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By a surface group we mean the fundamental group of a connected
2-manifold. Such a group is either free (of finite or countably infinite
rank) or else has a subgroup of index at most two with a presentation
of the form Pg = 〈a1, b1, . . . , ag, bg | [a1, b1] . . . [ag, bg]〉.
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In this article we shall calculate the finiteness properties of all sub-
groups of (finite) direct products of surface groups. Uncountably many
non–isomorphic groups arise as such subgroups [4], and a celebrated
theorem of Stallings [14] and Bieri [1] shows that the full range of
possible finiteness properties is to be found amongst these examples.

In contrast to this diversity, we shall prove that the only subgroups
that enjoy the fullest degree of homological finiteness are the most
obvious ones:

THEOREM A. Let G be a subgroup of a direct product of n surface
groups. If G is of type FPn, then G is virtually a direct product of at
most n finitely generated surface groups.

In the case of products of free groups, this theorem generalizes re-
sults of Grunewald [6], Meinert [11], Johnson [8], [9], and Baumslag and
Roseblade [4]. In this last article Baumslag and Roseblade showed that
a finitely presented subgroup of a direct product of two free groups is
virtually a direct product of free groups (see also [2], [13]). Trying to
better understand and generalize their result was the starting point of
this investigation.

Note that if G is a subgroup of a direct product A × B such that
G ∩ A is trivial, then G is isomorphic (via projection) to a subgroup
of B. (Here and elsewhere we abuse notation by using A to denote the
subgroup A× 1 of A×B.) Thus Theorem A is an easy consequence of
the following generalization of results of [4]:

THEOREM B. Let F1, . . . , Fn be surface groups (not necessarily finitely
generated). Let G be a subgroup of their direct product F1 × · · · × Fn

and assume that each Li = G ∩ Fi is non-trivial for i = 1, . . . , n.
If we arrange the notation so that L1, . . . , Lr are not finitely gener-

ated and Lr+1, . . . , Ln are finitely generated, then G contains a subgroup
of finite index G0 such that:

1. G0 = B × Fr+1
′ × . . . × Fn

′, where each Fi
′ is a finitely generated

subgroup of Fi and B is a subgroup of F1 × · · ·Fr,

2. if r ≥ 1, then Hr(B, Z) is not finitely generated.

In particular, if precisely r ≥ 1 of the Li are not finitely generated,
then G is not of type FPr.

This result settles questions raised in [2], [5], [8] and [11]. Notice that
the theorem immediately generalizes to products of finite extensions of
surface groups.
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1. Ingredients Needed in the Proof

The ingredients in the proof are surface group analogues of those used
by Baumslag and Roseblade [4] for free groups together with induction.
In this section we establish the required facts for surface groups.

1.1. Spectral sequences.

The following spectral sequence observation from the homology of groups
enables us to carry out an inductive argument.

LEMMA 1.1. Let Q be a group of cohomological dimension at most
2 and consider a short exact sequence 1 → N → E → Q → 1. If
H1(Q,Hk(N)) is not finitely generated for some k ≥ 0 then Hk+1(E)
is not finitely generated.

Proof. Consider the Lyndon–Hochschild–Serre spectral sequence with
E2

p,q = Hp(Q,Hq(N)) (see p.171 [3] for example). Since Q has di-
mension at most 2, the only non-zero terms in the E2 page of the
spectral sequence are in columns 0,1 and 2. In particular there are no
non-zero derivatives involving the terms in column 1, and therefore
H1(Q,Hk(N)) = E2

1,k = E∞
1,k is a section (= quotient of a subgroup)

of Hk+1(E).

1.2. Finding primitive elements.

Recall that an element a in a free group F is said to be primitive if a
is part of a free basis for F . We need the following easy observation:

LEMMA 1.2. If a is primitive in F and L ≤ F is any subgroup
containing a, then a is also primitive in L.

Proof. Since a is primitive, we can realize F as the fundamental
group of a wedge of simple loops joined at a base point where one of the
loops α represents a. Since a ∈ L, in the covering space corresponding to
L, the loop α lifts to a simple loop α̃ at the base point which represents
a. Then the usual method of finding a basis for L includes a in the basis.
(Alternatively, this lemma can be deduced from the Kurosh Subgroup
Theorem.)

According to a theorem of M. Hall [7](see also [15]), for any non–
trivial element b ∈ F , the cyclic subgroup 〈b〉 is a free factor of a
subgroup F̂ of finite index in F . Thus b is primitive in F̂ . We record
this as
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LEMMA 1.3. If b is a non–trivial element in a free group F , then b is
a primitive element in some subgroup of finite index in F .

