Cours Algèbre 2 – III: Anneaux. Théorie Générale

Andrei Teleman

Département de Mathématiques, Aix-Marseille Université

6 avril 2021

Table of Contents

- 1 Introduction
 - Définition. Exemples. Règles de calcul dans un anneau
 - L'anneau des polynômes à coefficients dans un anneau commutatif
 - Règles de calcul dans un anneau
 - Diviseurs de zéro dans un anneau commutatifs. Anneaux commutatifs intègres
- 2 Sous-anneaux et idéaux. Anneaux quotients. Morphismes
 - Sous-anneaux et idéaux dans un anneau commutatif.
 Anneaux guotients
 - Morphismes d'anneaux. Le premier théorème d'isomorphisme
 - La caractéristique d'un anneau

Table of Contents

- 1 Introduction
 - Définition. Exemples. Règles de calcul dans un anneau
 - L'anneau des polynômes à coefficients dans un anneau commutatif
 - Règles de calcul dans un anneau
 - Diviseurs de zéro dans un anneau commutatifs. Anneaux commutatifs intègres
- 2 Sous-anneaux et idéaux. Anneaux quotients. Morphismes
 - Sous-anneaux et idéaux dans un anneau commutatif.
 Anneaux quotients
 - Morphismes d'anneaux. Le premier théorème d'isomorphisme
 - La caractéristique d'un anneau

• Un anneau est un triplet $(A, +, \cdot)$, où A est un ensemble et +, \cdot sont deux lci sur A (appelées addition respectivement multiplication) telles que :

- Un anneau est un triplet $(A, +, \cdot)$, où A est un ensemble et +, \cdot sont deux lci sur A (appelées addition respectivement multiplication) telles que :
 - (A,+) est un groupe abélien. Son élément neutre sera appelé l'élément nul de l'anneau et sera noté 0_A ou 0.

- Un anneau est un triplet $(A, +, \cdot)$, où A est un ensemble et +, \cdot sont deux lci sur A (appelées addition respectivement multiplication) telles que :
 - (A,+) est un groupe abélien. Son élément neutre sera appelé l'élément nul de l'anneau et sera noté 0_A ou 0.
 - La lci \cdot est associative et admet un élément neutre. Cet élément neutre sera appelé l'élément unité de l'anneau et sera noté $1_{\mathbb{A}}$ ou 1.

- 1 Un anneau est un triplet $(A, +, \cdot)$, où A est un ensemble et $+, \cdot$ sont deux lci sur A (appelées addition respectivement multiplication) telles que :
 - (A,+) est un groupe abélien. Son élément neutre sera appelé l'élément nul de l'anneau et sera noté 0_A ou 0.
 - La lci \cdot est associative et admet un élément neutre. Cet élément neutre sera appelé l'élément unité de l'anneau et sera noté $1_{\mathbb{A}}$ ou 1.
 - La lci \cdot est distributive à gauche et à droite par rapport à la lci +, i.e. pour tout $(x,y,z) \in A \times A \times A$ on a :

$$x \cdot (y + z) = x \cdot y + x \cdot z$$
,

$$(y+z)\cdot x = y\cdot x + z\cdot x.$$

- Un anneau est un triplet $(A, +, \cdot)$, où A est un ensemble et +, \cdot sont deux lci sur A (appelées addition respectivement multiplication) telles que :
 - (A,+) est un groupe abélien. Son élément neutre sera appelé l'élément nul de l'anneau et sera noté 0_A ou 0.
 - La lci \cdot est associative et admet un élément neutre. Cet élément neutre sera appelé l'élément unité de l'anneau et sera noté $1_{\mathbb{A}}$ ou 1.
 - La lci \cdot est distributive à gauche et à droite par rapport à la lci +, i.e. pour tout $(x,y,z) \in A \times A \times A$ on a :

$$x \cdot (y + z) = x \cdot y + x \cdot z$$

$$(y+z)\cdot x = y\cdot x + z\cdot x.$$

2 Un anneau $(A,+,\cdot)$ est dit commutatif si \cdot est commutative.

Souvent on va omettre le symbole \cdot , donc, pour deux éléments $x, y \in A$ on va écrire xy au lieu de $x \cdot y$.

Souvent on va omettre le symbole \cdot , donc, pour deux éléments $x, y \in A$ on va écrire xy au lieu de xy.

Souvent on va désigner un anneau $(A, +, \cdot)$ par A, en sous-entendant qu'on a muni l'ensemble A de deux lci qui définissent une structure d'anneau.

Souvent on va omettre le symbole \cdot , donc, pour deux éléments $x, y \in A$ on va écrire xy au lieu de xy.

Souvent on va désigner un anneau $(A, +, \cdot)$ par A, en sous-entendant qu'on a muni l'ensemble A de deux lci qui définissent une structure d'anneau.

Définition 1.2

Deux éléments $x, y \in A$ sont dit commutables (permutables) si xy = yx.

Souvent on va omettre le symbole \cdot , donc, pour deux éléments $x, y \in A$ on va écrire xy au lieu de $x \cdot y$.

Souvent on va désigner un anneau $(A, +, \cdot)$ par A, en sous-entendant qu'on a muni l'ensemble A de deux lci qui définissent une structure d'anneau.

Définition 1.2

Deux éléments $x, y \in A$ sont dit commutables (permutables) si xy = yx.

Donc un anneau $(A,+,\cdot)$ est commutatif si et seulement si tous deux éléments de A sont permutables.

1 Soit A un singleton dont l'élément sera noté 0. Les lci

$$(0,0)\stackrel{+}{\mapsto} 0$$
, $(0,0)\stackrel{\cdot}{\mapsto} 0$

définissent une structure d'anneau sur $A = \{0\}$ avec $0_A = 1_A = 0$. Un tel anneau s'appelle anneau nul.

• Soit A un singleton dont l'élément sera noté 0. Les lci

$$(0,0)\stackrel{+}{\mapsto} 0$$
, $(0,0)\stackrel{\cdot}{\mapsto} 0$

définissent une structure d'anneau sur $A = \{0\}$ avec $O_A = I_A = 0$. Un tel anneau s'appelle anneau nul.

Un anneau A est nul si et seulement si $0_A = 1_A$. Pourquoi?

1 Soit A un singleton dont l'élément sera noté 0. Les lci

$$(0,0)\stackrel{^{+}}{\mapsto}0,\ (0,0)\stackrel{\cdot}{\mapsto}0$$

définissent une structure d'anneau sur $A = \{0\}$ avec $O_A = I_A = 0$. Un tel anneau s'appelle anneau nul.

Un anneau A est nul si et seulement si $0_A = 1_A$. Pourquoi?

 $(\mathbb{Z},+,\cdot), (\mathbb{Q},+,\cdot), (\mathbb{R},+,\cdot), (\mathbb{C},+,\cdot)$ sont des anneaux commutatifs.

1 Soit A un singleton dont l'élément sera noté 0. Les lci

$$(0,0)\stackrel{+}{\mapsto} 0$$
, $(0,0)\stackrel{\cdot}{\mapsto} 0$

définissent une structure d'anneau sur $A = \{0\}$ avec $O_A = I_A = 0$. Un tel anneau s'appelle anneau nul.

Un anneau A est nul si et seulement si $0_A = 1_A$. Pourquoi?

- $(\mathbb{Z},+,\cdot), (\mathbb{Q},+,\cdot), (\mathbb{R},+,\cdot), (\mathbb{C},+,\cdot)$ sont des anneaux commutatifs.
- 3 Soit $n \in \mathbb{N}^*$. $(\mathbb{Z}/n\mathbb{Z}, +, \cdot)$ est un anneau commutatif.

4 Soit $n \in \mathbb{N}^*$. $(M_{n,n}(\mathbb{Z}),+,\cdot)$, $(M_{n,n}(\mathbb{Q}),+,\cdot)$, $(M_{n,n}(\mathbb{R}),+,\cdot)$, $(M_{n,n}(\mathbb{C}),+,\cdot)$ sont des anneaux. Pour $n \geq 2$ ces anneaux ne sont pas commutatifs.

- **4** Soit $n \in \mathbb{N}^*$. $(M_{n,n}(\mathbb{Z}),+,\cdot)$, $(M_{n,n}(\mathbb{Q}),+,\cdot)$, $(M_{n,n}(\mathbb{R}),+,\cdot)$, $(M_{n,n}(\mathbb{C}),+,\cdot)$ sont des anneaux. Pour $n \geq 2$ ces anneaux ne sont pas commutatifs.
- ⑤ Soit E un espace vectoriel réel ou complexe. (End(E), +, ∘) est un anneau, non-commutatif pour dim(E) ≥ 2.

