Feuille de TD 6 : Normes matricielles subordonnées, rayon spectral, conditionnement

Exercice 1 Déterminer les normes $\|\cdot\|_1$, $\|\cdot\|_1$, $\|\cdot\|_\infty$, $\|\cdot\|_\infty$ des matrices $A := \begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix} \in M_2(\mathbb{R})$ et $B := \begin{pmatrix} 2 & 1 & 1 \\ -3 & -1 & 0 \\ 4 & 0 & -2 \end{pmatrix} \in M_3(\mathbb{R})$.

Solution:

- La norme $\|\cdot\|_1$ est la somme des modules des coefficients : $\|A\|_1 = |1| + |2| + |0| + |2| = 5$ et $\|B\|_1 = 14$.
- La norme $\|\cdot\|_{\infty}$ est le maximum des modules des coefficients : $\|A\|_{\infty} = 2$ et $\|B\|_{\infty} = 4$.
- La norme $\| \cdot \|_1$ est la norme subordonnée à la norme $\| \cdot \|_1$ des vecteurs colonnes. Un théorème la calcule comme le maximum de la norme $\| \cdot \|_1$ des vecteurs colonnes : $\| A \|_1 = \max\{1+0,2+2\} = 4$ et $\| B \|_1 = \max\{9,2,3\} = 9$.
- La norme $\| \cdot \|_{\infty}$ est la norme subordonnée à la norme $\| \cdot \|_{\infty}$ des vecteurs colonnes. Un théorème la calcule comme le maximum de la norme $\| \cdot \|_{1}$ des vecteurs lignes : $\| A \|_{\infty} = \max\{1+2,0+2\} = 3$ et $\| B \|_{1} = \max\{4,4,6\} = 6$.

Exercice 2 Soit $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} et soit $n \in \mathbb{N} \setminus \{0, 1\}$. Les questions suivantes sont indépendantes.

1. Toute norme sur $M_n(\mathbb{R})$ est-elle une norme subordonnée?

Solution : La norme $\|\cdot\|_{\infty}$ sur $M_n(\mathbb{R})$ n'est pas une norme matricielle : elle n'est donc pas une norme subordonnée.

2. Existe-t-il une norme $\|\cdot\|$ sur $M_n(K)$ telle que, pour tous $A, B \in M_n(\mathbb{R}), \|AB\| = \|A\| \|B\|$?

 $Solution: \text{ La matrice nilpotente } N := \begin{pmatrix} 0 & 0 & \cdots & 1 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \dots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix} \text{ vérifie pour toute norme } \| \cdot \| \text{ sur }$ $\| M_n(K)$ $\| NN \| = \| 0 \| < \| N \| \| N \|.$

Il n'existe donc pas de telle norme.

Exercice 3 Déterminer le rayon spectral des matrices de $M_3(\mathbb{R})$

$$A := \begin{pmatrix} 3 & 1 & 0 \\ -4 & -1 & 0 \\ 4 & 8 & -2 \end{pmatrix} \quad B := \begin{pmatrix} 1 & 0 & 0 \\ 2 & 0 & 2 \\ -5 & -2 & 0 \end{pmatrix} \quad C := \begin{pmatrix} 1 & 4 & -2 \\ 0 & 6 & -3 \\ -1 & 4 & 0 \end{pmatrix}$$

Solution:

- (-2) est une valeur propre de A. La somme des deux autres est 3 + (-1) = 2 = 1 + 1 et leur produit $3 \times (-1) (-4) \times 1 = 1 = 1 \times 1$. L'entier 1 est donc valeur propre double. Le rayon spectral, maximum des modules des valeurs propres, est donc 2.
- Les valeurs propres de B (ou de sa transposée ${}^tB := \begin{pmatrix} 1 & 2 & -5 \\ 0 & 0 & -2 \\ 0 & 2 & 0 \end{pmatrix}$) sont 1, 2i et -2i. Le rayon spectral de B est donc 2.
- $\bullet\,$ Le polynôme caractéristique de C est $(X-2)^2(3-X).$ Le rayon spectral de C est donc 3.

Exercice 4 Déterminer les normes $\|\cdot\|_2$ et $\|\cdot\|_2$ des matrices $C := \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} \in M_2(\mathbb{R})$ et $D := \begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & 1 \\ -2 & -1 & -1 \end{pmatrix} \in M_3(\mathbb{R})$.

