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Abstract. If G is a hyperbolic group (resp. synchronously or asynchronously
automatic group) and G = H oφ Z, with H finitely presented and φ an automor-
phism of H, then H satisfies a polynomial isoperimetric inequality (resp. exponential
isoperimetric inequality).
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1. Introduction

There is an extensive literature on hyperbolic groups, beginning with
Gromov’s fundamental paper [12] and its exegeses, for instance [11], [6],
[1], [2]. However, remarkably little is known about subgroups of general
hyperbolic groups; for example, it is unknown how distorted the word
metrics of finitely generated subgroups can be and how distorted the
areas of finitely presented subgroups [8] can be.1 Recall that, for a given
finite presentation, the area of a relation is the minimum number of
terms expressing the relation as a product of conjugates of relators. An
isoperimetric function (or isoperimetric inequality) for a given finite

1 An open test question is whether a finitely generated subgroup of a hyperbolic
group can be distorted more than exponentially in its word metric. Is even exponen-
tial distortion possible in area for a finitely presented subgroup? We mention in this
context a remarkable recent result of P. Papasoglu that the area distortion function
of a finitely presented subgroup of a finitely presented group is always recursive.

c© Steve Gersten and Hamish Short, all rights reserved

hamish3kl.tex; 3/09/2000; 20:06; p.1



2

presentation gives an upper bound for the area of the relations as a
function of their length. The growth of this function is an invariant
of the group (see below), and a group is hyperbolic if and only if this
growth is linearly bounded.

Here is a brief sketch of what is known about such subgroups. A
finitely generated subgroup of a hyperbolic group G has a solvable word
problem (since G itself has a solvable word problem) and a subgroup of
G has finite rational cohomological dimension (since G itself has finite
rational cohomological dimension). From the action of G on the Gro-
mov boundary one knows that solvable (and more generally amenable)
subgroups of G are virtually cyclic, and if a subgroup is not virtually
solvable then it contains a nonabelian free subgroup [12]. Furthermore
Rips showed there can exist finitely generated subgroups of hyperbolic
groups which are not finitely presentable [17] (i.e. in general hyperbolic
groups are not coherent). N. Brady gave one example of a hyperbolic
group G = H oφ Z where H is finitely presented but not of type FP3

[3]; since hyperbolic groups are of type FP∞, H is not hyperbolic. In
his example, G is of cohomological dimension 3; this contrasts with the
result of [10] that a finitely presented subgroup of a hyperbolic group
of cohomological dimension 2 is hyperbolic. Finally, there is a universal
bound on the order of a finite subgroup of a hyperbolic group G that
depends only on the number of generators and the Rips constant δ for
that set of generators [4].

The main application of our general result is the following:

THEOREM A.
Let G be a split extension of a finitely presented group K by a finitely

generated free group F , so one has the short exact sequence

1→ K → G→ F → 1.

(1) If G is hyperbolic, then K satisfies a polynomial isoperimetric in-
equality.
(2) If G is (either synchronously or asynchronously) automatic, then
K satisfies an exponential isoperimetric inequality.

It follows from conclusion (1) that in Brady’s example of the preced-
ing paragraph, H satisfies a polynomial isoperimetric inequality. This
answers a question raised in [3], and improves the result of [8], where the
first author showed that H had an exponential isoperimetric function.

Concerning conclusion (2), there is an example due to M. Bridson
et al (see [5]), which was discussed in [8] section 4, of a homomorphism
of a synchronously automatic group onto Z with kernel finitely pre-
sentable and having an optimal exponential isoperimetric function (i.e.
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the Dehn function of the kernel is exponential). Thus conclusion (2) is
best possible in this generality.

To prove Theorem A, we use the diagrammatic methods of [8] with
some important minor adjustments to obtain a more general result.
Consider a split extension 1 → K → G → F → 1 with K finitely
presented and F a finitely generated free group. We obtain an isoperi-
metric inequality for K in terms of a combined area/radius function
(an “AR” pair) for G. The precise result is stated below as Theorem
B.

