Bochner-Martinelli formulas on singular complex spaces

Vincenzo Ancona and Bernard Gaveau

Abstract.

Let $\tilde{\mathbf{C}}^n$ be the blowing-up of \mathbf{C}^n at a point P. We prove that the pullback to $\tilde{\mathbf{C}}^n$ of the Bochner-Martinelli form centered at P is logarithmic along the exceptional divisor. It follows that the Bochner-Martinelli integral formula appears as a Leray residue formula. Moreover the Bochner-Martinelli form is logarithmic also at infinity.

Let U be a complex space of complex dimension $n \geq 2$, subject to the following assumption: there exist a compact complex space X bimeromorphic to a Kähler manifold, and a closed subspace $T \subset X$, such that $X \setminus T = U$. An affine, or a quasi projective variety U satisfies the above property (X is a projective compactification of U). For a point $P \in U$, the cohomology group $H^{2n-1}(U \setminus \{P\}, \mathbb{C})$, equipped with the weight filtration W_m , carries a mixed Hodge structure. Thus the first graded quotient

$$BM(U \setminus \{P\}) = \frac{W_1 H^{2n-1}(U \setminus \{P\}, \mathbf{C})}{W_0 H^{2n-1}(U \setminus \{P\}, \mathbf{CC})}$$

carries a pure Hodge structure of weight 2n-2, which turns out to contain only elements of pure type (n-1, n-1). The elements of $BM(U \setminus \{P\})$ are represented by closed forms ω on $U \setminus \{P\}$ of pure type (n, n-1), which are logarithmic in a suitable sense. Thanks to a more general residue formula we prove that the forms ω give rise to an integral formula of Bochner-Martinelli type for holomorphic functions.

We prove that the forms ω can be chosen to depend C^{∞} on P, that is, we prove the existence of ($\overline{\partial}$ -closed) Bochner-Martinelli Kernels. Such Kernels can be used to prove integral formulas for differential forms (in sense of Grauert) on U.

MSC 32C15, 32A25.

1. The Bochner-Martinelli formula as a residue formula.

It is well known (see for example [GH]) that the Bochner-Martinelli integral formula can be proved as a consequence of the Grothendieck residue formula. Here we show that it can also be proved from the Leray residue formula [L]. This suggests how to extend such formulas to complex spaces.

Let $w = (w_1, \dots, w_n)$ be a point in \mathcal{C}^n . We consider the differential form

$$\omega'\left(\overline{z-w}, d\overline{z}\right) = \sum_{k=1}^{n} (-1)^{k-1} (\overline{z_k - w_k}) d\overline{z_1} \wedge \dots \wedge d\overline{\overline{z_k}} \wedge \dots \wedge d\overline{z_n}$$
(1.1)

The form

$$\omega(w,z) = \frac{\omega'\left(\overline{z-w}, d\overline{z}\right) \wedge dz_1 \wedge \dots \wedge dz_n}{\|z-w\|^{2n}}$$
(1.2)

with

$$||z - w||^2 = \sum_{k=1}^{n} |z_k - w_k|^2$$
(1.3)

is the Bochner-Martinelli form. It is d-closed and $\overline{\partial}$ -closed. The Bochner-Martinelli formula reads as

Theorem 1.1. Let $\Omega \subset \mathbb{C}^n$ be a relatively compact domain with (piecewise) smooth boundary. Let f be a holomorphic function on Ω , which is continuous on $\overline{\Omega}$. For a point $w \in \Omega$ one has

$$f(w) = \frac{(n-1)!}{(2i\pi)^n} \int_{\partial\Omega} f(z)\omega(w,z)$$
(1.4)

Proof. One can assume that w = 0. We shall prove that (1.4) can be deduced from the Leray residue formula. Let $\tilde{\Omega}$ be the manifold obtained by blowing-up the point $0 \in \Omega$. $\tilde{\Omega}$ is the submanifold of $\Omega \times \mathbb{I}P^{n-1}$ defined by the equations $Z_l z_k = Z_k z_l$ for $k \neq l$, where $[Z_1, \dots, Z_n]$ are the homogeneous coordinates in $\mathbb{I}P^{n-1}$. We consider a point m of the exceptional divisor $(0) \times \mathbb{I}P^{n-1} \subset \tilde{\Omega}$ such that $Z_n \neq 0$ at m. Then, one can choose as complex coordinates in the neighborhood of m, the numbers

$$\zeta_1 = \frac{Z_1}{Z_n}, \dots, \zeta_k = \frac{Z_k}{Z_n}, \dots, \zeta_{n-1} = \frac{Z_{n-1}}{Z_n}, \ z_n$$

so that $z_k = \zeta_k z_n$ for $k \leq n-1$. Thus $z_n = 0$ is the local equation of the exceptional divisor $(0) \times \mathbb{P}^{n-1}$ in a neighborhood of m. We consider the form

$$\phi = f(z) \frac{\omega'(\overline{z}, d\overline{z}) \wedge dz^1 \wedge \dots \wedge dz^n}{\|z\|^{2n}}$$
(1.5)

The the pull back of ϕ by the projection map $p: \tilde{\Omega} \to \Omega$ is logarithmic along the exceptional divisor D.