- **4** Soit $n \in \mathbb{N}^*$. $(M_{n,n}(\mathbb{Z}),+,\cdot)$, $(M_{n,n}(\mathbb{Q}),+,\cdot)$, $(M_{n,n}(\mathbb{R}),+,\cdot)$, $(M_{n,n}(\mathbb{C}),+,\cdot)$ sont des anneaux. Pour $n \geq 2$ ces anneaux ne sont pas commutatifs.
- § Soit E un espace vectoriel réel ou complexe. (End(E), +, ∘) est un anneau, non-commutatif pour dim(E) ≥ 2.
- ⑤ Soit (G,+) un groupe abélien, 0_G son élément neutre. $(End(G),+,\circ)$ est un anneau, en général non-commutatif. Son élément nul est l'endomorphisme trivial $x\mapsto 0_G$ et son élément unité est id_G .

Soient $(A, +, \cdot)$ un anneau, X un ensemble et soit $\mathcal{F}(X, A)$ l'ensemble des applications $X \to A$. Les lci +, \cdot définies par

$$(f+g)(x) = f(x) + g(x), (f \cdot g)(x) = f(x) \cdot g(x)$$

définissent un structure d'anneau sur $\mathcal{F}(X,A)$. Cet anneau est commutatif si $(A,+,\cdot)$ est commutatif.

② Soient $(A, +, \cdot)$ un anneau, X un ensemble et soit $\mathcal{F}(X, A)$ l'ensemble des applications $X \to A$. Les lci +, · définies par

$$(f+g)(x) = f(x) + g(x), (f \cdot g)(x) = f(x) \cdot g(x)$$

définissent un structure d'anneau sur $\mathcal{F}(X,A)$. Cet anneau est commutatif si $(A,+,\cdot)$ est commutatif.

Soient A, B deux anneaux dont les lci sont notées par les mêmes symboles. Alors les lci

$$((x,y),(x',y')) \mapsto (x+x',y+y'), \ ((x,y),(x',y')) \mapsto (xx',yy')$$

définissent un structure d'anneau sur le produit cartésien $A \times B$. Généralisation pour une famille $(A_i)_{i \in I}$ d'anneaux.

Définition 1.3

L'ensemble des polynômes à coefficients dans A est défini par

$$A[X]:=\{(a_k)_{k\geq 0}|\ (\forall k\in \mathbb{N},\ a_k\in A)\wedge (\exists N\in \mathbb{N}, \forall k\geq N,\ a_k=0)\}.$$

(a,0,0...) s'appelle le polynôme constant associé à a.

Définition 1.3

L'ensemble des polynômes à coefficients dans A est défini par

$$A[X]:=\{(a_k)_{k\geq 0}|\ (\forall k\in \mathbb{N},\ a_k\in A)\wedge (\exists N\in \mathbb{N}, \forall k\geq N,\ a_k=0)\}.$$

(a,0,0...) s'appelle le polynôme constant associé à a.

Donc un polynôme à coefficients dans A est une suite de A dont tous les termes sont nuls à partir d'un certain indice.

Définition 1.3

L'ensemble des polynômes à coefficients dans A est défini par

$$A[X]:=\{(a_k)_{k\geq 0}|\ (\forall k\in \mathbb{N},\ a_k\in A)\wedge (\exists N\in \mathbb{N}, \forall k\geq N,\ a_k=0)\}.$$

(a,0,0...) s'appelle le polynôme constant associé à a.

Donc un polynôme à coefficients dans A est une suite de A dont tous les termes sont nuls à partir d'un certain indice.

A[X] a une structure naturelle de groupe abélien, l'addition étant donnée par

$$((a_k)_{k\geq 0}) + ((b_k)_{k\geq 0}) := (a_k + b_k)_{k\geq 0}.$$

La multiplication dans $A[X]:((a_k)_{k\geq 0})((b_l)_{l\geq 0})=(c_n)_{n\geq 0}$ où

$$c_n := \sum_{k+l=n} a_k b_l = \sum_{k=0}^n a_k b_{n-k} = \sum_{l=0}^n a_{n-l} b_l.$$

La multiplication dans $A[X]:((a_k)_{k\geq 0})((b_l)_{l\geq 0})=(c_n)_{n\geq 0}$ où

$$c_n := \sum_{k+l=n} a_k b_l = \sum_{k=0}^n a_k b_{n-k} = \sum_{l=0}^n a_{n-l} b_l.$$

Cette lci est associative, admet un élément neutre, à savoir le polynôme constant (1,0,0...), est commutative, et est distributive par rapport à l'addition. Il en résulte :

La multiplication dans $A[X]: ((a_k)_{k\geq 0})((b_l)_{l\geq 0}) = (c_n)_{n\geq 0}$ où

$$c_n := \sum_{k+l=n} a_k b_l = \sum_{k=0}^n a_k b_{n-k} = \sum_{l=0}^n a_{n-l} b_l.$$

Cette lci est associative, admet un élément neutre, à savoir le polynôme constant (1,0,0...), est commutative, et est distributive par rapport à l'addition. Il en résulte :

Proposition 1.5

Les opérations +, \cdot introduites ci-dessus munissent l'ensemble A[X] d'une structure d'anneau commutatif.

On identifie $a \in A$ avec le polynôme constant $(a,0,0,\ldots)$ qui lui correspond. En particulier on va utiliser la notation 1 pour l'élément unité $(1,0,0,\ldots)$ de A[X].

On identifie $a \in A$ avec le polynôme constant (a,0,0,...) qui lui correspond. En particulier on va utiliser la notation 1 pour l'élément unité (1,0,0,...) de A[X].

Notation $X := (0, 1, 0, ...) \in A[X]$. On obtient facilement

$$X^2 = (0,0,1,0,...), X^3 = (0,0,0,1,0,...)$$
 et ainsi de suite.

$$(a_k)_{k\geq 0} = \sum_{k\geq 0} a_k X^k \text{ (nombre fini de termes non-nuls), } X^0 := 1.$$

On identifie $a \in A$ avec le polynôme constant $(a,0,0,\ldots)$ qui lui correspond. En particulier on va utiliser la notation 1 pour l'élément unité $(1,0,0,\ldots)$ de A[X].

Notation $X := (0, 1, 0, ...) \in A[X]$. On obtient facilement

$$X^2 = (0,0,1,0,...), X^3 = (0,0,0,1,0,...)$$
 et ainsi de suite.

$$(a_k)_{k\geq 0} = \sum_{k\geq 0} a_k X^k \ (\text{nombre fini de termes non-nuls}), \ X^0 := 1.$$

Cette égalité fait la liaison entre la définition moderne de la notion de polynôme et la définition élémentaire, comme expression algébrique de la forme $a_0 + a_1 X + \cdots + a_N X^N$.

On identifie $a \in A$ avec le polynôme constant $(a,0,0,\ldots)$ qui lui correspond. En particulier on va utiliser la notation 1 pour l'élément unité $(1,0,0,\ldots)$ de A[X].

Notation $X := (0, 1, 0, ...) \in A[X]$. On obtient facilement

$$X^2 = (0,0,1,0,...), X^3 = (0,0,0,1,0,...)$$
 et ainsi de suite.

$$(a_k)_{k\geq 0} = \sum_{k\geq 0} a_k X^k \ (\text{nombre fini de termes non-nuls}), \ X^0 := 1.$$

Cette égalité fait la liaison entre la définition moderne de la notion de polynôme et la définition élémentaire, comme expression algébrique de la forme $a_0 + a_1 X + \cdots + a_N X^N$.

En appliquant la construction $A \mapsto A[X]$: nouveaux anneaux commutatifs: $\mathbb{Z}[X]$, $\mathbb{Q}[X]$, $\mathbb{R}[X]$, $\mathbb{C}[X]$, $\mathbb{Z}_n[X]$.

Soit $(A, +, \cdot)$ un anneau. Puisque (A, +) est un groupe abélien, on va utiliser la notation nx (pour $n \in \mathbb{Z}$, $x \in A$) introduite pour les groupes avec lci en notation additive.

Soit $(A,+,\cdot)$ un anneau. Puisque (A,+) est un groupe abélien, on va utiliser la notation nx (pour $n \in \mathbb{Z}, x \in A$) introduite pour les groupes avec lci en notation additive.

En particulier l'élément symétrique par rapport à l'addition (l'opposé) d'un élément $x \in A$ sera noté -x.

Soit $(A, +, \cdot)$ un anneau. Puisque (A, +) est un groupe abélien, on va utiliser la notation nx (pour $n \in \mathbb{Z}$, $x \in A$) introduite pour les groupes avec lci en notation additive.

En particulier l'élément symétrique par rapport à l'addition (l'opposé) d'un élément $x \in A$ sera noté -x.

On va aussi utiliser les règles de calcul connues dans un groupe en notation additive.

Soit $(A, +, \cdot)$ un anneau. Alors :

1 Pour tout élément $x \in A$ on a $x \cdot 0 = 0 \cdot x = 0$.

Soit $(A, +, \cdot)$ un anneau. Alors :

- 1 Pour tout élément $x \in A$ on a $x \cdot 0 = 0 \cdot x = 0$.
- **2** Pour tout $(x,y) \in A \times A : x(-y) = (-x)y = -(xy)$.