Similarly, if S is a closed orientable surface, an element a ∈ π1(S)
is said to be primitive if the free homotopy class of a contains a non-
separating simple closed curve on S. Such an a can be chosen to be the
generator a1 in the standard presentation π1(S) = 〈a1, b1, . . . , ag, bg |
[a1, b1] . . . [ag, bg] = 1〉.

We need the analogues of the previous two lemmas for closed surface
groups.

LEMMA 1.4. If S is a closed orientable surface and a1 is primitive in
π1(S) and L ≤ π1(S) is any subgroup containing a1, then a1 is also
primitive in L.

Proof. We can assume the notation is chosen so that the primitive
element is a1 in the standard presentation. Suppose a1 is contained in
the subgroup L. If L has finite index, then the simple loop representing
a1 lifts in the corresponding covering space to a simple non-separating
loop which again represents a primitive element.

If L has infinite index, then L is free and we need to show a1 is
part of a basis. The surface S has a cell decomposition consisting of a
single 2-cell with 4g boundary edges which get identified according to
the defining relation of Pg. S can then be triangulated by joining each
boundary vertex and the midpoint of each boundary edge to a single
central point in the 2-cell. In this triangulation, there are two triangles,
say ∆1 and ∆2, with all three vertices in common and sharing a common
edge so that a1 is represented by a loop consisting of two edges in the
boundary of ∆1 ∪∆2

Let S̃ be the triangulated covering space corresponding to L. In the
textbooks by Massey [10, pages 199–200] and Stillwell [16, pages 142–
144] are proofs that π1(S̃) is free. They construct inductively a basis for
the fundamental group which is the union of bases for expanding finite
subcomplexes which deformation retract onto a subgraph. ∆1∪∆2 lifts
homeomorphically to the union of two triangles ∆̃1 ∪ ∆̃2 and it is clear
we can start the construction with these so that the lift of the loop
representing a1 is the first basis element. This proves the lemma.

LEMMA 1.5. Let S be a closed orientable surface of genus at least 2
and let a ∈ Γ = π1(S) be a non–trivial element which is not a proper
power. There is a finite index subgroup of Γ in which a is primitive.

Proof. This result is an application of the fact that surface groups
are LERF (see [12]). Fix a metric of constant curvature on S and let
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α be a closed geodesic on S representing the free homotopy class of
a. If α is not simple, then α contains a proper embedded subloop α′.
Since the length of the closed geodesic homotopic to α′ has length less
than α, and α is not a proper power, the conjugacy class represented
by α′ does not intersect the cyclic subgroup generated by a. Since π1S
is LERF, we may pass to a subgroup of finite index H ⊂ π1S that
contains 〈a〉 but has empty intersection with the conjugacy class [α′].

The loop α lifts to a loop in the finite sheeted covering Ŝ → S
corresponding to H but α′ does not. Thus the lift of α has fewer self-
intersection points (counted with multiplicity) than α. By repeating
this argument a finite number of times (with π1Ŝ in place of π1S) we
obtain a finite sheeted covering in which a is represented by a simple
closed loop. If this closed loop separates, then π1Ŝ is a free product
with amalgamation A ∗〈a〉 B. We can take a further 2-sheeted covering
corresponding to any subgroup of index 2 not containing A or B. The
element a belongs to such a subgroup (since it is null–homologous) and
in the corresponding covering is represented by a simple non–separating
loop.

1.3. Free differential calculus.

We want to apply the spectral sequence observation of 1.1 when there
is a primitive element which acts trivially. The following is from [4]:

LEMMA 1.6. Let F be a free group and suppose M is a right F -module.
If a primitive element of F acts trivially on M , then the homology group
H1(F,M) contains an isomorphic copy of M .

Proof. We may suppose that a1, a2, . . . is a basis for F and that
a1 acts trivially on M . Recall that H1(F,M) is the kernel of the map⊕

M → M defined by

(m1,m2, . . .) 7→ m1(1− a1) + m2(1− a2) + · · ·

Clearly the first summand M lies in the kernel since a1 acts trivially.