2. Isoperimetric functions and AR pairs

Let P = 〈X | R〉 be a finite presentation of the group G. We use F (X)
to denote the free group on the set X, X to denote the set X ∪X−1,
and X

∗
to denote the free semigroup on X. For v, w ∈ X

∗
, we write

v =G w to mean that these words represent the same element of the
group presented.

We recall that if w ∈ F (X) is a relation for P, i.e. w =G 1 (w is in
the normal closure of the set R) then there is a van Kampen diagram
for w over P (or a P–diagram for w): briefly, this can be thought of
as a connected, oriented, labelled, planar graph, such that all of the
bounded regions, or interior faces, of its complement have boundaries
labelled by words in R (read from an appropriate starting point, with
an appropriate orientation), and the unbounded region has boundary
label w (for more about such diagrams see for instance [15, Chap.V].)
We consider here also diagrams for relations in X

∗
.

An area function for P is a function f : N → R such that for each
relation w ∈ X

∗
of length at most n, there is a collection of N ≤ f(n)

words pi ∈ F (X) and choices ri ∈ R ∪ R−1, such that w =
N∏

i=1

pirip
−1
i

in the free group F (X). The number N is the number of interior faces
of the associated van Kampen diagram. A radius function for P is a
function g : N → R such that for each relation w ∈ F (X) of length at
most n, there is a not necessarily reduced (in the sense of [15, Chap.V])
van Kampen diagram DP(w) such that from each vertex there is a
path in the 1–skeleton to the boundary ∂DP(w) of length at most
g(n). Notice that reduction of a diagram reduces the area, but may in
general increase the radius; there is an obvious diagram of area N and

of radius zero for the unreduced word
N∏

i=1

pirip
−1
i (this is the so-called
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lollypop construction, which is illustrated in [15, Chap.V] p. 237 Fig.
1.1).

An area–radius pair , or AR pair, for P, is a pair (f, g) of func-
tions f, g : N → R such that for each relation w ∈ F (X) of length
at most n, there is a not necessarily reduced diagram DP(w) whose
area is bounded by f(n) and whose radius is bounded by g(n), i.e.
Area(DP(w)) ≤ f(n) and radius(DP(w)) ≤ g(n).

Our main theorem is :

THEOREM B.
Let G be a split extension of a finitely presented group K by a finitely

generated free group F , so one has the short exact sequence

1→ K → G→ F → 1.

If (f, g) is an AR pair for G, then there is a constant A > 1 such that
Agf is an isoperimetric inequality for K.

We define two equivalence relations on functions N → R; we say
that f ' f when there are integer constants A,B,C,D such that, for
all n ∈ N, both f(n) ≤ Af(Bn)+Cn+D and f(n) ≤ Af(Bn)+Cn+D.
Notice that all constant functions are equivalent to a linear function in
this relation.

Also we have an equivalence relation g ∼= g if there are integer
constants A,B,C such that, for all n ∈ N, g(n) ≤ Ag(Bn) + C and
g(n) ≤ Ag(Bn) +C. Notice that the zero function is here equivalent to
any constant function, but is not equivalent to a non–constant linear
function. This finer equivalence relation is required in order to consider
the radius function for hyperbolic groups.

The '–equivalence class of the area function for P is an invariant
of the group called an isoperimetric function (see for instance [1], [2],
[11], [6]). The equivalence of the radius functions is more subtle, re-
quiring a priori the consideration of non–reduced diagrams, and gives
an invariance of the ∼=–equivalence class of the radius functions.