2

In fact $p^*\phi$ is given by the following formula

$$p^*\phi = \frac{f(\zeta_1 z_n, \cdots, \zeta_{n-1} z_n, z_n)}{|z_n|^{2n}(1 + \sum_{k=1}^{n-1} |\zeta_k|^2)^n} \times [\sum_{k=1}^{n-1} (-1)^{k-1} \overline{\zeta}_k \overline{z}_n d(\overline{\zeta}_1 \overline{z}_n) \wedge \cdots \wedge d(\widehat{\zeta}_k \overline{z}_n) \wedge \cdots \wedge d\overline{z}_n + (-1)^{n-1} \overline{z}_n d(\overline{\zeta}_1 \overline{z}_n) \wedge \cdots \wedge d(\overline{\zeta}_{n-1} \overline{z}_n)] \wedge [d(\zeta_1 z_n) \wedge \cdots \wedge d(\zeta_{n-1} z_n) \wedge dz_n]$$
$$= \frac{f(\zeta_1 z_n, \cdots, \zeta_{n-1} z_n, z_n)}{(1 + \sum_{k=1}^{n-1} |\zeta_k|^2)^n} \left(d\overline{\zeta}_1 \wedge \cdots \wedge d\overline{\zeta}_{n-1} \wedge d\zeta_1 \wedge \cdots \wedge d\zeta_{n-1} \wedge \frac{dz_n}{z_n} \right)$$

(modulo smooth forms).

So the residue of $p^*\phi$ on the exceptional divisor is

Res
$$p^*\phi = f(0) \frac{\left(d\overline{\zeta_1} \wedge \dots \wedge d\overline{\zeta_{n-1}} \wedge d\zeta_1 \wedge \dots \wedge d\zeta_{n-1}\right)}{(1 + \sum_{k=1}^{n-1} |\zeta_k|^2)^n}$$

Moreover because ϕ is closed, one has

$$\int_{\partial\Omega}\phi=\int_{\partial B(0,\epsilon)}\phi=\int_{S(0,\epsilon)}\phi$$

where $B(0,\epsilon)$ (resp. $S(0,\epsilon)$) is the ball (resp.the sphere) of center at 0 and radius ϵ . But $S(0,\epsilon)$ is exactly $\delta[(0) \times \mathbb{P}^{n-1}]$ where δ is the residue in homology. Thus in the manifold $\tilde{\Omega}$, one has by the residue formula

$$\int_{S(0,\epsilon)} \phi = \int_{S(0,\epsilon)} p^* \phi = (2i\pi) \int_{\mathbb{P}^{n-1}} \operatorname{Res} p^* \phi =$$
$$= 2i\pi f(0) \int_{\mathbb{P}^{n-1}} \frac{\left(d\bar{\zeta}_1 \wedge \dots \wedge d\bar{\zeta}_{n-1} \wedge d\zeta_1 \wedge \dots \wedge d\zeta_{n-1} \right)}{(1 + \sum_{k=1}^{n-1} |\zeta_k|^2)^n}$$

This last integral is exactly the integral of the volume form of $I\!\!P^{n-1}$. Its value is

$$\frac{(2i\pi)^{n-1}}{(n-1)!}$$

Hence we have seen that the pullback of the Bochner-Martinelli form on $\tilde{\Omega}$ has a logarithmic singularity along the exceptional divisor, and that the Bochner-Martinelli formula is a residue formula in the blow-up manifold $\tilde{\Omega}$ with respect to the exceptional divisor.

The behaviour at the infinity of the Bochner-Martinelli form.

Next we study the behaviour at the infinity of the Bochner-Martinelli form. We consider the projective space \mathbb{I}^n with complex coordinates $[x_0, \dots, x_n]$ and we look at \mathbb{C}^n as the complement of the hyperplane H defined by the equation $x_0 = 0$. Let P be a point of H where $x_1 \neq 0$. Then we can write

$$z_j = \frac{x_j}{x_0}, \quad j = 1, \cdots n$$

so that the local coordinates v_j around P are related to the coordinates z_j by the formulas

$$z_1 = \frac{1}{v_1}, \ z_s = \frac{v_s}{v_1} \ for \ s = 2, \cdots, n$$

and H is defined by the equation $v_1 = 0$. Substituting the above relations in the formula (1.2) (w = 0) we find that the Bochner-Martinelli form has a logarithmic singularity along H, whose residue is

$$-\frac{(d\bar{v}_2\wedge\cdots\wedge d\bar{v}_n\wedge dv_2\wedge\cdots\wedge dv_n)}{(1+\sum_{k=2}^n|v_k|^2)^n}$$

2. The Leray residue theorem for a divisor with normal crossings.

In this section, X is a complex analytic manifold and $D = D_1 \cup \cdots \cup D_N$ is a divisor with normal crossings; that means that each D_i is a smooth hypersurface of X, and at each point $x \in X$, there are at most $n = \dim_{\mathfrak{C}} X$ divisors D_j passing through x and which are transversal. In particular, given x, one can find complex analytic coordinates (z_1, \cdots, z_n) in a neighborhood U of x, such that the local equation of $D \cap U$ in U is $z_1 \cdots z_s = 0$, s depending on x.

We define for any ordered multiindex $I = (i_1, \dots, i_q) \subset (1, \dots, N)$

$$D_I = D_{i_1} \cap \dots \cap D_{i_q}$$

and

$$D^{[q]} = \coprod_{|I|=q} D_I, \quad D^{[0]} = X$$

where the symbol II denotes the disjoint union. Then the $D^{[q]}$ are manifolds (not connected in general).

The residue theorem.

Let $L_i \to X$ be the line bundle associated to D_i , and h_i a hermitian metrics on L_i . We denote by s_i a holomorphic section of L_i vanishing exactly on D_i . There exists a neighborhood of D_i in X diffeomorphic to a neighborhood of D_i (embedded as the zero section) in L_i . For $\epsilon_i > 0$ small enough we consider the tube around D_i :

$$T_{\epsilon_i} = \{x \in X : \|s_i(x)\| < \epsilon_i\}$$

where the length $||s_i(x)||$ is taken with respect to the metrics h_i .

Let us define

$$T_{\underline{\epsilon}} = \bigcup_{i} T_{\epsilon_i} \tag{2.1}$$

The boundary $\partial T_{\underline{\epsilon}}$ is a cycle of dimension 2n-1 in $X \setminus D$.

Let ω be a form of type (n, n-1) on a neighborhood of D, d-closed (hence $\overline{\partial}$ -closed), having logarithmic singularities along D.