Soit $(A, +, \cdot)$ un anneau. Alors :

- 1 Pour tout élément $x \in A$ on a $x \cdot 0 = 0 \cdot x = 0$.
- 2 Pour tout $(x,y) \in A \times A : x(-y) = (-x)y = -(xy)$.
- 3 Pour tout $(x,y) \in A \times A : (-x)(-y) = -((-x)y) = -(-(xy)) = xy$.

Soit $(A, +, \cdot)$ un anneau. Alors :

- 1 Pour tout élément $x \in A$ on a $x \cdot 0 = 0 \cdot x = 0$.
- 2 Pour tout $(x,y) \in A \times A : x(-y) = (-x)y = -(xy)$.
- 3 Pour tout $(x,y) \in A \times A : (-x)(-y) = -((-x)y) = -(-(xy)) = xy$.
- 4 Pour $x \in A$ et $n \in \mathbb{N}$ on définit l'élément $x^n \in A$ par :

$$x^{n} := \begin{cases} \underbrace{x \cdot x \cdot \dots \cdot x}_{n \text{ fois}} & \text{si} \quad n > 0, \\ 1 & \text{si} \quad n = 0. \end{cases}$$

Alors on a l'identité $x^m \cdot x^n = x^{m+n}$.

Soit $(A, +, \cdot)$ un anneau. Alors :

- 1 Pour tout élément $x \in A$ on a $x \cdot 0 = 0 \cdot x = 0$.
- 2 Pour tout $(x,y) \in A \times A : x(-y) = (-x)y = -(xy)$.
- **3** Pour tout $(x,y) \in A \times A : (-x)(-y) = -((-x)y) = -(-(xy)) = xy$.
- 4 Pour $x \in A$ et $n \in \mathbb{N}$ on définit l'élément $x^n \in A$ par :

$$x^{n} := \begin{cases} \underbrace{x \cdot x \cdot \dots \cdot x}_{n \text{ fois}} & \text{si} \quad n > 0, \\ 1 & \text{si} \quad n = 0. \end{cases}$$

Alors on a l'identité $x^m \cdot x^n = x^{m+n}$.

5 Pour $x \in A$ et $n \in \mathbb{Z}$ on a $nx = (n 1_A) \cdot x = x \cdot (n 1_A)$.

Soit $(A, +, \cdot)$ un anneau. Alors :

- 1 Pour tout élément $x \in A$ on a $x \cdot 0 = 0 \cdot x = 0$.
- 2 Pour tout $(x,y) \in A \times A : x(-y) = (-x)y = -(xy)$.
- 3 Pour tout $(x,y) \in A \times A : (-x)(-y) = -((-x)y) = -(-(xy)) = xy$.
- 4 Pour $x \in A$ et $n \in \mathbb{N}$ on définit l'élément $x^n \in A$ par :

$$x^{n} := \begin{cases} \underbrace{x \cdot x \cdot \dots \cdot x}_{n \text{ fois}} & \text{si} \quad n > 0, \\ 1 & \text{si} \quad n = 0. \end{cases}$$

Alors on a l'identité $x^m \cdot x^n = x^{m+n}$.

Dém: Exercice.

Soient $(A,+,\cdot)$ un anneau, $x,y\in A$ deux éléments commutables. Pour tous $k,l\in \mathbb{N}$ les éléments x^k,y^l sont aussi commutables.

Soient $(A, +, \cdot)$ un anneau, $x, y \in A$ deux éléments commutables. Pour tous $k, l \in \mathbb{N}$ les éléments x^k, y^l sont aussi commutables.

Dém: Démonstration en deux étapes :

• En utilisant récurrence par rapport à k on démontre que x^k et y sont commutables pour tout $k \in \mathbb{N}$.

Soient $(A,+,\cdot)$ un anneau, $x,y\in A$ deux éléments commutables. Pour tous $k,l\in \mathbb{N}$ les éléments x^k,y^l sont aussi commutables.

Dém: Démonstration en deux étapes :

- En utilisant récurrence par rapport à k on démontre que x^k et y sont commutables pour tout $k \in \mathbb{N}$.
- ② Fixons $k \in \mathbb{N}$. En utilisant la récurrence par rapport à l on démontre que x^k et y^l sont commutables.

Soient $(A, +, \cdot)$ un anneau, $x, y \in A$ deux éléments commutables. Pour tous $k, l \in \mathbb{N}$ les éléments x^k, y^l sont aussi commutables.

Dém: Démonstration en deux étapes :

- En utilisant récurrence par rapport à k on démontre que x^k et y sont commutables pour tout $k \in \mathbb{N}$.
- ② Fixons $k \in \mathbb{N}$. En utilisant la récurrence par rapport à l on démontre que x^k et y^l sont commutables.

Proposition 1.8 (la formule du binôme dans un anneau)

Soient $(A, +, \cdot)$ un anneau, $x, y \in A$ deux éléments commutables et $n \in \mathbb{N}$. Alors $(x + y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$.

Dém: Exercice. Utiliser le lemme 1.7, la récurrence par rapport à n et les identités :

$$(x + y)^{n+1} = (x + y)^n (x + y),$$

$$\binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1}.$$

Soit $(A, +, \cdot)$ un anneau commutatif non-nul. On dit qu'un élément $a \in A \setminus \{0\}$ est un diviseur de zéro si s'il existe $b \in A \setminus \{0\}$ tel que ab = 0.

Soit $(A, +, \cdot)$ un anneau commutatif non-nul. On dit qu'un élément $a \in A \setminus \{0\}$ est un diviseur de zéro si s'il existe $b \in A \setminus \{0\}$ tel que ab = 0.

Un anneau commutatif est dit intègre, ou anneau d'intégrité, s'il est non-nul et ne possède aucun diviseur de zéro.

Soit $(A,+,\cdot)$ un anneau commutatif non-nul. On dit qu'un élément $a \in A \setminus \{0\}$ est un diviseur de zéro si s'il existe $b \in A \setminus \{0\}$ tel que ab = 0.

Un anneau commutatif est dit intègre, ou anneau d'intégrité, s'il est non-nul et ne possède aucun diviseur de zéro.

Remarque 1.10

Un anneau commutatif non-nul $(A, +, \cdot)$ est intègre si et seulement si

$$\forall (x,y) \in A \times A \ (xy = 0 \Rightarrow (x = 0) \lor (y = 0)).$$

Soit $(A,+,\cdot)$ un anneau commutatif non-nul. On dit qu'un élément $a \in A \setminus \{0\}$ est un diviseur de zéro si s'il existe $b \in A \setminus \{0\}$ tel que ab = 0.

Un anneau commutatif est dit intègre, ou anneau d'intégrité, s'il est non-nul et ne possède aucun diviseur de zéro.

Remarque 1.10

Un anneau commutatif non-nul $(A, +, \cdot)$ est intègre si et seulement si

$$\forall (x,y) \in A \times A \ (xy = 0 \Rightarrow (x = 0) \lor (y = 0)).$$

Exercice 1.1

Préciser les diviseurs de 0 de (\mathbb{Z}_{12} , +, ·).

• Les anneaux $(\mathbb{Z},+,\cdot)$, $(\mathbb{Q},+,\cdot)$, $(\mathbb{R},+,\cdot)$, $(\mathbb{C},+,\cdot)$ sont intègres.

- **1** Les anneaux $(\mathbb{Z}, +, \cdot)$, $(\mathbb{Q}, +, \cdot)$, $(\mathbb{R}, +, \cdot)$, $(\mathbb{C}, +, \cdot)$ sont intègres.
- ② Soit $n \in \mathbb{N}^*$. L'anneau $(\mathbb{Z}_n, +, \cdot)$ est intègre si et seulement si n est un nombre premier.

- ② Soit $n \in \mathbb{N}^*$. L'anneau $(\mathbb{Z}_n, +, \cdot)$ est intègre si et seulement si n est un nombre premier.
- 3 Soient $(A, +, \cdot)$, $(B, +, \cdot)$ deux anneaux commutatifs non-nuls. Alors $A \times B$ (muni de sa structure d'anneau produit) n'est pas intègre.

- **1** Les anneaux $(\mathbb{Z}, +, \cdot)$, $(\mathbb{Q}, +, \cdot)$, $(\mathbb{R}, +, \cdot)$, $(\mathbb{C}, +, \cdot)$ sont intègres.
- ② Soit $n \in \mathbb{N}^*$. L'anneau $(\mathbb{Z}_n, +, \cdot)$ est intègre si et seulement si n est un nombre premier.
- 3 Soient $(A,+,\cdot)$, $(B,+,\cdot)$ deux anneaux commutatifs non-nuls. Alors $A \times B$ (muni de sa structure d'anneau produit) n'est pas intègre.
- **③** Soient $(A, +, \cdot)$ un anneau commutatif non-nul et X un ensemble. Si $card(X) \ge 2$ alors $\mathcal{F}(X, A)$ (muni de sa structure naturelle d'anneau) n'est pas intègre. Pourquoi?