Solution:

- La norme $\|\cdot\|_2$ est la racine carrée de la somme des carrés des modules des coefficients : $\|C\|_2 = \sqrt{1+1+1} = \sqrt{3}$ et $\|D\|_2 = \sqrt{3\times(1+1+4)} = 3\sqrt{2}$.
- La norme $\| \cdot \|_2$ est la norme subordonnée à la norme $\| \cdot \|_2$ des vecteurs colonnes. Un théorème calcule $\| A \|_2$ comme la racine carrée du rayon spectral de tAA :

 On trouve successivement, la matrice symétrique ${}^tCC = \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix}$, son polynôme caractéristique $\chi_{{}^tCC}(X) = X^2 3X + 1$ dont les racines sont $\frac{3+\sqrt{5}}{2}$ et $\frac{3-\sqrt{5}}{2}$, le rayon spectral de tCC soit $\rho({}^tCC) = \frac{3+\sqrt{5}}{2}$ et enfin la norme $\| C \|_2 = \sqrt{\rho({}^tCC)} = \sqrt{\frac{3+\sqrt{5}}{2}}$.

On trouve ${}^tDD = \begin{pmatrix} 6 & 5 & 5 \\ 5 & 6 & 5 \\ 5 & 5 & 6 \end{pmatrix} = I + 5J$ avec $J := \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ de valeurs propres 0 (de multiplicité 2 dans $\chi_J(X)$) et 3. Les valeurs propres de tDD sont donc $1 + 5 \times 0 = 1$ et $1 + 5 \times 3 = 16$. Donc, $|||D|||_2 = \sqrt{\rho({}^tDD)} = \sqrt{16} = 4$.

Exercice 5 Pour chacune des matrices A suivantes, la suite $(A^k)_{k\in\mathbb{N}}$ converge-t-elle?

$$\begin{pmatrix} 1 & 0 \\ -4 & -1 \end{pmatrix} \qquad \begin{pmatrix} 0 & -\frac{1}{2} \\ -\frac{1}{2} & 0 \end{pmatrix} \qquad \begin{pmatrix} 1 & 4 & -2 \\ 0 & 6 & -3 \\ -1 & 4 & 0 \end{pmatrix}$$

Solution:

• Le spectre de A est $\{1, -1\}$: celui de A^k est donc 1 et $\{1, (-1)^k\}$ qui constitue une suite d'ensembles sans limite. La suite $(A^k)_{k\in\mathbb{N}}$ ne converge donc pas.

Autre démarche : On calcule (on peut aussi noter que le polynôme caractéristique X^2-1 annule A)

$$A^{2n} = I_2 \text{ et } A^{2n+1} = \begin{pmatrix} 1 & 0 \\ -4 & -1 \end{pmatrix}.$$

Les deux sous-suites de termes d'indices pairs et impairs sont constantes donc convergentes mais vers des limites distinctes. La suite $\left(A^k\right)_{k\in\mathbb{N}}$ ne converge donc pas.

• L'image de $e_1 + e_2$ est $-\frac{1}{2}(e_1 + e_2)$: par conséquent $-\frac{1}{2}$ est valeur propre de A. L'autre, déterminée par la trace, est $\frac{1}{2}$. Le rayon spectral de A est donc $\frac{1}{2} < 1$ et la suite $((A^k))_{k \in \mathbb{N}}$ est donc convergente vers la matrice nulle.

Autre démarche : On calcule

$$A^{2n} = \frac{1}{2^{2n}} I_2 \text{ et } A^{2n+1} = -\frac{1}{2^{2n+1}} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

Les deux sous-suites de termes d'indices pairs et impairs convergent toutes les deux vers la même limite, la matrice nulle : la suite $((A^k))_{k\in\mathbb{N}}$ est donc convergente vers la matrice nulle.

• Le polynôme caractéristique de A est $(3-X)(X-2)^2$. Le rayon spectral de A est strictement plus grand que 1: la suite $((A^k)_{k\in\mathbb{N}}$ ne converge donc pas, car la suite des spectres $(\{3^k,2^k\})_{k\in\mathbb{N}}$ de ces matrices trigonalisables n'a pas d'ensemble limite.