We define the residue of ω on D. Let x be a smooth point of D; it belongs to a unique component D_j of D. Let $\zeta_j = 0$ be the equation of D_j in a neighborhood U of x; on U we can write

$$\omega|_U = \frac{d\zeta_j}{\zeta_j} \wedge \psi + \theta$$

where ψ, θ are C^{∞} on U. We put

$$Res \ \omega|_{U \cap D_j} = \psi|_{U \cap D_j}$$

and we get a well defined (n-1, n-1) form $\operatorname{Res} \omega$ on the disjoint union $\bigcup_j (D_j \setminus \operatorname{Sing}(D)) = D \setminus \operatorname{Sing}(D)$, having logarithmic singularities along each $D_j \cap \operatorname{Sing}(D)$.

Lemma 2.1. The form Res ω is integrable on D_j .

Theorem 2.2. Let X be a complex manifold of complex dimension $n \ge 2$, $D \subset X$ a divisor with normal crossings, ω a differential form of type (n, n - 1), with compact support, on X, having logarithmic singularities along D. Then

$$\lim_{\epsilon \to 0} \int_{\partial T_{\underline{\epsilon}}} \omega = 2i\pi \int_D Res \ \omega$$

with $T_{\underline{\epsilon}} = \bigcup_i T_{\epsilon_i}$ as in (2.1).

3. Logarithmic differential forms and the mixed Hodge structure on cohomology.

By a pair (of complex spaces) (X, Q) we mean the data of a complex space X and of a closed, nowhere dense complex subspace Q. Let $\rho: X \setminus Q \to X$ be the natural embedding.

If X is smooth and Q = D is a divisor with normal crossings, a logarithmic differential k-form on X (with poles of order $\leq l$ along D) is a form ω on $X \setminus D$ which, in a sufficiently small neighborhood of any $x \in D$ can be written as

$$\omega = \sum_{|I| \le l} \alpha_I \wedge \left(\frac{dz}{z}\right)^I \tag{3.1}$$

where $\left(\frac{dz}{z}\right)^{I} = \frac{dz_{i_{1}}}{z_{i_{1}}} \wedge \dots \wedge \frac{dz_{i_{l}}}{z_{i_{l}}}.$

The differential $d\omega$ of a logarithmic form (with poles of order $\leq l$) is logarithmic (with poles of order $\leq l$). The above definition has a local nature: we can define a logarithmic form on $Y \setminus D$ for any open subset $Y \subset X$, hence the sheaf $\mathcal{E}_X^k < log D > of$ the logarithmic k-forms is well defined, and $\mathcal{E}_X < log D >$ is a complex of fine sheaves on X.

The logarithmic forms on any open set $Y \subset X$ are particular differential forms on $Y \setminus D$, hence we have an inclusion

$${\mathcal E}_X^{\cdot} < log D > \subset
ho_* {\mathcal E}_{X \setminus D}^{\cdot}$$

where $\rho: X \setminus D \hookrightarrow X$ is the natural inclusion map.

The following statements (Griffiths-Schmid) hold:

- every closed differential form on $X \setminus D$ is cohomologous to a logarithmic form;

- every logarithmic differential form on $X \setminus D$ which is exact, is the differential of a logarithmic form.

The main consequence of the above result is that the cohomology of $X \setminus D$ is the cohomology of the complex of global sections $\Gamma(X, \mathcal{E}_X < \log D >)$:

$$H^k(X, \mathcal{E}_X < log D >) \simeq H^k(X, \rho_* \mathcal{E}_{W \setminus D}) \simeq H^k(X \setminus D, \mathcal{C})$$

We introduce **the weight filtration** W on $\mathcal{E}_X^k < log D >$, just defining $W_l \mathcal{E}_X^k < log D >$ as the subsheaf of $\mathcal{E}_X^k < log D >$ of the forms having poles of order $\leq l$.

If X is smooth and Q is any closed subspace, a differential k-form ω on $X \setminus Q$ is said logarithmic along Q if for some blowing-up

$$\begin{array}{cccc} D & \stackrel{i}{\to} & \tilde{X} \\ \downarrow & & \pi \downarrow \\ Q & \stackrel{j}{\to} & X \\ & & 6 \end{array}$$

such that D is a divisor with normal crossing, the pull-back $\pi^*\omega$ is logarithmic along D.

For a pair (X, Q), where X is possibly singular, we define a complex (in fact, a family of complexes) of fine sheaves $(\Lambda_X < log Q >, d)$ on X with the following properties.

(I) The restriction $\Lambda_{X\setminus Q}^{\cdot} = \Lambda_X^{\cdot} < logQ > |_{X\setminus Q}$ of $\Lambda_X^{\cdot} < logQ > to X \setminus Q$ is a resolution of the constant sheaf \mathcal{C} on $X \setminus Q$, and the natural morphism of complexes

$$\Lambda_X^{\cdot} < logQ > \rightarrow \rho_* \Lambda_{X \setminus Q}^{\cdot}$$

induces isomorphisms in cohomology:

$$H^{k}(X, \Lambda_{X} < logQ >) = H^{k}(X, \rho_{*}\Lambda_{X\setminus Q}) = H^{k}(X \setminus Q, \mathcal{C})$$
(3.2)

in other words the cohomology of $X \setminus Q$ can be calculated as the cohomology of the complex $\begin{array}{l} \text{ of sections } (\Gamma(X,\Lambda_X < log Q >), d) \text{ of } \Lambda_X < log Q >. \\ (\text{II}) \text{ For } k > 2 dim X, \, \Lambda_X^k < log Q >= 0. \end{array}$

The complex $\Lambda_X < \log Q >$ will be called a *logarithmic complex* for a pair (X, Q); we recall its construction.

