique HR.
 - 2 si f ne possède pas de valeur propre réelle :
 - on pose $h := f + f^* : h$ est symétrique
 - soit $\lambda \in \mathrm{Sp}(h)$, soit $v \in E_{\lambda} \setminus \{0_E\} : F := \mathrm{Vect}\{v, f(v)\}$ est de dimension 2 et est stable par f
 - F^{\perp} est stable par f

Lemme 9

Soit F un sev de E. Si $f(F) \subset F$, alors $f(F^{\perp}) \subset F^{\perp}$.

- n = 1 : OK
- Supposons la propriété vérifiée pour tout entier naturel non nul < n.
 - **1** si f possède une valeur propre réelle $\lambda \in \mathbb{R}$:
 - $|\lambda|=1$
 - soit $v \in E_{\lambda} \setminus \{0_E\}$, on pose $F := \text{Vect}\{v\}$ et F^{\perp} est stable par f
 - $\dim(F^{\perp}) = n 1$: on applique HR.
 - 2 si f ne possède pas de valeur propre réelle :
 - on pose $h := f + f^* : h$ est symétrique
 - soit $\lambda \in \mathrm{Sp}(h)$, soit $v \in E_{\lambda} \setminus \{0_E\} : F := \mathrm{Vect}\{v, f(v)\}$ est de dimension 2 et est stable par f
 - F^{\perp} est stable par f et $\dim (F^{\perp}) = n-2$:

Lemme 9

Soit F un sev de E. Si $f(F) \subset F$, alors $f(F^{\perp}) \subset F^{\perp}$.

- n = 1 : OK
- Supposons la propriété vérifiée pour tout entier naturel non nul < n.
 - **1** si f possède une valeur propre réelle $\lambda \in \mathbb{R}$:
 - $|\lambda| = 1$
 - soit $v \in E_{\lambda} \setminus \{0_E\}$, on pose $F := \text{Vect}\{v\}$ et F^{\perp} est stable par f
 - $\dim(F^{\perp}) = n 1$: on applique HR.
 - si f ne possède pas de valeur propre réelle :
 - on pose $h := f + f^* : h$ est symétrique
 - soit $\lambda \in \mathrm{Sp}(h)$, soit $v \in E_{\lambda} \setminus \{0_E\} : F := \mathrm{Vect}\{v, f(v)\}$ est de dimension 2 et est stable par f
 - F^{\perp} est stable par f et $\dim(F^{\perp}) = n-2$: on applique HR.

Lemme 9

Soit F un sev de E. Si $f(F) \subset F$, alors $f(F^{\perp}) \subset F^{\perp}$.

Preuve du théorème 8 : Par récurrence sur $n = \dim(E)$.

- n = 1 : OK
- Supposons la propriété vérifiée pour tout entier naturel non nul < n.
 - **1** si f possède une valeur propre réelle $\lambda \in \mathbb{R}$:
 - $|\lambda|=1$
 - soit $v \in E_{\lambda} \setminus \{0_E\}$, on pose $F := \text{Vect}\{v\}$ et F^{\perp} est stable par f
 - dim $(F^{\perp}) = n 1$: on applique HR.
 - 2 si f ne possède pas de valeur propre réelle :
 - on pose $h := f + f^* : h$ est symétrique
 - soit $\lambda \in \mathrm{Sp}(h)$, soit $v \in E_{\lambda} \setminus \{0_E\} : F := \mathrm{Vect}\{v, f(v)\}$ est de dimension 2 et est stable par f
 - F^{\perp} est stable par f et $\dim(F^{\perp}) = n-2$: on applique HR.

Remarque 10

Les seules valeurs propres réelles possibles pour un endomorphisme orthogonal sont 1 et -1.

Chapitre 6 : Normes matricielles subordonnées, rayon spectral, conditionnement

Soit $n \in \mathbb{N} \setminus \{0\}$,

Soit $n \in \mathbb{N} \setminus \{0\}$, soit $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

Soit $n \in \mathbb{N} \setminus \{0\}$, soit $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} . Dans ce chapitre, on étudiera

• des normes matricielles particulières : les normes subordonnées,

- des normes matricielles particulières : les normes subordonnées,
- le rayon spectral : la plus grande valeur propre en module,

- des normes matricielles particulières : les normes subordonnées,
- le rayon spectral : la plus grande valeur propre en module,
- des liens entre les deux notions,

- des normes matricielles particulières : les normes subordonnées,
- le rayon spectral : la plus grande valeur propre en module,
- des liens entre les deux notions,
- le conditionnement des systèmes linéaires inversibles.

II. Normes matricielles subordonnées

Définition 1

Soit $\|\cdot\|$ une norme sur $\mathrm{M}_n(\mathbb{K})$.