- ② Soit $n \in \mathbb{N}^*$. L'anneau $(\mathbb{Z}_n, +, \cdot)$ est intègre si et seulement si n est un nombre premier.
- 3 Soient $(A, +, \cdot)$, $(B, +, \cdot)$ deux anneaux commutatifs non-nuls. Alors $A \times B$ (muni de sa structure d'anneau produit) n'est pas intègre.
- **③** Soient $(A, +, \cdot)$ un anneau commutatif non-nul et X un ensemble. Si $card(X) \ge 2$ alors $\mathcal{F}(X, A)$ (muni de sa structure naturelle d'anneau) n'est pas intègre. Pourquoi?

On va montrer que, si A un anneau commutatif intègre, alors A[X] est intègre.

Soit A un anneau commutatif intègre. Alors A[X] est intègre.

Soit A un anneau commutatif intègre. Alors A[X] est intègre.

Dém: La démonstration utilise la notion de degré d'un polynôme :

Définition 1.12

Soit
$$P(X) = \sum_{k \ge 0} a_k X^k \in A[X]$$
.

$$deg(P(X)) := \left\{ \begin{array}{ccc} max\{k \in \mathbb{N}|\ a_k \neq 0\} & si & P(X) \neq 0 \\ -\infty & si & P(X) = 0 \end{array} \right..$$

Soit A un anneau commutatif intègre. Alors A[X] est intègre.

Dém: La démonstration utilise la notion de degré d'un polynôme :

Définition 1.12

Soit
$$P(X) = \sum_{k \ge 0} a_k X^k \in A[X]$$
.

$$deg(P(X)) := \begin{cases} \max\{k \in \mathbb{N} | a_k \neq 0\} & \text{si} \quad P(X) \neq 0 \\ -\infty & \text{si} \quad P(X) = 0 \end{cases}.$$

La formule connue deg(P(X)Q(X)) = deg(P(X)) + deg(Q(X)) reste vraie pour les polynômes à coefficients dans un anneau intègre (Exercice).

Cette formule montre : $P(X)Q(X) = 0 \Rightarrow (P(X) = 0) \lor (Q(X) = 0)$.

Cette formule montre : $P(X)Q(X) = 0 \Rightarrow (P(X) = 0) \lor (Q(X) = 0)$.

Exemple 1.1

Calculer $(\hat{2}X + \hat{4})(\hat{3}X + \hat{3}) \in \mathbb{Z}_6[X]$.

Soit $(A, +, \cdot)$ un anneau commutatif. Un élément $x \in A$ est dit inversible, s'il est inversible par rapport à la multiplication, i.e. s'il existe $y \in A$ tel que xy = 1.

Soit $(A,+,\cdot)$ un anneau commutatif. Un élément $x \in A$ est dit inversible, s'il est inversible par rapport à la multiplication, i.e. s'il existe $y \in A$ tel que xy = 1.

On va désigner par $A^{\times} \subset A$ le sous-ensemble des éléments inversibles.

Soit $(A,+,\cdot)$ un anneau commutatif. Un élément $x\in A$ est dit inversible, s'il est inversible par rapport à la multiplication, i.e. s'il existe $y\in A$ tel que xy=1.

On va désigner par $A^{\times} \subset A$ le sous-ensemble des éléments inversibles.

Remarque 1.14

Soit $(A,+,\cdot)$ un anneau commutatif. Alors A^{\times} est stable par rapport à la multiplication et (A^{\times},\cdot) est un groupe commutatif.

Soit $(A,+,\cdot)$ un anneau commutatif. Un élément $x \in A$ est dit inversible, s'il est inversible par rapport à la multiplication, i.e. s'il existe $y \in A$ tel que xy = 1.

On va désigner par $A^{\times} \subset A$ le sous-ensemble des éléments inversibles.

Remarque 1.14

Soit $(A,+,\cdot)$ un anneau commutatif. Alors A^{\times} est stable par rapport à la multiplication et (A^{\times},\cdot) est un groupe commutatif.

Exercice 1.2

Préciser les groupe des éléments inversibles dans les anneaux commutatifs suivants (munis de leurs opérations usuelles) : \mathbb{Z} , \mathbb{Z}_{12} , $\mathbb{Z}[X]$, $\mathbb{R}[X]$.

Un anneau commutatif non-nul $(A, +, \cdot)$ s'appelle corps, si tout élément $x \in A \setminus \{0\}$ est inversible.

Un anneau commutatif non-nul $(A, +, \cdot)$ s'appelle corps, si tout élément $x \in A \setminus \{0\}$ est inversible.

Donc, un anneau commutatif non-nul $(A, +, \cdot)$ est un corps si et seulement si $A^{\times} = A \setminus \{0\}$.

Exemples 1.3

 $(\mathbb{Q},+,\cdot)$, $(\mathbb{R},+,\cdot)$, $(\mathbb{C},+,\cdot)$ sont des corps.

Un anneau commutatif non-nul $(A, +, \cdot)$ s'appelle corps, si tout élément $x \in A \setminus \{0\}$ est inversible.

Donc, un anneau commutatif non-nul $(A, +, \cdot)$ est un corps si et seulement si $A^{\times} = A \setminus \{0\}$.

Exemples 1.3

 $(\mathbb{Q},+,\cdot)$, $(\mathbb{R},+,\cdot)$, $(\mathbb{C},+,\cdot)$ sont des corps.

Dans un anneau commutatif non-nul un élément inversible n'est jamais diviseur de 0. Pourquoi? Il en résulte

Remarque 1.16

Tout corps $(K, +, \cdot)$ est un anneau intègre.

Soit $n \in \mathbb{N}^*$. Sont équivalentes

- $\mathbb{Z}/n\mathbb{Z}$ est un anneau intègre.
- $2 \mathbb{Z}/n\mathbb{Z}$ est un corps.
- 3 n est un nombre premier.

Soit $n \in \mathbb{N}^*$. Sont équivalentes

- 1 $\mathbb{Z}/n\mathbb{Z}$ est un anneau intègre.
- $2 \mathbb{Z}/n\mathbb{Z}$ est un corps.
- 3 n est un nombre premier.

Dém: Exercice.

Soit $n \in \mathbb{N}^*$. Sont équivalentes

- 1 $\mathbb{Z}/n\mathbb{Z}$ est un anneau intègre.
- $2 \mathbb{Z}/n\mathbb{Z}$ est un corps.
- 3 n est un nombre premier.

Dém: Exercice.

Exercice 1.3

Soit $(A, +, \cdot)$ un anneau commutatif intègre. Identifions A avec le sous ensemble de A[X] formé des polynômes constants.

Soit $n \in \mathbb{N}^*$. Sont équivalentes

- 1 $\mathbb{Z}/n\mathbb{Z}$ est un anneau intègre.
- $2 \mathbb{Z}/n\mathbb{Z}$ est un corps.
- 3 n est un nombre premier.

Dém: Exercice.

Exercice 1.3

Soit $(A,+,\cdot)$ un anneau commutatif intègre. Identifions A avec le sous ensemble de A[X] formé des polynômes constants. Montrer qu'un polynôme $P(X) \in A[X]$ est inversible si et seulement si $P(X) \in A^{\times}$. En déduire que A[X] n'est pas un corps.

Exemple 1.2

Le sous-ensemble

$$\mathbb{Q}[\sqrt{2}] := \{a + b\sqrt{2} | \ a, \ b \in \mathbb{Q}\} \subset \mathbb{R}$$

muni de l'addition et de la multiplication ordinaires est un corps commutatif.

Table of Contents

- 1 Introduction
 - Définition. Exemples. Règles de calcul dans un anneau
 - L'anneau des polynômes à coefficients dans un anneau commutatif
 - Règles de calcul dans un anneau
 - Diviseurs de zéro dans un anneau commutatifs. Anneaux commutatifs intègres
- 2 Sous-anneaux et idéaux. Anneaux quotients. Morphismes
 - Sous-anneaux et idéaux dans un anneau commutatif.
 Anneaux quotients
 - Morphismes d'anneaux. Le premier théorème d'isomorphisme
 - La caractéristique d'un anneau

Dans ce chapitre $(A, +, \cdot)$ désigne un anneau commutatif.

Définition 2.1

Un sous-ensemble $B \subset A$ est dit sous-anneau de $(A, +, \cdot)$ si les conditions suivantes sont vérifiées :

- \bullet B est un sous-groupe du groupe abélien (A, +).
- $\mathbf{0}$ $\mathbf{1}_{\mathsf{A}} \in \mathsf{B}$.

Dans ce chapitre $(A, +, \cdot)$ désigne un anneau commutatif.

Définition 2.1

Un sous-ensemble $B \subset A$ est dit sous-anneau de $(A, +, \cdot)$ si les conditions suivantes sont vérifiées :

- \bullet B est un sous-groupe du groupe abélien (A, +).
- \bullet 1_A \in B.