Let (X, Q) be any pair, E = Sing(X); let us consider a diagram of desingularization of X

where \tilde{X} is a smooth manifold, $\tilde{E} = \pi^{-1}(E)$, and π induces by restriction an isomorphism $\tilde{X} \setminus \tilde{E} \simeq X \setminus E$. Let

$$\tilde{Q} = \pi^{-1}(Q), \ M = E \cap Q, \ \tilde{M} = \tilde{E} \cap \tilde{Q}$$

We suppose that \tilde{Q} is a divisor with normal crossings.

By induction on dim(X) we can find complexes $\Lambda_E < \log M >$ and $\Lambda_{\tilde{E}} < \log \tilde{M} >$, corresponding to the pairs (E, M) and (\tilde{E}, \tilde{M}) , a pullback

$$\phi: \Lambda_E < \log M > \to \Lambda_{\tilde{E}} < \log \tilde{M} > \tag{3.4}$$

a pullback

$$\psi: \mathcal{E}_{\tilde{X}}^{\cdot} < \log \tilde{Q} > \rightarrow \Lambda_{\tilde{E}}^{\cdot} < \log \tilde{M} >$$

so that we define the complex

$$\Lambda_X^k < \log Q >= \pi_* \mathcal{E}_{\tilde{X}}^k < \log \tilde{Q} > \oplus j_* \Lambda_E^k < \log M > \oplus (j \circ q)_* \Lambda_{\tilde{E}}^{k-1} < \log \tilde{M} >$$
(3.5)

whose differential is by definition

$$d(\omega, \sigma, \theta) = (d\omega, d\sigma, d\theta + (-1)^k (\psi(\omega) - \phi(\sigma))).$$
(3.6)

Note that $\Lambda_X^k < log Q >$ is a fine sheaf defined on all of X.

From the construction of $\Lambda_X < \log Q >$ it follows that there is a uniquely determined family $((X_a, Q_a), h_a)_{a \in A}$ of pairs (X_a, Q_a) , where X_a is a smooth manifold and Q_a is (either empty or) a divisor with normal crossings in X_a , and proper maps of pairs $h_a : (X_a, Q_a) \to (X, Q)$ such that

$$\Lambda_X^k < \log Q >= \bigoplus_{a \in A} (h_a)_* \mathcal{E}_{X_a}^{k-q(a)} < \log Q_a >$$
(3.7)

where $q(a) = q_X(a)$ is a nonnegative integer, which depends only on $a \in A$ and not on k. The family $(X_a, Q_a)_{a \in A}$ will be called the hypercovering of (X, Q) associated to the complex $\Lambda_X < \log Q >$, and $q_X(a)$ will be the **rank** of (X_a, Q_a) .

Remark.

- 1) In the situation of the diagram (3.3) and of the complex (3.5), we notice that (\tilde{X}, \tilde{Q}) is a pair (X_a, Q_a) of the hypercovering, with q(a) = 0.
- 2) Notice also that $dim X_a \leq dim X$, and equality holds if and only if $X_a = X$.

The weight filtration W and the Hodge filtration F.

If $\Lambda_X^{\cdot} < logQ >$ is a logarithmic complex, we can rewrite the equation (3.5) defining the complex as

$$\Lambda_X^k < \log Q >= \mathcal{E}_{\tilde{X}}^k < \log \tilde{Q} > \oplus \Lambda_E^k < \log M > \oplus \Lambda_{\tilde{E}}^{k-1} < \log \tilde{M} >$$
(3.8)

where we have skipped the symbols of direct images of sheaves. The weight filtration W on the complex $(\Lambda_X < logQ >, d)$ is defined by the formula

$$W_m \Lambda_X^k < \log Q > =$$

= $W_m \mathcal{E}_{\tilde{X}}^k < \log \tilde{Q} > \oplus W_m \Lambda_E^k < \log M > \oplus W_{m+1} \Lambda_{\tilde{E}}^{k-1} < \log \tilde{M} >$ (3.9)

In (3.9) $W_m \Lambda_E^k < \log M >$ and $W_{m+1} \Lambda_{\tilde{E}}^{k-1} < \log \tilde{M} >$ are defined by recursion on the dimension of the spaces, and $W_m \mathcal{E}_{\tilde{X}} < \log \tilde{Q} >$ is the filtration by the order of the poles. $(\Lambda_X^* < \log Q >, d)$ is a filtered complex for W_m :

$$d(W_m \Lambda_X^k < \log Q >) \subset W_m \Lambda_X^{k+1} < \log Q >$$
(3.10)

As well, the Hodge filtration F on the complex $(\Lambda_X^{\cdot} < log Q >, d)$ is defined by the formula

$$F^{p}\Lambda_{X}^{^{*}} < \log Q > =$$

$$= F^{p}\mathcal{E}_{\tilde{X}}^{^{k}} < \log \tilde{Q} > \oplus F^{p}\Lambda_{E}^{^{k}} < \log M > \oplus F^{p}\Lambda_{\tilde{E}}^{^{k-1}} < \log \tilde{M} >$$
(3.11)

8

where $F^p \Lambda_E^k < \log M >$ and $F^p \Lambda_{\tilde{E}}^{k-1} < \log \tilde{M} >$ are defined by recursion on the dimension of the spaces, and $F^p \mathcal{E}_{\tilde{X}}^{\cdot} < \log \tilde{Q} >$ is the usual Hodge filtration.

By the isomorphism (3.2) the filtrations W and F induce a weight and a Hodge filtrations on the cohomology spaces $H^k(X \setminus Q, \mathcal{C})$, which we denote by the same symbols. The spectral sequence associated to the weight filtration.

For the spectral sequences (associated to a filtration) we use notations, which are different from those which usually appear in the literature. In our notation $E_r^{m,k}$, m is the degree of the filtration and k is the degree of the complex (the degree of differential forms in the case of the De Rham complex). In particular

$$d_r: E_r^{m,k} \to E_r^{m-r,k+1}$$

If one is willing to work with the classical indices $E_r^{\prime p,q}$ can use the following dictionary:

$$E_r^{m,k} = E_r'^{-p,p+q}$$
$$E_r'^{p,q} = E_r^{-m,k+m}$$

The mixed Hodge structure.