Exercice 6 Soient $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} , $m \in \mathbb{N} \setminus \{0,1\}$ et $A \in \mathcal{M}_m(\mathbb{K})$. Le but de l'exercice est de montrer que la série $\sum_{n} A^n$ de $\mathcal{M}_m(\mathbb{K})$ converge si et seulement si $\rho(A) < 1$.

1. Montrer que si la série $\sum_{n} A^{n}$ converge alors $\rho(A) < 1$.

Solution : Si la suite $\sum_{n} A^{n}$ converge, alors son terme général A^{n} tend vers la matrice nulle. Par théorème, le rayon spectral de A est donc strictement plus petit que 1.

2. Montrer que si $\rho(A) < 1$ alors la matrice $I_m - A$ de $M_m(\mathbb{K})$ est inversible.

Solution: Si $\rho(A) < 1$ alors les valeurs propres de A sont toutes de module strictement plus petit que 1. En particulier, 1 n'est pas une valeur propre de A et $I_m - A$ est inversible.

3. Montrer que, pour tout $n \in \mathbb{N}$, $(I_m - A) \sum_{k=0}^n A^k = I_m - A^{n+1}$.

Solution:

$$(I_m - A) \sum_{k=0}^n A^k = \sum_{k=0}^n A^k - \sum_{k=0}^n A^{k+1} = \sum_{k=0}^n A^k - \sum_{k=1}^{n+1} A^k = I_m - A^{m+1}.$$

4. En déduire le résultat recherché.

Solution : La question 1 montre l'implication directe. Réciproquement, si $\rho(A) < 1$, alors par les questions 2 et 3, pour tout $n \in \mathbb{N}$, $\sum_{k=0}^n A^k = (I_m - A)^{-1}(I_m - A^{n+1})$. Par théorème, puisque $\rho(A) < 1$, la suite $(A^{n+1})_{n \in \mathbb{N}}$ tend vers 0. Ainsi la suite $(\sum_{k=0}^n A^k)_{n \in \mathbb{N}}$ est convergente et tend vers $(I_m - A)^{-1}$: donc $\sum_n A^n$ converge vers $(I_m - A)^{-1}$.

Exercice 7 On considère la matrice $A := \begin{pmatrix} 1 & 0 \\ 0 & 10^{-6} \end{pmatrix}$ de $M_2(\mathbb{R})$.

1. Déterminer $\operatorname{cond}_1(A)$, $\operatorname{cond}_{\infty}(A)$ et $\operatorname{cond}_2(A)$.

Solution : Comme les matrices A et A^{-1} sont diagonales, leurs normes subordonnées $\| \cdot \|_1, \| \cdot \|_2$ et $\| \cdot \|_{\infty}$ coïncident.

$$\operatorname{cond}_1(A) = |||A|||_1 |||A^{-1}|||_1 = 1 \times 10^6 = 10^6 = \operatorname{cond}_{\infty}(A) = \operatorname{cond}_2(A).$$

2. Résoudre les systèmes

•
$$AX = B \text{ avec } B := \begin{pmatrix} 1 \\ 10^{-6} \end{pmatrix}$$
,

Solution: Soit $X \in \mathbb{R}^2$. Comme A est inversible,

$$AX = B \iff X = A^{-1}B \iff X = \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$$

•
$$AY = B + \delta B$$
 où $\delta B := \begin{pmatrix} 10^{-6} \\ 0 \end{pmatrix}$,

Solution: Soit $Y \in \mathbb{R}^2$. Comme A est inversible,

$$AY = B + \delta B \iff Y = A^{-1}(B + \delta B) \iff Y = A^{-1}B + A^{-1}\delta B \iff Y = \begin{pmatrix} 1 + 10^{-6} \\ 1 \end{pmatrix}.$$

•
$$AZ = B + \Delta B$$
 où $\Delta B := \begin{pmatrix} 0 \\ 10^{-6} \end{pmatrix}$.

Solution: Soit $Z \in \mathbb{R}^2$. Comme A est inversible,

$$AZ = B + \Delta B \iff Z = A^{-1}(B + \Delta B) \iff Z = A^{-1}B + A^{-1}\Delta B \iff Z = \begin{pmatrix} 1\\2 \end{pmatrix}.$$

3. Déterminer les erreurs relatives $\frac{\|Y-X\|}{\|X\|}$ et $\frac{\|Z-X\|}{\|X\|}$ pour chacune des normes $\|\cdot\|_2$, $\|\cdot\|_1$ et $\|\cdot\|_{\infty}$.