Remarque 2.2

Si B est un sous-anneau de $(A, +, \cdot)$, alors B est stable par rapport aux lci +, \cdot et les opérations induites sur B définissent une structure d'anneau sur B.

Soit $B \subset A$. Sont équivalentes

- **1** B est un sous-anneau de $(A, +, \cdot)$.

Dém: Exercice. Utiliser la définition d'un sous-groupe.

Soit $B \subset A$. Sont équivalentes

- **1** B est un sous-anneau de $(A, +, \cdot)$.

Dém: Exercice. Utiliser la définition d'un sous-groupe.

Remarque 2.4

Tout sous-anneau d'un anneau intègre est un anneau intègre.

Soit $B \subset A$. Sont équivalentes

- **1** B est un sous-anneau de $(A, +, \cdot)$.

Dém: Exercice. Utiliser la définition d'un sous-groupe.

Remarque 2.4

Tout sous-anneau d'un anneau intègre est un anneau intègre.

Exemples 2.1

1 A est toujours un sous-anneau de $(A, +, \cdot)$ mais, si A est non-nul, $\{0_A\}$ ne sera pas un sous-anneau de $(A, +, \cdot)$.

Soit $B \subset A$. Sont équivalentes

- **1** B est un sous-anneau de $(A, +, \cdot)$.

Dém: Exercice. Utiliser la définition d'un sous-groupe.

Remarque 2.4

Tout sous-anneau d'un anneau intègre est un anneau intègre.

Exemples 2.1

- A est toujours un sous-anneau de $(A, +, \cdot)$ mais, si A est non-nul, $\{0_A\}$ ne sera pas un sous-anneau de $(A, +, \cdot)$.
- 2 $\mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$ sont des inclusions de sous-anneau.

Exemple 2.1

Identifions A avec le sous ensemble de A[X] formé par les polynômes constants. Alors A devient un sous-anneau de $(A[X],+,\cdot)$.

Exemple 2.1

Identifions A avec le sous ensemble de A[X] formé par les polynômes constants. Alors A devient un sous-anneau de $(A[X], +, \cdot)$.

Définition 2.5

Soit $I \subset A$. On dit que I est un idéal de A si

- \bullet I est un sous-groupe du groupe abélien (A, +).
- $\forall (a,x) \in A \times I, a \cdot x \in I.$

Question : est-ce qu'un idéal $I \subset A$ peut être un sous-anneau?

Exemple 2.1

Identifions A avec le sous ensemble de A[X] formé par les polynômes constants. Alors A devient un sous-anneau de $(A[X],+,\cdot)$.

Définition 2.5

Soit $I \subset A$. On dit que I est un idéal de A si

- \bullet I est un sous-groupe du groupe abélien (A, +).

Question : est-ce qu'un idéal I ⊂ A peut être un sous-anneau? La remarque suivante montre que le seul idéal de A qui est un sous-anneau est A lui même.

Soit $I \subset A$ un idéal de $(A, +, \cdot)$. Sont équivalentes :

- $0 \ I = A.$
- I est un sous-anneau.
- \bullet 1_A \in I.
- I contient un élément inversible.

Soit $I \subset A$ un idéal de $(A, +, \cdot)$. Sont équivalentes :

- $0 \ I = A.$
- I est un sous-anneau.
- I contient un élément inversible.

Exemple 2.2

Soit $a \in A$. Le sous-ensemble

$$aA := \{a \cdot x | x \in A\} \subset A$$

est un idéal de $(A,+,\cdot)$. Cet idéal s'appelle l'idéal principal engendré par a et sera aussi noté (a).

Un anneau commutatif $(A,+,\cdot)$ est dit anneau principal s'il est intègre et tout idéal de A est principal.

Un anneau commutatif $(A, +, \cdot)$ est dit anneau principal s'il est intègre et tout idéal de A est principal.

Remarque 2.8

L'ensemble des idéaux de $(\mathbb{Z},+,\cdot)$ est $\{n\mathbb{Z}|\ n\in\mathbb{N}\}$. En particulier $(\mathbb{Z},+,\cdot)$ est un anneau principal.

Un anneau commutatif $(A,+,\cdot)$ est dit anneau principal s'il est intègre et tout idéal de A est principal.

Remarque 2.8

L'ensemble des idéaux de $(\mathbb{Z},+,\cdot)$ est $\{n\mathbb{Z}|n\in\mathbb{N}\}$. En particulier $(\mathbb{Z},+,\cdot)$ est un anneau principal.

Dém: Soit $I \subset \mathbb{Z}$ un idéal de $(\mathbb{Z}, +, \cdot)$. Puisque I est un idéal, il est un sous-groupe du groupe abélien $(\mathbb{Z}, +)$.

Un anneau commutatif $(A, +, \cdot)$ est dit anneau principal s'il est intègre et tout idéal de A est principal.

Remarque 2.8

L'ensemble des idéaux de $(\mathbb{Z},+,\cdot)$ est $\{n\mathbb{Z}|n\in\mathbb{N}\}$. En particulier $(\mathbb{Z},+,\cdot)$ est un anneau principal.

Dém: Soit $I \subset \mathbb{Z}$ un idéal de $(\mathbb{Z},+,\cdot)$. Puisque I est un idéal, il est un sous-groupe du groupe abélien $(\mathbb{Z},+)$. Mais tout sous-groupe de $(\mathbb{Z},+)$ s'écrit sous la forme $n\mathbb{Z}$ avec $n \in \mathbb{N}$ (exercice).

Un anneau commutatif $(A,+,\cdot)$ est dit anneau principal s'il est intègre et tout idéal de A est principal.

Remarque 2.8

L'ensemble des idéaux de $(\mathbb{Z},+,\cdot)$ est $\{n\mathbb{Z}|n\in\mathbb{N}\}$. En particulier $(\mathbb{Z},+,\cdot)$ est un anneau principal.

Dém: Soit $I \subset \mathbb{Z}$ un idéal de $(\mathbb{Z},+,\cdot)$. Puisque I est un idéal, il est un sous-groupe du groupe abélien $(\mathbb{Z},+)$. Mais tout sous-groupe de $(\mathbb{Z},+)$ s'écrit sous la forme $n\mathbb{Z}$ avec $n \in \mathbb{N}$ (exercice). Réciproquement, tout sous-ensemble de la forme $n\mathbb{Z}$ est un idéal de $(\mathbb{Z},+,\cdot)$. Pourquoi?

Un idéal I de $(A, +, \cdot)$ est dit maximal si I \neq A et pour tout idéal J diffèrent de I qui contient I on a J = A.

Un idéal I de $(A,+,\cdot)$ est dit maximal si I \neq A et pour tout idéal J diffèrent de I qui contient I on a J = A.

Exemple 2.3

L'idéal n \mathbb{Z} de (\mathbb{Z} ,+,·) est maximal si et seulement si n est un nombre premier.

26

Définition 2.9

Un idéal I de $(A,+,\cdot)$ est dit maximal si I \neq A et pour tout idéal J diffèrent de I qui contient I on a J = A.

Exemple 2.3

L'idéal n \mathbb{Z} de (\mathbb{Z} ,+,·) est maximal si et seulement si n est un nombre premier.

En effet, on peut supposer $n \ge 2$. Tout idéal de \mathbb{Z} s'écrit sous la form $m\mathbb{Z}$ avec $m \in \mathbb{N}$. Nous avons les équivalences

 $n\mathbb{Z} \subset m\mathbb{Z} \Leftrightarrow m|n, n\mathbb{Z} = m\mathbb{Z} \Leftrightarrow m = n, m\mathbb{Z} = \mathbb{Z} \Leftrightarrow m = 1.$

Un idéal I de $(A,+,\cdot)$ est dit maximal si I \neq A et pour tout idéal J diffèrent de I qui contient I on a J = A.

Exemple 2.3

L'idéal n $\mathbb Z$ de ($\mathbb Z$,+, \cdot) est maximal si et seulement si n est un nombre premier.

En effet, on peut supposer $n \ge 2$. Tout idéal de \mathbb{Z} s'écrit sous la form $m\mathbb{Z}$ avec $m \in \mathbb{N}$. Nous avons les équivalences

$$n\mathbb{Z} \subset m\mathbb{Z} \Leftrightarrow m|n, n\mathbb{Z} = m\mathbb{Z} \Leftrightarrow m = n, m\mathbb{Z} = \mathbb{Z} \Leftrightarrow m = 1.$$

Conclusion : $n\mathbb{Z}$ n'est pas maximal si et seulement s'il existe un diviseur $m \in \mathbb{N}^*$ de n tel que $m \neq 1$ et $m \neq n$, donc si et seulement si n n'est pas un nombre premier.

Proposition 2.10

Soit $(I_s)_{s \in S}$ une famille d'idéaux de A. Alors l'intersection $\bigcap_{s \in S} I_s$ est un idéal de A.