Let us suppose that X is a compact complex space bimeromorphic to a Kähler manifold.

We consider the spectral sequence $E_r^{m,k}$ attached to the weight filtration of the complex $\Gamma(X, \Lambda_X < \log Q >)$.

The following (highly non trivial) results hold.

1) the first terms are

$$E_1^{m,k} = E_1^{m,k}(X) = \bigoplus_a E_1^{m+q(a),k-q(a)}(X_a)$$
(3.12)

where

$$E_1^{r,s}(X_a) = H^{s-r}(Q_a^{[r]}, \mathcal{I})$$
(3.13)

(recall: $Q_a^{[0]} = X_a$);

2) the spectral sequence degenerates at the level 2: $d_r = 0$, hence $E_r^{m,k} = E_2^{m,k}$, for $r \ge 2$;

3) the second terms $E_2^{m,k}$ carry a pure Hodge structure, and they are isomorphic to the graded quotients $\frac{W_m H^k(X \setminus Q, \mathcal{C})}{W_{m-1} H^k(X \setminus Q, \mathcal{C})}$ of the cohomology $H^k(X \setminus Q, \mathcal{C})$ with respect to the weight filtration;

4) the Hodge filtration on $E_2^{m,k}$ coincides with the filtration induced in cohomology, by means of residues, by the Hodge filtration of the complex $\Lambda_X < \log Q >$.

4. The general Bochner-Martinelli formula.

Definition 4.1. Let U be a complex space, $S \subset U$ a closed subspace. Let α be a differential form on $U \setminus (Sing(U) \cup S)$. We say that α is logarithmic along S if there exists a proper modification $\pi : \tilde{U} \to U$ with the following properties

1) \tilde{U} is non singular;

2) π induces an isomorphism $h: \tilde{U} \setminus \pi^{-1}(Sing(U) \cup S) \to U \setminus (Sing(U) \cup S);$

3) $\tilde{S} = \pi^{-1}(S)$ is a divisor with normal crossings in \tilde{U} ;

4) $\pi^* \alpha$ extends to a differential form on $\tilde{U} \setminus \tilde{S}$, logarithmic along \tilde{S} .

If S is a point $P \in U$, we will say that α is logarithmic at P.

Throughout the present talk, U will be a complex space of complex dimension $n \ge 2$, subject to the following assumption: there exist a compact complex space X bimeromorphic to a Kähler manifold, and a closed subspace $T \subset X$, such that $X \setminus T = U$. An affine, or a quasi projective variety U satisfies the above property (X is a projective compactification of U).

Let $p: Y \to X$ be a desingularization of X (so that $p^{-1}(U)$ is a desingularization of U).

Let P be a point of U. Let $u : \tilde{X} \to Y$ be the blowing-up of Y along a suitable subspace of the fiber $p^{-1}(P)$ such that $D = (p \circ u)^{-1}(P)$ is a divisor with normal crossings in \tilde{X} . We denote $\pi : \tilde{X} \to X$ the composition $p \circ u$. Let $\tilde{U} = \pi^{-1}(U)$. Then $\tilde{U} \setminus D$ is a desingularization of $U \setminus \{P\}$. Replacing Y by a suitable blowing-up along a subspace of $p^{-1}(T)$ (not affecting $p^{-1}(U)$) we can assume that $H = Y \setminus p^{-1}(U) = \tilde{X} \setminus \tilde{U}$ is also a divisor with normal crossings.

The cohomology groups $H^k(U \setminus \{P\}, \mathcal{C})$ carry a mixed Hodge structure [D]. We are interested in the case k = 2n - 1. We follow the contructions in [AG], part II, chapters 2 and 4 to describe the mixed Hodge structure. Let

$$Q = T \cup \{P\}$$

Let us fix a complex $\Lambda_X < log Q >$ corresponding to the above desingularization \tilde{X} of X, and let $((X_a, Q_a))$ be the associated hypercovering. Let $n_a = dim X_a$. Let us notice that

$$\tilde{Q} = D \cup H$$

hence (\tilde{X}, \tilde{Q}) is a pair of the hypercovering. The weight filtration W_m of the complex $\Gamma(X, \Lambda_X < \log Q >)$ gives rise to a spectral sequence whose first term, by (3.12) and (3.13), is

$$E_1^{m,k} = E_1^{m,k}(X) = \bigoplus_a E_1^{m+q(a),k-q(a)}(X_a)$$
(4.1)

where

$$E_1^{m+q(a),k-q(a)}(X_a) = H^{k-m-2q(a)}(Q_a^{[m+q(a)]}, \mathcal{C})$$
(4.2)

which vanishes unless

$$k - m - 2q(a) \le 2n_a - 2m - 2q(a)$$

that is

$$k \le 2n_a - m \tag{4.3}$$

We want to compute the term $E_2^{1,2n-1}$ of the spectral sequence, hence we are interested in $E_1^{0,2n}$, $E_1^{1,2n-1}$ and $E_1^{2,2n-2}$. For (m,k) = (0,2n), (1,2n-1), (2,2n-2), from (4.3) we obtain $n_a = n$. There is only one X_a with $n_a = n$, that is $X_a = \tilde{X}$. The corresponding q(a) is zero.