Solution:

•

$$\frac{\|Y - X\|}{\|X\|} = \frac{\|A^{-1}\delta B\|}{\|X\|} = \frac{\|\begin{pmatrix} 10^{-6} \\ 0 \end{pmatrix}\|}{\|\begin{pmatrix} 1 \\ 1 \end{pmatrix}\|}$$

On trouve donc $\frac{10^{-6}}{2}$ pour la norme $\|\cdot\|_1$, $\frac{10^{-6}}{\sqrt{2}}$ pour la norme $\|\cdot\|_2$, et 10^{-6} pour la norme $\|\cdot\|_{\infty}$.

 $\frac{\|Z - X\|}{\|X\|} = \frac{\|A^{-1}\Delta B\|}{\|X\|} = \frac{\|\binom{0}{1}\|}{\|\binom{1}{1}\|}$

On trouve donc $\frac{1}{2}$ pour la norme $\|\cdot\|_1$, $\frac{1}{\sqrt{2}}$ pour la norme $\|\cdot\|_2$, et 1 pour la norme $\|\cdot\|_{\infty}$. On trouve dans tous ces cas des erreurs relatives inférieures au majorant $\operatorname{cond}(A)\frac{\|\Delta B\|}{\|B\|}=\frac{1}{\|B\|}$ donné par théorème.

Exercice 8 Soit $n \in \mathbb{N}\setminus\{0\}$ et soit $A \in GL_n(\mathbb{R})$ une matrice <u>symétrique</u>. On note λ_M la plus grande valeur propre de A en valeur absolue et λ_m la plus petite valeur propre de A en valeur absolue. Montrer que $\operatorname{cond}_2(A) = \frac{|\lambda_M|}{|\lambda_m|}$.

Solution: Comme A est A^{-1} sont symétriques, leur norme $\||\cdot||_2$ est leur rayon spectral. Ainsi,

$$\operatorname{cond}_2(A) = |||A|||_2 |||A^{-1}|||_2 = \rho(A)\rho(A^{-1}) = |\lambda_M| \times \frac{1}{|\lambda_m|} = \frac{|\lambda_M|}{|\lambda_m|}.$$

Exercice 9 Soit $n \in \mathbb{N} \setminus \{0\}$.

1. Montrer que, pour tout $O \in O_n(\mathbb{R})$, $\operatorname{cond}_2(O) = 1$.

Solution: Comme O et O^{-1} sont orthogonales,

$$\operatorname{cond}_2(O) = |||O|||_2 |||O^{-1}|||_2 = \sqrt{\rho(tOO)} \sqrt{\rho(tO^{-1}O^{-1})} = \sqrt{\rho(I_n)}^2 = 1.$$

2. Soient $A \in GL_n(\mathbb{R})$ et $B \in M_{n,1}(\mathbb{R})$. On note ${}^tA = \widetilde{Q}\widetilde{R}$ la décomposition "QR" de la transposée tA de A. Montrer que le système AX = B, de vecteur inconnu X, est équivalent au système ${}^t\widetilde{Q}X = {}^t\widetilde{R}^{-1}B$.

Solution : Soit $X \in \mathbb{R}^n$. Comme A inversible, la matrice \widetilde{R} l'est aussi et on a

$$AX = B \iff {}^t(\widetilde{Q}\widetilde{R})X = B \iff {}^t\widetilde{R}{}^t\widetilde{Q}X = B \iff {}^t\widetilde{Q}X = {}^t\widetilde{R}^{-1}B.$$

3. Que peut-on dire du conditionnement de ce dernier système?

Solution: Comme ${}^t\widetilde{Q}$ est orthogonale, le conditionnement de ce dernier système est $\operatorname{cond}_2({}^t\widetilde{Q})=1$ par la première question. Ce système est donc bien conditionné. Mais, noter qu'une incertitude sur B peut induire une grande incertitude sur le second membre ${}^t\widetilde{R}^{-1}B$ du nouveau système si la norme de ${}^t\widetilde{R}^{-1}$ est grande.