Dém: Exercice.

Proposition 2.10

Soit $(I_s)_{s \in S}$ une famille d'idéaux de A. Alors l'intersection $\bigcap_{s \in S} I_s$ est un idéal de A.

Dém: Exercice.

Définition 2.11

Soit $S\subset A$ un sous-ensemble. L'idéal engendré par S est l'intersection de tous les idéaux de $(A,+,\cdot)$ qui contiennent S:

$$(S) := \bigcap_{\substack{\text{I id\'eal de A}\\S \subset I}}$$

Proposition 2.10

Soit $(I_s)_{s \in S}$ une famille d'idéaux de A. Alors l'intersection $\bigcap_{s \in S} I_s$ est un idéal de A.

Dém: Exercice.

Définition 2.11

Soit $S\subset A$ un sous-ensemble. L'idéal engendré par S est l'intersection de tous les idéaux de $(A,+,\cdot)$ qui contiennent S:

$$(S) := \bigcap_{\substack{I \text{ id\'eal de A} \\ S \subset I}} I$$

Donc l'idéal engendré par S est le plus petit idéal (au sens de l'inclusion) de A qui contient S.

Soit $S \subset A$ un sous-ensemble. Alors

$$(S) = \Big\{ \sum_{i=1}^{k} s_i \cdot x_i | k \in \mathbb{N}, (s_1, \dots, s_k) \in S^k, (x_1, \dots, x_k) \in A^k \Big\}.$$

Soit $S \subset A$ un sous-ensemble. Alors

$$(S) = \Big\{ \sum_{i=1}^{k} s_i \cdot x_i | k \in \mathbb{N}, (s_1, \dots, s_k) \in S^k, (x_1, \dots, x_k) \in A^k \Big\}.$$

Dém: Démonstration en deux étapes :

Le sous-ensemble

$$I := \Big\{ \sum_{i=1}^{k} s_i \cdot x_i | k \in \mathbb{N}, (s_1, ..., s_k) \in S^k, (x_1, ..., x_k) \in A^k \Big\}$$

est un idéal de $(A,+,\cdot)$ qui contient S. Ceci implique l'inclusion $(S) \subset I$.

Soit $S \subset A$ un sous-ensemble. Alors

$$(S) = \Big\{ \sum_{i=1}^{k} s_i \cdot x_i | k \in \mathbb{N}, (s_1, \dots, s_k) \in S^k, (x_1, \dots, x_k) \in A^k \Big\}.$$

Dém: Démonstration en deux étapes :

Le sous-ensemble

$$I := \Big\{ \sum_{i=1}^{K} s_i \cdot x_i | k \in \mathbb{I}N, (s_1, ..., s_k) \in S^k, (x_1, ..., x_k) \in A^k \Big\}$$

est un idéal de $(A,+,\cdot)$ qui contient S. Ceci implique l'inclusion $(S) \subset I$.

Tout idéal de $(A,+,\cdot)$ qui contient S doit contenir I. Ceci implique $I \subset (S)$.

Un idéal I de A est dit idéal de type fini s'il est engendré par un ensemble fini, donc s'il existe $k \in \mathbb{N}$ et $s_1, \ldots, s_k \in A$ tels que

$$I = \left\{ \sum_{i=1}^{K} s_i \cdot x_i | (x_1, \dots, x_k) \in A^k \right\}.$$

Un idéal I de A est dit idéal de type fini s'il est engendré par un ensemble fini, donc s'il existe $k \in \mathbb{N}$ et $s_1, ..., s_k \in A$ tels que

$$I = \left\{ \sum_{i=1}^{K} s_i \cdot x_i | (x_1, \dots, x_k) \in A^k \right\}.$$

Soient I, J deux idéaux de A. La somme I + J est l'idéal :

$$I + J := (I \cup J) = \{x + y | x \in I, y \in J\}.$$

Un idéal I de A est dit idéal de type fini s'il est engendré par un ensemble fini, donc s'il existe $k \in \mathbb{N}$ et $s_1, ..., s_k \in A$ tels que

$$I = \left\{ \sum_{i=1}^{K} s_i \cdot x_i | (x_1, \dots, x_k) \in A^k \right\}.$$

Soient I, J deux idéaux de A. La somme I + J est l'idéal :

$$I + J := (I \cup J) = \{x + y | x \in I, y \in J\}.$$

Pour une famille finie $(I_i)_{1 \le i \le k}$ d'idéaux de A on pose

$$I_1 + \ldots + I_k := (I_1 \cup \ldots \cup I_k) = \{ \sum_{i=1}^k x_i | x_i \in I_i \text{ pour } 1 \le i \le k \}.$$

30

Exercice 2.1

Un idéal $I \subset A$ est maximal si et seulement si $I \neq A$ et pour tout $a \in A \setminus I$ on a aA + I = A.

Un idéal $I \subset A$ est maximal si et seulement si $I \neq A$ et pour tout $a \in A \setminus I$ on a aA + I = A.

Définition 2.14

Un idéal I de A est dit premier si I \neq A et l'implication suivante est vraie : $(a \cdot b \in I) \Rightarrow (a \in I) \lor (b \in I)$.

Un idéal $I \subset A$ est maximal si et seulement si $I \neq A$ et pour tout $a \in A \setminus I$ on a aA + I = A.

Définition 2.14

Un idéal I de A est dit premier si I \neq A et l'implication suivante est vraie : $(a \cdot b \in I) \Rightarrow (a \in I) \lor (b \in I)$.

Proposition 2.15

- 1 L'idéal nul {0} est premier si et seulement si A est intègre.
- 2 Tout idéal maximal $I \subset A$ de A est un idéal premier.

Un idéal $I \subset A$ est maximal si et seulement si $I \neq A$ et pour tout $a \in A \setminus I$ on a aA + I = A.

Définition 2.14

Un idéal I de A est dit premier si I \neq A et l'implication suivante est vraie : $(a \cdot b \in I) \Rightarrow (a \in I) \lor (b \in I)$.

Proposition 2.15

- 1 L'idéal nul {0} est premier si et seulement si A est intègre.
- 2 Tout idéal maximal $I \subset A$ de A est un idéal premier.

Dém: 1. Evident.

Un idéal $I \subset A$ est maximal si et seulement si $I \neq A$ et pour tout $a \in A \setminus I$ on a aA + I = A.

Définition 2.14

Un idéal I de A est dit premier si I \neq A et l'implication suivante est vraie : $(a \cdot b \in I) \Rightarrow (a \in I) \lor (b \in I)$.

Proposition 2.15

- 1 L'idéal nul {0} est premier si et seulement si A est intègre.
- 2 Tout idéal maximal I ⊂ A de A est un idéal premier.

Dém: 1. Evident. 2. Soient I maximal et a, b \in A tels que ab \in I. Si a \notin I, alors aA + I = A, donc \exists x \in A \exists z \in I tels que ax + z = 1.

Exercice 2.1

Un idéal $I \subset A$ est maximal si et seulement si $I \neq A$ et pour tout $a \in A \setminus I$ on a aA + I = A.

Définition 2.14

Un idéal I de A est dit premier si I \neq A et l'implication suivante est vraie : $(a \cdot b \in I) \Rightarrow (a \in I) \lor (b \in I)$.

Proposition 2.15

- ① L'idéal nul {0} est premier si et seulement si A est intègre.
- 2 Tout idéal maximal I ⊂ A de A est un idéal premier.

Dém: 1. Evident. 2. Soient I maximal et $a, b \in A$ tels que $ab \in I$. Si $a \notin I$, alors aA + I = A, donc $\exists x \in A \exists z \in I$ tels que ax + z = 1.

On a donc $b = abx + bz \in I$ (parce que $ab \in I$ et $z \in I$).

L'idéal principal $X\mathbb{Z}[X]$ engendré par le polynôme X dans l'anneau $\mathbb{Z}[X]$ (muni des opérations usuelles) est premier, mais n'est pas maximal.

L'idéal principal $X\mathbb{Z}[X]$ engendré par le polynôme X dans l'anneau $\mathbb{Z}[X]$ (muni des opérations usuelles) est premier, mais n'est pas maximal.

 $X\mathbb{Z}[X]$ est premier : $P(X) = \sum_k a_k X^k \in X\mathbb{Z}[X]$ si et seulement si $a_0 = 0$. Il en résulte facilement :

$$\mathsf{P}(\mathsf{X})\mathsf{Q}(\mathsf{X}) \in \mathsf{X}\mathbb{Z}[\mathsf{X}] \Rightarrow (\mathsf{P}(\mathsf{X}) \in \mathsf{X}\mathbb{Z}[\mathsf{X}]) \lor (\mathsf{Q}(\mathsf{X}) \in \mathsf{X}\mathbb{Z}[\mathsf{X}]))$$

L'idéal principal $X\mathbb{Z}[X]$ engendré par le polynôme X dans l'anneau $\mathbb{Z}[X]$ (muni des opérations usuelles) est premier, mais n'est pas maximal.