II. Normes matricielles subordonnées

Définition 1

Soit $\|\cdot\|$ une norme sur $\mathrm{M}_n(\mathbb{K}).$ On dit que $\|\cdot\|$ est une <u>norme matricielle</u>

Définition 1

Soit $\|\cdot\|$ une norme sur $\mathrm{M}_n(\mathbb{K})$. On dit que $\|\cdot\|$ est une <u>norme matricielle</u> si $\forall A,B\in\mathrm{M}_n(\mathbb{K}),\ \|AB\|\leqslant \|A\|\|B\|$.

Définition 1

Soit $\|\cdot\|$ une norme sur $\mathrm{M}_n(\mathbb{K})$. On dit que $\|\cdot\|$ est une <u>norme matricielle</u> si $\forall A,B\in\mathrm{M}_n(\mathbb{K}),\ \|AB\|\leqslant \|A\|\|B\|$.

• La norme
$$\|\cdot\|_{\mathbf{2}}:A\in\mathrm{M}_n(\mathbb{K})\mapsto\sqrt{\mathrm{Tr}\left({}^t\overline{A}\,A\right)}>0$$

Définition 1

Soit $\|\cdot\|$ une norme sur $\mathrm{M}_n(\mathbb{K})$. On dit que $\|\cdot\|$ est une <u>norme matricielle</u> si $\forall A,B\in\mathrm{M}_n(\mathbb{K}),\ \|AB\|\leqslant \|A\|\|B\|$.

Exemples 2

• La norme $\|\cdot\|_2: A \in \mathrm{M}_n(\mathbb{K}) \mapsto \sqrt{\mathrm{Tr}\left({}^t\overline{A}A\right)} > 0$ est une norme matricielle.

Définition 1

Soit $\|\cdot\|$ une norme sur $\mathrm{M}_n(\mathbb{K})$. On dit que $\|\cdot\|$ est une <u>norme matricielle</u> si $\forall A,B\in\mathrm{M}_n(\mathbb{K}),\ \|AB\|\leqslant \|A\|\|B\|$.

- La norme $\|\cdot\|_2: A \in \mathrm{M}_n(\mathbb{K}) \mapsto \sqrt{\mathrm{Tr}\left({}^t\overline{A}A\right)} > 0$ est une norme matricielle.
- La norme $\|\cdot\|_{\mathbf{1}}: A=(a_{ij})_{1\leq i,i\leq n}\in \mathrm{M}_n(\mathbb{K})\mapsto \sum_{1\leq i,j\leq n}|a_{ij}|$

Définition 1

Soit $\|\cdot\|$ une norme sur $\mathrm{M}_n(\mathbb{K})$. On dit que $\|\cdot\|$ est une <u>norme matricielle</u> si $\forall A,B\in\mathrm{M}_n(\mathbb{K}),\ \|AB\|\leqslant \|A\|\|B\|$.

- La norme $\|\cdot\|_2: A \in \mathrm{M}_n(\mathbb{K}) \mapsto \sqrt{\mathrm{Tr}\left({}^t\overline{A}A\right)} > 0$ est une norme matricielle.
- La norme $\|\cdot\|_1: A=(a_{ij})_{1\leqslant i,j\leqslant n}\in \mathrm{M}_n(\mathbb{K})\mapsto \sum_{1\leqslant i,j\leqslant n}|a_{ij}|$ est une norme matricielle.

Définition 1

Soit $\|\cdot\|$ une norme sur $\mathrm{M}_n(\mathbb{K})$. On dit que $\|\cdot\|$ est une <u>norme matricielle</u> si $\forall A, B \in \mathrm{M}_n(\mathbb{K}), \|AB\| \leqslant \|A\| \|B\|$.

- La norme $\|\cdot\|_2: A \in \mathrm{M}_n(\mathbb{K}) \mapsto \sqrt{\mathrm{Tr}\left({}^t\overline{A}A\right)} > 0$ est une norme matricielle.
- La norme $\|\cdot\|_{\mathbf{1}}: A=(a_{ij})_{1\leqslant i,j\leqslant n}\in \mathrm{M}_n(\mathbb{K})\mapsto \sum_{1\leqslant i,j\leqslant n}|a_{ij}|$ est une norme matricielle.
- La norme $\|\cdot\|_{\infty}: A=(a_{ij})_{1\leq i,i\leq n}\in \mathrm{M}_n(\mathbb{K})\mapsto \max_{1\leq i,j\leq n}|a_{ij}|$

Définition 1

Soit $\|\cdot\|$ une norme sur $\mathrm{M}_n(\mathbb{K})$. On dit que $\|\cdot\|$ est une <u>norme matricielle</u> si $\forall A, B \in \mathrm{M}_n(\mathbb{K}), \|AB\| \leqslant \|A\| \|B\|$.