It follows

$$E_1^{0,2n} = H^{2n}(\tilde{X}, \mathcal{C})$$

$$E_1^{1,2n-1} = \bigoplus_{l=1}^p H^{2n-2}(H_l, \mathscr{C}) \oplus \bigoplus_{ls=1}^N H^{2n-2}(D_s, \mathscr{C})$$

where $H = H_1 \cup \cdots \cup H_p$ and $D = D_1 \cup \cdots \cup D_N$ are the decompositions of the divisors H and D into irreducible components, and

$$E_1^{2,2n-2} = H^{2n-4}(H^{[2]}, \, {I\!\!\!C}) \oplus H^{2n-4}(D^{[2]}, \, {I\!\!\!C})$$

It follows that $E_1^{0,2n}$, $E_1^{1,2n-1}$ and $E_1^{2,2n-2}$ carry a pure Hodge structure of weight 2n, 2n-2 and 2n-4 respectively, admitting only elements of type (n,n), (n-1,n-1), (n-2,n-2) respectively.

The differentials

$$d_1^{1,2n-1}: E_1^{1,2n-1} \to E_1^{0,2n}, \quad d_1^{2,2n}: E_1^{2,2n-2} \to E_1^{1,2n-1}$$

are sums with coefficients ± 1 of Gysin maps, which are morphism of pure Hodge structures (suitably shifted).

The term

$$E_2^{1,2n-1} = \frac{Ker \ d_1^{1,2n-1}}{Im \ d_1^{0,2n}}$$

carries a pure Hodge structure of weight 2n-2 whose elements are of pure type (n-1, n-1). Since the Hodge filtration on $E_2^{1,2n-1}$ is induced, by means of residues, by the Hodge filtration on $\Lambda_X < \log Q >$, and the spectral sequence degenerates at E_2 , we obtain the following

Theorem 4.2. Let W_m be the weight filtration on the cohomology $H^{2n-1}(U \setminus \{P\}, \mathcal{C})$, and denote $BM(U \setminus \{P\}) = \frac{W_1 H^{2n-1}(U \setminus \{P\}, \mathcal{C})}{W_0 H^{2n-1}(U \setminus \{P\}, \mathcal{C})}$, which is isomorphic to $E_2^{1,2n-1}$. For any element $\alpha \in BM(U \setminus \{P\})$ there exists a differential form ω on $U \setminus \{P\}$, logarithmic at P

and along T (in sense of definition 4.1), of type (n, n-1), d-closed (hence $\overline{\partial}$ -closed), whose class modulo W_0 is α . Such a form will be called a Bochner-Martinelli form on $U \setminus \{P\}$.

By construction the form ω is in fact a differential form on $\tilde{X} \setminus (D \cup H)$, logarithmic along $D \cup H$, and has the property that the residue $Res \ \omega$ is a closed form of type (n-1, n-1) on $D_1 \sqcup \cdots \sqcup D_N \sqcup H_1 \sqcup \cdots \sqcup H_p$ which detects an element of $Ker \ d_1^{1,2n-1}$.

A Bochner-Martinelli form ω on $U \setminus \{P\}$ induces an ordinary differential form of type (n, n-1) on $U \setminus \{P\} \setminus Sing(U)$ which we still denote ω .

Theorem 4.3. Let ω be a Bochner-Martinelli form on $U \setminus \{P\}$, $\Omega \subset U$ a relatively compact domain containing the point P, such that $\overline{\Omega}$ is subanalytic, and no component of $\partial\Omega$ is contained in Sing(U). Let f be a holomorphic function on Ω , continuous on $\overline{\Omega}$. Then the integral of $f\omega$ converges on $\partial\Omega \setminus Sing(U)$ and the following equality holds:

$$2i\pi f(P) \int_D \operatorname{Res} \, \omega = \int_{\partial\Omega \setminus \operatorname{Sing}(U)} f\omega \tag{4.4}$$

Proof. Since $\overline{\Omega}$ is subanalytic, the closure of $\pi^{-1}(\overline{\Omega} \setminus Sing(U))$ in \tilde{U} is subanalytic. Hence one can define the strict transforms $\tilde{\Omega}$ and $\overline{\tilde{\Omega}}$, through π , of Ω and $\overline{\Omega}$ respectively. Because ω is logarithmic along D, by theorem 2.2

$$\lim_{\epsilon \to 0} \int_{\partial T_{\underline{\epsilon}}} (f \circ \pi) \ \omega = 2i\pi \int_D \operatorname{Res} \ ((f \circ \pi) \ \omega)$$

where $T_{\underline{\epsilon}} = \bigcup_i T_{\epsilon_i}$ is a neighborhood of D defined as in (2.1). Because $(f \circ \pi)$ is constant on H, Res $((f \circ \pi) \omega) = f(P)Res \omega$; because $f\omega$ is $\overline{\partial}$ -closed, hence d-closed, on $\tilde{U} \setminus D$,

$$\int_{\partial T_{\underline{\epsilon}}} (f \circ \pi) \ \omega = \int_{\partial \tilde{\Omega}} (f \circ \pi) \ \omega$$

It is clear that $\partial \tilde{\Omega}$ and $\partial \Omega \setminus Sing(U)$ differ by a set of measure zero, so that

$$\int_{\partial \tilde{\Omega}} (f \circ \pi) \,\, \omega = \int_{\partial \Omega \setminus Sing(U)} f \omega$$

which implies (4.4).

Remark. The space $BM(U \setminus \{P\})$ is intrinsic, because the mixed Hodge structure on $H^{2n-1}(U \setminus \{P\}, \mathbb{C})$ is unique. In particular, it does not depend on the choice of a desingularization of X.

Let us remark also that a closed (2n-1)-form whose class is in $BM(U \setminus \{P\})$ is a Bochner-Martinelli form if and only if it has type (n, n-1); otherwise it is not necessarily $\overline{\partial}$ -closed.

The following theorem gives more information about the Bochner-Martinelli forms.