Notice that if (f, g) is an AR pair for the finite presentation P, then:
(i) f is an isoperimetric inequality for P, and g is a radius function

for P, but they may well not be simultaneously best possible;
(ii) (f, g) is also an AR pair for the unreduced words.
The equivalence class of an AR pair for P is an invariant of the

group so presented, in the following sense:

PROPOSITION 2.1. Let P,Q be finite presentations for the group G.
If (f, g) is an AR pair for P, then there is an AR pair (f̃ , g̃) for Q,

such that f ' f̃ and g ∼= g̃.
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Proof. Let P = 〈X | R〉, Q = 〈Y | S〉, and let w ∈ F (Y ) be a
relation. Rewrite each generator yi ∈ Y as a word vi(X) ∈ F (X),
such that yi =G vi. Replacing each letter yi in w by the corresponding
word vi, gives a not necessarily reduced word w′ ∈ Y

∗
. Let β1 be the

maximum of the lengths of the words vi. Let D = DP(w′) be a not
necessarily reduced diagram for this relation satisfying the AR pair
(f, g), i.e. Area(DP(w′) ≤ f(`(w′)) and radius(DP(w′)) ≤ g(`(w′)).

Now translate this P–diagram into a diagram over Q as follows. For
each xj ∈ X, there is a word zj ∈ F (Y ) such that xj =G zj in G. Let
β2 be the maximum of the lengths of these words zj . After subdivision
as necessary, replace each edge of DP(w′) labelled xj by edges labelled
by the word zj , to give a planar labelled graph D′. Each interior region

of R
2 −D′ which in D was labelled rk ∈ R, is now labelled by a not

necessarily reduced word rk
′ ∈ Y

∗
. The unbounded region of the plane

is labelled by a word w′′ ∈ Y
∗

which is equal to w in G.
For each rk ∈ R, choose a van Kampen diagram DQ(rk

′) for rk
′,

whose interior faces are labelled in S. Let α1 be the maximum of the
areas of these Q–diagrams, and let ρ1 be the maximum of their radii.
Inserting these diagrams into the corresponding regions of D′ gives a
not necessarily reduced van Kampen diagram D′′ over the presentation
Q for the relation w′′. The radius of D′′ is at most ρ1 + β2radius(D).

In this procedure, each Y –letter yi appearing in the original word w
is first replaced by an X–word vi, which is then rewritten as a word Yi
in Y

∗
. As before, for each yi ∈ Y choose a Q–diagram for the relation

Yi =G yi; let α2 be the maximum of the areas of these diagrams, and
let ρ2 be the maximum of their radii. Adding these diagrams to the
boundary of D′′ gives a not necessarily reduced diagram DQ(w) for the
original word w.

The Q–diagram DQ(w) now satisfies:

Area(DQ(w)) ≤ α1Area(DP(w′)) + α2`(w)

≤ α1f(`(w′)) + α2`(w)

≤ α1f(β1`(w)) + α2`(w)

and

radius(DQ(w)) ≤ β2(ρ1 + radius(DP(w′))) + (ρ2 + β1β2)

≤ β2g(`(w′)) + β2(ρ1 + ρ2)

≤ β2g(β1`(w)) + β2(ρ1 + ρ2) .

The result now follows, using the two equivalence relations.

It is clear that for any finitely presented group satisfying an isoperi-
metric function f , there is an AR pair (f, ρf), where ρ is one half of
the maximum of the lengths of the relations.
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Hyperbolic groups have an AR pair with logarithmic radius function,
as is shown in [1]:

LEMMA 2.2. Let P = 〈X;R〉 be a finite presentation of a group G. If
G is hyperbolic, then there are constants A,B > 0 such that, for any
relation w ∈ X