- La norme $\|\cdot\|_2: A \in \mathrm{M}_n(\mathbb{K}) \mapsto \sqrt{\mathrm{Tr}\left({}^t\overline{A}A\right)} > 0$ est une norme matricielle.
- La norme $\|\cdot\|_{\mathbf{1}}: A=(a_{ij})_{1\leqslant i,j\leqslant n}\in \mathrm{M}_n(\mathbb{K})\mapsto \sum_{1\leqslant i,j\leqslant n}|a_{ij}|$ est une norme matricielle.
- La norme $\|\cdot\|_{\infty}: A=(a_{ij})_{1\leqslant i,j\leqslant n}\in \mathrm{M}_n(\mathbb{K})\mapsto \max_{1\leqslant i,j\leqslant n}|a_{ij}|$ n'est pas une norme matricielle.

Définition 1

Soit $\|\cdot\|$ une norme sur $\mathrm{M}_n(\mathbb{K})$. On dit que $\|\cdot\|$ est une <u>norme matricielle</u> si $\forall A, B \in \mathrm{M}_n(\mathbb{K}), \|AB\| \leqslant \|A\| \|B\|$.

Exemples 2

- La norme $\|\cdot\|_2: A \in \mathrm{M}_n(\mathbb{K}) \mapsto \sqrt{\mathrm{Tr}\left({}^t\overline{A}A\right)} > 0$ est une norme matricielle.
- La norme $\|\cdot\|_{\mathbf{1}}: A=(a_{ij})_{1\leqslant i,j\leqslant n}\in \mathrm{M}_n(\mathbb{K})\mapsto \sum_{1\leqslant i,j\leqslant n}|a_{ij}|$ est une norme matricielle.
- La norme $\|\cdot\|_{\infty}: A=(a_{ij})_{1\leqslant i,j\leqslant n}\in \mathrm{M}_n(\mathbb{K})\mapsto \max_{1\leqslant i,j\leqslant n}|a_{ij}|$ n'est pas une norme matricielle.

Remarque 3

$$\|I_n\|_2 = \sqrt{n} \text{ et } \|I_n\|_1 = n.$$

Soit $\|\cdot\|$ une norme $\underline{\operatorname{sur}} \mathbb{K}^n$.

Soit $\|\cdot\|$ une norme $\underline{\operatorname{sur}}\ \mathbb{K}^n$. On construit à partir de $\|\cdot\|$ une norme matricielle $\|\cdot\|$ sur $\mathrm{M}_n(\mathbb{K})$ qui vérifie $\|I_n\|=1$.

Soit $\|\cdot\|$ une norme $\underline{\operatorname{sur}\ \mathbb{K}^n}$. On construit à partir de $\|\cdot\|$ une norme matricielle $\|\cdot\|$ sur $\mathrm{M}_n(\mathbb{K})$ qui vérifie $\|I_n\|=1$. On se base sur le résultat suivant :

Soit $\|\cdot\|$ une norme $\underline{\operatorname{sur}\ \mathbb{K}^n}$. On construit à partir de $\|\cdot\|$ une norme matricielle $\|\cdot\|$ sur $\mathrm{M}_n(\mathbb{K})$ qui vérifie $\|I_n\|=1$. On se base sur le résultat suivant :

Lemme 4

Soit $A \in M_n(\mathbb{K})$.

Soit $\|\cdot\|$ une norme $\underline{\operatorname{sur}\ \mathbb{K}^n}$. On construit à partir de $\|\cdot\|$ une norme matricielle $\|\cdot\|$ sur $\mathrm{M}_n(\mathbb{K})$ qui vérifie $\|I_n\|=1$. On se base sur le résultat suivant :

Lemme 4

Soit
$$A \in \mathrm{M}_n(\mathbb{K})$$
. L'application $\psi: \begin{matrix} \mathbb{K}^n \backslash \{0\} \\ v \end{matrix} \mapsto \begin{matrix} [0, +\infty[\\ \frac{\|Av\|}{\|v\|} \end{matrix}]$ admet un maximum,

Soit $\|\cdot\|$ une norme $\underline{\operatorname{sur}\ \mathbb{K}^n}$. On construit à partir de $\|\cdot\|$ une norme matricielle $\|\cdot\|$ sur $\mathrm{M}_n(\mathbb{K})$ qui vérifie $\|I_n\|=1$. On se base sur le résultat suivant :

Lemme 4

Soit
$$A \in \mathrm{M}_n(\mathbb{K})$$
. L'application $\psi: \begin{matrix} \mathbb{K}^n \setminus \{0\} \\ v \end{matrix} \mapsto \begin{matrix} [0, +\infty[\\ \frac{\|Av\|}{\|v\|} \end{matrix}]$ admet un maximum, que l'on note $\|A\|$.