We need a similar result for closed orientable surface groups. To
calculate the homology of such a group one uses the free differential
calculus (Fox derivatives) to write down the second boundary map in
chain complexes of modules over the group ring of a closed surface (see
[3], pages 45,46)

cfmpostrefereekl.tex; 13/08/2001; 12:22; p.5



6 Bridson, Howie, Miller and Short

LEMMA 1.7. Let G = 〈a1, b1, . . . , bg | [a1, b1] . . . [ag, bg]〉 be the group
of a closed orientable surface, and suppose that M is a (right) ZG-
module on which a1 acts trivially (so that M(1 − a1) = 0). If M has
infinite Z-rank, then so does H1(G, M).

Proof. The presentation

G = 〈a1, b1, . . . , ag, bg | a1b1a
−1
1 b−1

1 . . . agbga
−1
g b−1

g 〉

is aspherical, and gives rise to a resolution

F : 0 → ZG
d2→ ZG2g d1→ ZG

ε→ Z → 0

of free (left) ZG-modules. Here ε is the augmentation map, d1 is given
by

d1(m1, . . . ,m2g) = m1(1− a1) + m2(1− b1) + . . . + m2g(1− bg),

and d2 by the Fox-derivatives of the relator

R ≡ a1b1a
−1
1 b−1

1 . . . agbga
−1
g b−1

g :

d2(m) = (m
∂R

∂a1
,m

∂R

∂b1
, . . . ,m

∂R

∂bg
).

Recall that, for a basis element x and word R in a free group, the
Fox derivative ∂R

∂x is determined by the recursive rules

∂x

∂x
= 1;

∂RS

∂x
=

∂R

∂x
+ R

∂S

∂x
.

In particular it follows that ∂1
∂x = 0 and ∂x−1

∂x = −x−1. In our case,
each basis element appears exactly twice in the relator R, and we can
express the Fox derivative as a sum of two terms:

∂R

∂ai
= (a1b1a

−1
1 b−1

1 . . . ai−1bi−1a
−1
i−1b

−1
i−1)(1− aibia

−1
i ),

∂R

∂bi
= (a1b1a

−1
1 b−1

1 . . . ai−1bi−1a
−1
i−1b

−1
i−1)(ai − aibia

−1
i b−1

i ).

Since M is a right ZG-module, we may calculate H∗(G, M) as the
homology of the chain complex (of Z-modules)

M ⊗ZG F : 0 → M
d2→ M2g d1→ M → 0.

Here, again, d2 is given by the Fox derivatives:

d2(m) = (m
∂R

∂a1
,m

∂R

∂b1
, . . . ,m

∂R

∂bg
).
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Now the fact that a1 acts trivially allows us to simplify the expres-
sions for some of the Fox derivatives. In particular, note that a1b1a

−1
1 b−1

1

acts trivially on M , since a1 does. Hence the expression for d2(m) can
be written as

d2(m) = (m(1− b1), 0,m(1− a2b2a
−1
2 ),m

∂R

∂b2
, . . . ,m

∂R

∂bg
).

Also note that ∂R
∂b2

acts on M by

m
∂R

∂b2
= ma2 −ma2b2a

−1
2 b−1

2 .

We will need the following two subgroups of the module M :

A = {m ∈ M : m
∂R

∂b1
= m

∂R

∂a2
= . . . = m

∂R

∂bg
= 0}

and

B = {m ∈ M : m
∂R

∂a1
= 0} = {m ∈ M : m(1− b1) = 0}.

Observe that B1 = 0 ⊕ B ⊕ 0 ⊕ · · · ⊕ 0 lies in the kernel of d1 and
B1∩d2(M) = 0 by the above formula for d2(m). Hence B is isomorphic
to a subgroup of H1(G, M). Moreover if d2(m) ∈ 0⊕M ⊕· · ·⊕M then
m(1− b1) = 0 so that m ∈ B. Thus

d2(B) = d2(M) ∩ (0⊕M ⊕ · · · ⊕M).

Next consider

A1 = 0⊕ 0⊕Aa2b2a
−1
2 ⊕ 0⊕ . . .⊕ 0.

This group is contained in the kernel of d1, since

ma2b2a
−1
2 (1− a2) = −m

∂R

∂b2
b2 = 0

for all m ∈ A by definition of A. Hence A1
A1∩d2(M) = A1

A1∩d2(B) is isomor-
phic to a subgroup of H1(G, M).

Suppose now on the contrary that H1(G, M) has finite Z-rank. Then
so do B and A1

A1∩d2(B) and hence also A1
∼= A.

Since M(1−a1) = 0, the subgroup M1 := M⊕0⊕. . .⊕0 is contained
in the kernel of d1. Thus M1

M1∩d2(M) is contained in H1(G, M) and hence
has finite Z-rank. Note also that

M1 ∩ d2(M) ∼= A
∂R

∂a1
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and hence
M1

M1 ∩ d2(M)
∼=

M

A ∂R
∂a1

.