Theorem 4.4. Under the assumptions of theorem 4.3, let ω_1 and ω_2 be two Bochner-Martinelli forms on $U \setminus \{P\}$. Then

- i) ω_1 and ω_2 are cohomologous for d as logarithmic forms if and only if they are cohomologous for d as forms on $\tilde{X} \setminus \tilde{Q}$; as well, they are cohomologous for $\overline{\partial}$ as logarithmic forms if and only if they are cohomologous for $\overline{\partial}$ as forms on $\tilde{X} \setminus \tilde{Q}$.
- ii) ω_1 and ω_2 are cohomologous for d as logarithmic forms if and only if they are cohomologous for $\overline{\partial}$ as logarithmic forms.
- iii) ω_1 and ω_2 have same class in $H^{2n-1}(U \setminus \{P\}, \mathcal{C})$ if and only if they are cohomologous for d on $\tilde{X} \setminus \tilde{Q}$.
- iv) Let $\Omega_{\tilde{X}}^k < \log \tilde{Q} >$ be the sheaf of holomorphic k-forms on $\tilde{X} \setminus \tilde{Q}$ which are logarithmic along \tilde{Q} . There is a natural surjective morphism

$$H^{n-1}(\tilde{X}, \Omega^n_{\tilde{X}} < \log \tilde{Q} >) \to BM(U \setminus \{P\})$$

$$(4.5)$$

inducing an isomorphism

$$\frac{W_1 H^{n-1}(\tilde{X}, \Omega^n_{\tilde{X}} < \log \tilde{Q} >)}{W_0 H^{n-1}(\tilde{X}, \Omega^n_{\tilde{X}} < \log \tilde{Q} >)} \simeq BM(U \setminus \{P\})$$

$$(4.6)$$

5. Dependence on the point: the Bochner-Martinelli Kernels.

Let us keep the notations and the assumptions of the previous section. Let $V \subset U$ be an open set of U. Let $Z = V \times X$, the diagram of desingularization of X:

$$\begin{array}{cccc} \tilde{E} & \rightarrow & Y \\ \downarrow & & p \downarrow \\ E & \rightarrow & X \end{array}$$

We can suppose that $H = p^{-1}(T)$ is a divisor with normal crossings in Y. In $Z' = p^{-1}(V) \times Y$ let $R' = \{(P,Q) \in Z : P = Q\}$. Then R' is a closed subspace of Z', contained in $p^{-1}(V) \times p^{-1}(V)$, isomorphic to $p^{-1}(V)$. Let $\pi' : \tilde{Z} \to Z'$ be the blowing-up of Z' along $R', \pi: \tilde{Z} \to Z$ the composite mapping, $\tilde{R} = \pi^{-1}(R')$. Finally, let $S = R' \cup (p^{-1}(V) \times T)$, $\tilde{S} = \tilde{R} \cup \pi^{-1}(p^{-1}(V) \times H)$.

Let V_1 be the open set of smooth points of V. For a point P of V_1 let

$$X_P = \{P\} \times X, \quad \tilde{X}_P = \pi^{-1}(\{P\} \times X)$$

$$D_P = \tilde{X}_P \cap \tilde{R}$$
$$T_P = \{P\} \times T, \quad H_P = \{P\} \times H$$
$$Q_P = \{(P, P)\} \cup T_P, \quad \tilde{Q}_P = D_P \cup H_P$$

It is easy to see that \tilde{X}_P is the blowing-up of $Y_P = \{P\} \times Y$ at the point (P, P), whose exceptional divisor is D_P . The pair (X_P, Q_P) gives rise to a complex $\Lambda_{X_P} < \log Q_P >$ which describes the cohomology of $U \setminus \{P\}$, and there is a natural restriction mapping

$$\Lambda_Z < log S > \rightarrow \Lambda_{X_P} < log Q_P >$$

which is compatible with the respective differentials and weight filtrations.

Let $\pi_1: \tilde{Z} \to V$ be the composition of the blowing-up $\pi': \tilde{Z} \to Z' = p^{-1}(V) \times Y$ with the projection $p^{-1}(V) \times Y \to V$.

Theorem 5.1. Let $U = X \setminus T$ be a complex space, such that X is a compact complex space bimeromorphic to a Kähler manifold, and T is a closed subspace of X; let $V \subset U$ be a Stein open subset of U, and P' a smooth point of V. Let $R = \{(P,Q) \in V \times U : P = Q\}$. For every Bochner-Martinelli form $\omega \in BM(U \setminus \{P'\})$ on $U \setminus \{P'\}$ there exists a form $\omega(P,Q)$ of type (n, n - 1) on $(V \times U) \setminus R$, $\overline{\partial}$ -closed, logarithmic along R and $V \times T$ (in sense of definition 4.1), which induces ω and for each $P \in V$ a induces Bochner-Martinelli form on $U \setminus \{P\}$.

In other terms, the above theorem states, under the above assumptions, that Bochner-Martinelli forms at smooth points admit $\overline{\partial}$ -closed, logarithmic kernels. We do not know if it is possible in general to find kernels of pure type (n, n-1) which are also *d*-closed.

Corollary 5.2. Let U be a smooth affine variety, and $\Delta \subset U \times U$ be the diagonal. For every Bochner-Martinelli form $\omega \in BM(U \setminus \{P'\})$ on $U \setminus \{P'\}$ there exists a form $\omega(P,Q)$ of type (n, n - 1) on $(U \times U) \setminus \Delta$, $\overline{\partial}$ -closed, logarithmic along Δ and at infinity (in sense of definition 4.1), which induces ω and for each $P \in U$ induces a Bochner-Martinelli form on $U \setminus \{P\}$.