∗
with `(w) ≥ 1, there is a P–diagram of area at most

A`(w) log2(`(w)) and of radius at most B log2(`(w)).
Proof. This is proved in [1] (for relations in F (X)), using the def-

inition of a hyperbolic group as one where geodesic triangles in the
Cayley graph are δ–thin. It suffices to subdivide a loop labelled w,
viewed as a loop in the Cayley graph of G. Subdivide by a shortest
arc between vertices, cutting the loop into two (almost) equal parts.
Continually subdividing the outside boundary (i.e. the intersection of
each with the original loop labelled w) of the two new loops obtained,
subdivides the loop into geodesic triangles, each of which is δ–thin.
After at most log2(`(w)) steps, the original loop has been subdivided
into edges (arcs of length 1). The uniform thinness of these geodesic
triangles gives a decomposition of each triangle into subloops of length
at most 3δ+ 3. There at most `(w)(log2(`(w) + 1)) such subloops, and
so the area of this diagram is at most A`(w) log2(`(w)) (where A is
the maximum area aver the minimal P–diagrams for the relations of
length at most 3δ. The radius of the diagram is easily seen to be at most
δ(log2(`(w)) + 1) + C ≤ B log2 `(w), by moving towards the boundary
through the different subdivisions, where C is the maximum radius over
the minimal P–diagrams for the relations of length at most 3δ.

In the same way , it is not hard to see from the proofs in [7, pages
52 and 152] that if G is a synchronously (respectively asynchronously)
automatic group then there are constants A,B > 0 (resp. C > 1, D >
0) such that (Ax2, Bx) (resp. (Cx, Dx)) is an AR pair for G.

Remark . All minimal area van Kampen diagrams in a finite presenta-
tion of a hyperbolic group have a uniform logarithmic upper bound on
their radii. This is asserted in [13] p. 100 and can be proved by the
methods of [14] section 5.

3. New diagram from an automorphism

Let P = 〈X | R〉 be a finite presentation of the group G, and let
φ : G→ G be an automorphism.

For each xj ∈ X, choosing a word in F (X) representing φ(xj) in-

duces a semigroup homomorphism Φ : X
∗
→ X

∗
such that Φ(xj) =G

φ(xj), and Φ(x−1
j ) =G φ(x−1

j ) =G (φ(xj))
−1. As φ is an automorphism,
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there is also a semigroup homomorphism Ψ : X
∗
→ X

∗
such that

Ψ(Φ(x±1
j )) =G x±1

j =G Φ(Ψ(x±1
j )). Rapaport’s theorem, used in [8],

says that there is a finite set of generators Z for G, such that Φ can
be chosen to be an automorphism of F (Z). We shall not make use of
Rapaport’s theorem in this note.

Let DP(w) be a P–diagram for the relation w. It is a straightforward
matter to obtain a not necessarily reduced diagram Φ(DP(w)) over P
for the not necessarily reduced word Φ(w), as follows:

(i) Subdivide and relabel the 1–skeleton of DP(w) so that an edge
previously labelled xi is subdivided and relabelled Φ(xi).

This gives a connected, planar, labelled, oriented 1–complex D′ in
the plane, whose outside boundary is labelled by the not necessarily
freely reduced word Φ(w). The compact regions are labelled by words
Φ(r) where r ∈ R. Each Φ(r) is a relation in G; choose a diagram
Φ(DP(r)) over P for each Φ(r).

(ii) Insert the diagrams Φ(DP(r)) into the corresponding faces of
the planar graph D′ to obtain Φ(DP(w)).

We have thus shown that:

LEMMA 3.1.
There is a positive constant S such that if DP(w) is a P–diagram

for the relation w, then there is a P–diagram Φ(DP(w)) such that
Area(Φ(DP(w))) ≤ SArea(DP(w)).

It suffices to take S to be the maximum of the areas of the diagrams
Φ(DP(r)), r ∈ R.

The “inverse” map on diagrams is slightly more complicated:

LEMMA 3.2. There are positive constants S′, S′′ such that if DP(Φ(w))
is a diagram for the relation Φ(w), then there is a diagram DP(w) for
the relation w such that Area(DP(w)) ≤ S′Area(DP(Φ(w))) + S′′`(w).

Proof. As before there is a diagram Ψ(DP(Φ(w)) for the relation
Ψ(Φ(w)), whose area is at most S′ times the area of the diagram
DP(Φ(w)), where S′ is the maximum of the areas of the diagrams
Ψ(DP(r)).