 $X\mathbb{Z}[X]$ est premier : $P(X) = \sum_k a_k X^k \in X\mathbb{Z}[X]$ si et seulement si $a_0 = 0$. Il en résulte facilement :

$$\mathsf{P}(\mathsf{X})\mathsf{Q}(\mathsf{X})\in\mathsf{X}\mathbb{Z}[\mathsf{X}]\Rightarrow(\mathsf{P}(\mathsf{X})\in\mathsf{X}\mathbb{Z}[\mathsf{X}])\vee(\mathsf{Q}(\mathsf{X})\in\mathsf{X}\mathbb{Z}[\mathsf{X}]))$$

 $X\mathbb{Z}[X]$ n'est pas maximal : $X\mathbb{Z}[X]$ est contenu dans l'idéal $2\mathbb{Z}[X] + X\mathbb{Z}[X]$ et les deux inclusions

$$X\mathbb{Z}[X] \subset 2\mathbb{Z}[X] + X\mathbb{Z}[X], 2\mathbb{Z}[X] + X\mathbb{Z}[X] \subset \mathbb{Z}[X]$$

sont strictes. Pourquoi?

Remarque 2.16

Soient $I \subset A$ un idéal de A et (A/I,+) le groupe quotient du groupe abélien (A,+) par le sous-groupe I. La formule

$$([x]_I,[y]_I) \mapsto [x \cdot y]_I$$

définit une lci sur A/I (notée par le même symbole ·) et (A/I,+,·) est un anneau commutatif dont l'élément unité est la classe $[1]_{l}$.

Dém: Exercice.

Remarque 2.16

Soient $I \subset A$ un idéal de A et (A/I,+) le groupe quotient du groupe abélien (A,+) par le sous-groupe I. La formule

$$([x]_I,[y]_I) \mapsto [x \cdot y]_I$$

définit une lci sur A/I (notée par le même symbole ·) et (A/I,+,·) est un anneau commutatif dont l'élément unité est la classe $[1]_{l}$.

Dém: Exercice.

Définition 2.17 (Anneau quotient)

L'anneau $(A/I,+,\cdot)$ défini dans la remarque 2.16 s'appelle l'anneau quotient de $(A,+,\cdot)$ par l'idéal I.

L'anneau quotient de $(\mathbb{Z},+,\cdot)$ par l'idéal n \mathbb{Z} est précisément l'anneau $(\mathbb{Z}/n\mathbb{Z},+,\cdot)$ des entiers modulo n.

Proposition 2.18

Soient $(A, +, \cdot)$ un anneau commutatif et $I \subset A$ un idéal. Alors

- 1 l est un idéal maximal si et seulement si A/I est un corps.
- 2 I est un idéal premier si et seulement si A/I est intègre.

Dém: Exercice.

Soient A et B deux anneaux. Une application $f: A \to B$ est dite morphisme d'anneaux si :

- **0** $f(1_A) = 1_B$.
- $\forall (x,y) \in A \times A, f(x+y) = f(x) + f(y) \text{ et } f(xy) = f(x)f(y).$

Soient A et B deux anneaux. Une application $f:A\to B$ est dite morphisme d'anneaux si :

- \bullet f(1_A) = 1_B.
- $\forall (x,y) \in A \times A, f(x+y) = f(x) + f(y) \text{ et } f(xy) = f(x)f(y).$

Un morphisme $f: A \to B$ est dit monom. (épim., isom.) si f est injective (resp. surjective, bijective).

Soient A et B deux anneaux. Une application $f:A\to B$ est dite morphisme d'anneaux si :

- $f(1_A) = 1_B$.
- $\forall (x,y) \in A \times A, f(x+y) = f(x) + f(y) \text{ et } f(xy) = f(x)f(y).$

Un morphisme $f: A \to B$ est dit monom. (épim., isom.) si f est injective (resp. surjective, bijective).

Un endomorphisme de A est un morphisme $A \rightarrow A$.

Soient A et B deux anneaux. Une application $f:A\to B$ est dite morphisme d'anneaux si :

- $f(1_A) = 1_B$.
- $\forall (x,y) \in A \times A, f(x+y) = f(x) + f(y) \text{ et } f(xy) = f(x)f(y).$

Un morphisme $f: A \to B$ est dit monom. (épim., isom.) si f est injective (resp. surjective, bijective).

Un endomorphisme de A est un morphisme $A \rightarrow A$.

Un automorphisme de A est un isomorphisme $A \rightarrow A$.

Soient A et B deux anneaux. Une application $f:A\to B$ est dite morphisme d'anneaux si :

0
$$f(1_A) = 1_B$$
.

$$\forall (x,y) \in A \times A, f(x+y) = f(x) + f(y) \text{ et } f(xy) = f(x)f(y).$$

Un morphisme $f: A \to B$ est dit monom. (épim., isom.) si f est injective (resp. surjective, bijective).

Un endomorphisme de A est un morphisme $A \rightarrow A$.

Un automorphisme de A est un isomorphisme $A \rightarrow A$.

Le noyau d'un morphisme $f:A\to B$ est l'idéal de A défini par :

$$ker(f) := \{x \in A | f(x) = 0_B\}.$$

Soient A un anneau commutatif et $I \subset A$ un idéal. La surjection canonique $p:A \to A/I$ est un épimorphisme d'anneaux, qui s'appelle l'épimorphisme canonique.

Soient A un anneau commutatif et $I \subset A$ un idéal. La surjection canonique $p:A \to A/I$ est un épimorphisme d'anneaux, qui s'appelle l'épimorphisme canonique.

Remarque 2.20

Soient $f:A\to B$, $g:B\to C$ morphismes d'anneaux. Alors :

 \emptyset g o f : A \rightarrow C est un morphisme d'anneaux.

Soient A un anneau commutatif et $I \subset A$ un idéal. La surjection canonique $p:A \to A/I$ est un épimorphisme d'anneaux, qui s'appelle l'épimorphisme canonique.

Remarque 2.20

Soient $f: A \rightarrow B$, $g: B \rightarrow C$ morphismes d'anneaux. Alors :

- \emptyset g o f : A \rightarrow C est un morphisme d'anneaux.
- lacktriangledisplays Si f est un isomorphisme, alors l'application réciproque $f^{-1}: B \to A$ est un isomorphisme.

Soient A un anneau commutatif et $I \subset A$ un idéal. La surjection canonique $p:A \to A/I$ est un épimorphisme d'anneaux, qui s'appelle l'épimorphisme canonique.

Remarque 2.20

Soient $f: A \rightarrow B$, $g: B \rightarrow C$ morphismes d'anneaux. Alors :

- lacktriangledisplays Si f est un isomorphisme, alors l'application réciproque $f^{-1}: B \to A$ est un isomorphisme.

Dém: Exercice.

1
$$f(0_A) = 0_B$$
.

- $f(0_A) = 0_B$.

- $f(0_A) = 0_B$.
- \bigcirc Pour tout $x \in A$ on a f(-x) = -f(x).
- Si $x \in A^{\times}$, alors $f(x) \in B^{\times}$ et $f(x^{-1}) = (f(x))^{-1}$.

- **0** $f(0_A) = 0_B$.
- Pour tout $x \in A$ on a f(-x) = -f(x).
- Si $x \in A^{\times}$, alors $f(x) \in B^{\times}$ et $f(x^{-1}) = (f(x))^{-1}$.
- Soit $A' \subset A$ un sous-anneau de A. Alors l'image f(A') est un sous-anneau de B.

- **1** $f(0_A) = 0_B$.
- One Pour tout $x \in A$ on a f(-x) = -f(x).
- Si $x \in A^{\times}$, alors $f(x) \in B^{\times}$ et $f(x^{-1}) = (f(x))^{-1}$.
- Soit $A' \subset A$ un sous-anneau de A. Alors l'image f(A') est un sous-anneau de B.
- Soit $I \subset A$ un idéal de A. Si f est surjective, alors l'image f(I) est un idéal de B.

- **0** $f(0_A) = 0_B$.
- One Pour tout $x \in A$ on a f(-x) = -f(x).
- Si $x \in A^{\times}$, alors $f(x) \in B^{\times}$ et $f(x^{-1}) = (f(x))^{-1}$.
- Soit $A' \subset A$ un sous-anneau de A. Alors l'image f(A') est un sous-anneau de B.
- Soit I ⊂ A un idéal de A. Si f est surjective, alors l'image f(I) est un idéal de B.
- Soit $B' \subset B$ est un sous-anneau de B. Alors l'image réciproque $f^{-1}(B')$ est un sous-anneau de A.