But A ∂R
∂a1

has finite Z-rank since A does. Thus M has finite Z-rank
which is a contradiction. This completes the proof.

2. Proof of Theorem B

Since the conclusion of the theorem allows us to pass to a subgroup of
finite index, we may immediately replace the given G by its intersec-
tion with the product of the orientation-preserving subgroups of any
closed surface factors Fi. Also, if any of the surface groups is Z × Z

corresponding to a 2-torus, we choose to regard this as the product of
two surface groups with Z (free of rank 1) fundamental group. In other
words, we may assume that all of the Fi are either free or else have a
presentation of the form of Pg with g ≥ 2.

Let Li be as in the statement of the theorem. Let ρi : G → Fi be
the projection of G to Fi. Observe that Pi = ρi(G) is a surface group
and Li = G ∩ ρi(G) is normal in Pi.

In particular, if Li is finitely generated, then it must be of finite
index in Pi. In this case, the subgroup G′ = ρ−1

i (Li) has finite index in
G and ρi(G′) = Li. Thus Li splits as a direct factor of G′.

Applying this to each of those factors Fi with i > r for which Li

is finitely generated produces a subgroup G1 = ∩n
i=rρ

−1
i (Li) of finite

index in G with G1 = B1×Lr+1×· · ·×Ln where B1 = G∩(F1×· · ·×Fr).

We now turn our attention to the Li which are not finitely generated.
Since each of L1, . . . , Lr is non-trivial, there is some 1 6= ci ∈ Li =
G ∩ Pi. By Lemmas 1.3 and 1.5, each ci is primitive in a subgroup
P̂i of finite index in Pi. Let G0 = G1 ∩ ρ−1

1 (P̂1) ∩ · · · ∩ ρ−1
r (P̂r). Then

B = G0 ∩ B1 has finite index in B1, each ci ∈ G0 ∩ Fi and each ci is
primitive in ρi(G0) for i = 1, . . . , r.

Of course G0 has finite index in G and G0 = B × Lr+1 × · · · × Ln.
Theorem B is now an immediate consequence of the following:

LEMMA 2.1. Let B be a subgroup of a direct product of r surface
groups F1 × · · · × Fr where each Fi is free or the group of a closed
orientable surface of genus at least 2. Let ρi denote the projection from
B to Fi and put Pi = ρi(B). Suppose the following:

1. each of the intersections Li = B ∩ Fi is not finitely generated; and

2. each Li contains an element that is primitive in Pi.

Then Hr(B, Z) is not finitely generated.
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Proof. We shall prove the lemma by induction on r. The case r = 1
is trivial. In the inductive step we consider the projection of B onto
the last factor:

1 → N → B → Pr → 1.

N is the intersection of B with F1 × . . . × Fr−1 and its intersections
with the factors Fi are those of B (for i = 1, . . . , r − 1). In particular,
each Li still contains a primitive element of ρi(N). Thus, by induction,
we may assume that Hr−1(N, Z) is not finitely generated.

Now M = Hr−1(N, Z) can be viewed as a right Pr-module coming
from the conjugation action of B on N . By hypothesis Pr contains
a primitive element which lies in Lr and hence acts trivially on N .
Thus by Lemma 1.6 or 1.7, H1(Pr,M) is not finitely generated. That
is, H1(Pr,Hr−1(N, Z)) is not finitely generated. Hence by Lemma 1.1
Hr(B, Z) is not finitely generated.

This completes the proof of the Lemma and hence Theorem B.

We note that an argument similar to the above also establishes the
following general fact:

PROPOSITION 2.2. Let 1 → N → G → F → 1 be a short exact
sequence of groups such that

1. F is a surface group,

2. CG(N) 6⊂ N , and

3. the k-th integral homology Hk(N, Z) is not finitely generated.

Then G has a finite index subgroup G0 whose (k+1)-st integral homol-
ogy Hk+1(G0, Z) is not finitely generated.

Proof. Since CG(N) 6⊂ N , the quotient F contains a non-trivial
element c which acts trivially on H∗(N, Z). Since F is a surface group,
c is primitive in some subgroup F0 of finite index in F . Let G0 be the
preimage of F0 in G which also has finite index. By Lemma 1.6 or
1.7, H1(G0,Hk(N, Z)) is not finitely generated. Hence by Lemma 1.1,
Hk+1(G0, Z) is not finitely generated.
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