If w = a1a2 . . ., where ai ∈ X, then Ψ(Φ(w)) = Ψ(Φ(a1))Ψ(Φ(a2)) . . .
in X

∗
. For each xi ∈ X, choose a diagram for the P relation xi =G

Ψ(Φ(xi)); let S′′ be the maximum area of these diagrams. Adding
these to the boundary of Ψ(DP(Φ(w))) gives a not necessarily reduced
diagram for w over P with the required area.
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4. Proof of the theorem B

Let PK = 〈x1, . . . , xm | r1, . . . , rk〉 be a finite presentation of the group
K, and let Fn be the free group of rank n, generated by elements
{t1, . . . , tn}. For a split extension 1 → K → G → Fn → 1, there is an
automorphism φi : K → K given by conjugation by ti restricted to K
for each i. Let Φi be a lift of φi to a semigroup endomorphism and let
Ψi be a lift of the inverse, as in the preceding section. Then G has a
presentation

PG = 〈x1, . . . , xm, t1, . . . , tn | r1, . . . rk, {t
−1
i xjtiΦi(xj)

−1}〉 .

In a diagram over PG for a relation w which does not involve any of
the stable letters ti for the HNN-extension G, the regions corresponding
to relations t−1

i xjtiΦi(xj)
−1 form “t–rings” (as in [8, §5]); each t–ring

is an annular region and is associated to one of the stable letters.
Let w ∈ X

∗
be a relation over PG, and let D = DP(w) be a PG–

diagram for w. Let A be a t–ring, and let D0, D1 be the two components
of D −A, where D1 is the outer component, containing the boundary of
D, and D0 is the inner component. Let u0 be the label on the boundary
of D0 (the inner boundary of A), and let u1 be the label on the outer
boundary component of A; each is a word in X

∗
which is a relation in

PG (and in PK). The subdiagram D0 is a diagram for u0 over PG.
In a PG–diagram for w, the t–rings are nested at most as deep as

the radius of the diagram. Consider an innermost t–ring A in D, where
the t–edges in A are labelled ti; in this case, D0 is a PK–diagram for
u0.

There are two cases to consider according to the orientation the edge
ti in A: either u1 = Φi(u0), or u0 = Φi(u1).

In case 1, applying Φi to the PK–diagram D0, lemma 3.1 says that
there is a PK–diagram D(u1) for u1 of area at most S.Area(D0). Thus
replacingA∪D0 inD byD(u1), and simultaneously doing the analogous
procedure on all such innermost t–rings, at worst multiplies the area of
D by S.

In case 2, lemma 3.2 shows how to obtain a PK–diagram D(u1)
of area at most S′Area(D0) + S′′`(u1). Each edge in D occurs in at
most two t–rings, so twice the number of edges in D gives a bound on
`(u1); thus `(u1) ≤ `(w)+2ρ Area(D), where ρ is the maximum length
of a relation in R ∪ {tixjti−1Φi(xj)

−1}. Thus replacing D0 ∪ A in D
by D(u1), and doing this on all innermost t–rings simultaneously, at
worst multiplies the area by S′, and adds on S′′(`(w) + 2ρ Area(D)) ≤
Mf(`(w)), for some positive constant M , independent of w. Choose
M ≥ max(S, 1).
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These changes must be performed at most g(`) times (where we let
` = `(w)), as the nesting of t–rings is bounded by the radius. Then
removing all t–rings gives a PK–diagram for w of area at most

M(. . . (M(Mf(`) +Mf(`)) +Mf(`)) + . . .+Mf(`))
︸ ︷︷ ︸

at most g(`) times

≤Mg(`)+1f(`).

Theorem B follows by replacing M by an even larger constant A > 1
(A > M2 will work).

Theorem A now follows from applying Theorem B to the AR pair
in Lemma 2.2.
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