- $f(0_A) = 0_B$.
- One Pour tout $x \in A$ on a f(-x) = -f(x).
- Si $x \in A^{\times}$, alors $f(x) \in B^{\times}$ et $f(x^{-1}) = (f(x))^{-1}$.
- Soit $A' \subset A$ un sous-anneau de A. Alors l'image f(A') est un sous-anneau de B.
- Soit I ⊂ A un idéal de A. Si f est surjective, alors l'image f(I) est un idéal de B.
- Soit $B' \subset B$ est un sous-anneau de B. Alors l'image réciproque $f^{-1}(B')$ est un sous-anneau de A.
- Soit $I \subset B$ est un idéal de B. Alors $f^{-1}(I)$ est un idéal de A.

- **0** $f(0_A) = 0_B$.
- \bigcirc Pour tout $x \in A$ on a f(-x) = -f(x).
- Si $x \in A^{\times}$, alors $f(x) \in B^{\times}$ et $f(x^{-1}) = (f(x))^{-1}$.
- Soit $A' \subset A$ un sous-anneau de A. Alors l'image f(A') est un sous-anneau de B.
- Soit I ⊂ A un idéal de A. Si f est surjective, alors l'image f(I) est un idéal de B.
- Soit B' \subset B est un sous-anneau de B. Alors l'image réciproque f⁻¹(B') est un sous-anneau de A.
- Soit $I \subset B$ est un idéal de B. Alors $f^{-1}(I)$ est un idéal de A.
- f est injectif si et seulement $ker(f) = \{0_A\}.$

Dém: Exercice.

Dém: Exercice.

En général l'image directe d'un idéal par un morphisme d'anneaux n'est pas nécessairement un idéal. Par exemple l'image de \mathbb{Z} par le morphisme d'inclusion $\mathbb{Z} \hookrightarrow \mathbb{Q}$ n'est pas un idéal de \mathbb{Q} .

Dém: Exercice.

En général l'image directe d'un idéal par un morphisme d'anneaux n'est pas nécessairement un idéal. Par exemple l'image de \mathbb{Z} par le morphisme d'inclusion $\mathbb{Z} \hookrightarrow \mathbb{Q}$ n'est pas un idéal de \mathbb{Q} .

L'anneau quotient est caractérisé par une propriété universelle. Sa démonstration utilise la méthode utilisée pour la propriété universelle du groupe quotient.

Soient A, B anneaux commutatifs, I un idéal de A, p : A \rightarrow A/I l'épimorphisme canonique et f : A \rightarrow B un morphisme.

$$\begin{array}{ccc}
A & \xrightarrow{f} & B \\
\downarrow^{p} & & \bar{f} \\
A/I & & & \end{array}$$

Soient A, B anneaux commutatifs, I un idéal de A, p : A \rightarrow A/I l'épimorphisme canonique et f : A \rightarrow B un morphisme.

$$\begin{array}{ccc}
A & \xrightarrow{f} & B \\
\downarrow^{p} & & \downarrow^{\bar{f}} \\
A/I & & & \end{array}$$

- 2 Si cette condition est vérifiée, alors
 - \bar{f} est unique, $\ker(\bar{f}) = \ker(f)/I$ et $\operatorname{im}(\bar{f}) = \operatorname{im}(f)$.

Soient A, B anneaux commutatifs, I un idéal de A, p : A \rightarrow A/I l'épimorphisme canonique et f : A \rightarrow B un morphisme.

- 2 Si cette condition est vérifiée, alors
 - \bar{f} est unique, $\ker(\bar{f}) = \ker(f)/I$ et $\operatorname{im}(\bar{f}) = \operatorname{im}(f)$.
 - **2** \bar{f} est un monomorphisme si et seulement si $I = \ker(f)$.

Soient A, B anneaux commutatifs, I un idéal de A, p : A \rightarrow A/I l'épimorphisme canonique et f : A \rightarrow B un morphisme.

- 2 Si cette condition est vérifiée, alors
 - \bar{f} est unique, $\ker(\bar{f}) = \ker(f)/I$ et $\operatorname{im}(\bar{f}) = \operatorname{im}(f)$.
 - **2** \bar{f} est un monomorphisme si et seulement si $I = \ker(f)$.
 - f est un épimorphisme si et seulement si f est un épimorphisme.

Comme dans la théorie des groupes on obtient un théorème d'isomorphisme pour les morphismes d'anneaux :

Théorème 2.23 (le 1er th. d'isomorphisme pour les anneaux)

Soient A , B anneaux commutatifs et f : A \to B un morphisme d'anneaux. Alors la formule $\varphi([x]_l)$:= f(x) définit un isomorphisme

$$\varphi: A/\ker(f) \xrightarrow{\simeq} \operatorname{im}(f)$$
.

Comme dans la théorie des groupes on obtient un théorème d'isomorphisme pour les morphismes d'anneaux :

Théorème 2.23 (le 1er th. d'isomorphisme pour les anneaux)

Soient A , B anneaux commutatifs et f : A \to B un morphisme d'anneaux. Alors la formule $\varphi([x]_l)$:= f(x) définit un isomorphisme

$$\varphi: A/\ker(f) \xrightarrow{\simeq} \operatorname{im}(f)$$
.

Exemple 2.7

Soient K[X] l'anneau des polynômes a coefficients dans un corps K et $f:K[X] \to K$ le morphisme défini par f(P(X)) := P(0). Nous avons ker(f) = (X), donc $K[X]/(X) \simeq K$.

Soit A un anneau. L'application

$$\gamma_{\mathsf{A}}: \mathbb{Z} \to \mathsf{A}, \ \gamma_{\mathsf{A}}(\mathsf{n}) := \mathsf{n} 1_{\mathsf{A}}$$

est un morphisme d'anneaux.

Soit A un anneau. L'application

$$\gamma_A : \mathbb{Z} \to A$$
, $\gamma_A(n) := n 1_A$

est un morphisme d'anneaux.

C'est l'unique morphisme d'anneaux de $\mathbb Z$ vers A.

Soit A un anneau. L'application

$$\gamma_{\mathsf{A}}: \mathbb{Z} \to \mathsf{A}, \ \gamma_{\mathsf{A}}(\mathsf{n}) := \mathsf{n} 1_{\mathsf{A}}$$

est un morphisme d'anneaux.

C'est l'unique morphisme d'anneaux de \mathbb{Z} vers A.

Son noyau est un idéal de \mathbb{Z} , donc s'écrit sous la forme $c_A \mathbb{Z}$ pour un nombre $c_A \in \mathbb{N}$ qui dépend seulement de l'anneau A.

Soit A un anneau. L'application

$$\gamma_A : \mathbb{Z} \to A$$
, $\gamma_A(n) := n 1_A$

est un morphisme d'anneaux.

C'est l'unique morphisme d'anneaux de \mathbb{Z} vers A.

Son noyau est un idéal de \mathbb{Z} , donc s'écrit sous la forme $c_A\mathbb{Z}$ pour un nombre $c_A\in\mathbb{N}$ qui dépend seulement de l'anneau A. On a donc

$$c_A = \left\{ \begin{array}{cc} 0 & \text{si} & \text{ker}(\gamma_A) = \{0\}, \\ \min\{k \in \mathbb{N}^* | \ k \, \mathbf{1}_A = \mathbf{0}_A\} = \text{ord}(\mathbf{1}_A) & \text{si} & \text{ker}(\gamma_A) \neq \{0\}. \end{array} \right.$$

Soit A un anneau. L'application

$$\gamma_A : \mathbb{Z} \to A$$
, $\gamma_A(n) := n 1_A$

est un morphisme d'anneaux.

C'est l'unique morphisme d'anneaux de \mathbb{Z} vers A.

Son noyau est un idéal de \mathbb{Z} , donc s'écrit sous la forme $c_A\mathbb{Z}$ pour un nombre $c_A\in\mathbb{N}$ qui dépend seulement de l'anneau A. On a donc

$$c_A = \left\{ \begin{array}{cc} 0 & \text{si} & \text{ker}(\gamma_A) = \{0\}, \\ \min\{k \in \mathbb{N}^* | \ k \, \mathbf{1}_A = \mathbf{0}_A\} = \text{ord}(\mathbf{1}_A) & \text{si} & \text{ker}(\gamma_A) \neq \{0\}. \end{array} \right.$$

Définition 2.24

Le nombre naturel c_A défini par l'égalité $\ker(\gamma_A) = c_A \mathbb{Z}$ s'appelle la caractéristique de l'anneau A.

Le 1er théorème d'isomorphisme donne un isomorphisme

$$\bar{\gamma}_A : \mathbb{Z}/c_A\mathbb{Z} \to im(\gamma_A) := \{k \, 1_A | k \in \mathbb{Z}\}.$$

Remarque 2.25

Si A est un anneau intègre (en particulier un corps) alors c_A est soit 0, soit un nombre premier.

Dém: Exercice. Pour la 2ème affirmation utiliser la remarque 2.4 et la proposition 1.17.

Exemples 2.2

- lacktriangle \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} sont des anneaux de caractéristique 0.
- $2 \mathbb{Z}_n$ et $\mathbb{Z}_n[X]$ sont des anneaux de caractéristique n.