The Bochner -Martinelli form (1.2), as a form on $\mathbb{C}^n \times \mathbb{C}^n$, is not logarithmic along the diagonal $\Delta = \{(w, z) : z = w\}$. In order to fulfill the conclusions of corollary 5.2 it must be replaced by the form

$$\tilde{\omega}(w,z) = \frac{\tilde{\omega}'(\overline{z-w}, d(\overline{z-w})) \wedge d(z_1 - w_1) \wedge \dots \wedge d(z_n - w_n)}{\|z-w\|^{2n}}$$
(5.1)

with

$$\tilde{\omega}'\left(\overline{z-w}, d(\overline{z-w})\right) = \sum_{k=1}^{n} (-1)^k (\overline{z_k - w_k}) d(\overline{z_1 - w_1}) \wedge \dots \wedge d(\widehat{z_k - w_k}) \wedge \dots \wedge d(\overline{z_n - w_n})$$

The form $\tilde{\omega}(w, z)$ is $\overline{\partial}$ -closed and *d*-closed on $(\mathcal{C}^n \times \mathcal{C}^n) \setminus \Delta$, and is logarithmic along Δ (that is, its pullback to the blowing-up of $\mathcal{C}^n \times \mathcal{C}^n$ along Δ is logarithmic along the exceptional divisor).

14

Corollary 5.3. Let $\omega(P,Q)$ be a Bochner-Martinelli kernel as in theorem 5.1. The integral $\int_{D_P} \operatorname{Res} \omega(P,Q) \, dQ$ appearing in formula (4.4) is locally constant with respect to $P \in V$.

6. Integral formulas for differential forms.

Theorem 6.1. Let U be a complex manifold of complex dimension $n, V \subset U$ a connected open subset, $Z = V \times U$, $R = \{(P,Q) \in V \times U : P = Q\}$, $\pi : \tilde{Z} \to Z$ the blowing-up of Zalong $R, \tilde{R} = \pi^{-1}(R)$. Let $\omega(w, z)$ be a differential form of type (n, n-1) on $(V \times U) \setminus R, \overline{\partial}$ closed, logarithmic along R, (that is, its pullback to \tilde{Z} is logarithmic along \tilde{R}). Let $\Omega \subset U$ be a relatively compact domain with piecewise C^1 -boundary, $\phi = \phi(z)$ a differential form of type (p, q) defined in a neighborhood of Ω . Then

(i) The integral

$$C = \int_{\tilde{R} \cap \{w = const\}} Res \ \omega(w, z)$$

is constant with respect to $w \in V$.

(ii) One has the equality

$$(-1)^{p+q} 2i\pi C\phi = \int_{z\in\partial\Omega} \phi(z) \wedge \omega(w,z) - \int_{z\in\Omega} \overline{\partial}\phi(z) \wedge \omega(w,z) + \overline{\partial} \int_{z\in\Omega} \phi(z) \wedge \omega(w,z) \quad (on \quad V)$$

$$(6.1)$$

We define, for a form η and $A = \Omega$ or $\partial \Omega$:

$$(B_A\eta)(w) = \int_{z\in A} \eta(z) \wedge \omega(w,z)$$

so that (6.1) can be written

$$(-1)^{p+q} 2i\pi C\phi = B_{\partial\Omega}\phi - B_{\Omega}(\overline{\partial}\phi) + \overline{\partial}(B_{\Omega}\phi) \quad (on \quad V)$$
(6.2)

Proof. (i) is a consequence of corollary 5.3.

(ii) Let v(w) be a differential form of type (n - p, n - q) with compact support on V. As in [HL] (theorem 1.11.1) we must prove the identity

$$(-1)^{p+q} 2i\pi C \int_{w \in V} \phi(w) \wedge v(w) = \int_{(w,z) \in V \times \partial\Omega} \phi(z) \wedge \omega(w,z) \wedge v(w)$$
15

$$-\int_{(w,z)\in V\times\Omega}\overline{\partial}\phi(z)\wedge\omega(w,z)\wedge v(w)-(-1)^{p+q-1}\int_{(w,z)\in V\times\Omega}\phi(z)\wedge\omega(w,z)\wedge\overline{\partial}v(w)$$

The form $\phi(z) \wedge \omega(w, z) \wedge v(w)$ has type (2n, 2n - 1), hence

$$d(\phi(z) \wedge \omega(w, z) \wedge v(w)) = \overline{\partial}(\phi(z) \wedge \omega(w, z) \wedge v(w))$$
$$= \overline{\partial}\phi(z) \wedge \omega(w, z) \wedge v(w) + (-1)^{p+q-1}\phi(z) \wedge \omega(w, z) \wedge \overline{\partial}v(w)$$

It follows from Stokes formula

$$\begin{split} \int_{(w,z)\in(V\times\Omega)\backslash T_{\epsilon}}\overline{\partial}\phi(z)\wedge\omega(w,z)\wedge v(w) + (-1)^{p+q-1}\int_{(w,z)\in(V\times\Omega)\backslash T_{\epsilon}}\phi(z)\wedge\omega(w,z)\wedge\overline{\partial}v(w) \\ &= \int_{(w,z)\in V\times\partial\Omega}\phi(z)\wedge\omega(w,z)\wedge v(w) - \int_{(w,z)\in\partial T_{\epsilon}}\phi(z)\wedge\omega(w,z)\wedge v(w) \end{split}$$

where T_{ϵ} is a small tubular neighborhood of R in $V \times U$. T_{ϵ} is also a tubular neighborhood of \tilde{R} in \tilde{Z} . Thus the last integral can be computed on \tilde{Z} using the residue theorem:

$$\lim_{\epsilon \to 0} \int_{(w,z) \in \partial T_{\epsilon}} \phi(z) \wedge \omega(w,z) \wedge v(w) = 2i\pi \int_{\tilde{R}} \operatorname{Res} \left(\pi_2^* \phi \wedge \pi^* \omega \wedge \pi_1^* v \right)$$

where $\pi : \tilde{Z} \to V \times U$ is the blowing-up along R and $\pi_1 : \tilde{Z} \to V, \pi_2 : \tilde{Z} \to U$ are the projections. On \tilde{R} one has $\pi_2^* \phi = \pi_1^* \phi$ so that the integral becomes

$$(-1)^{p+q}2i\pi\int_{\tilde{R}}\pi_1^*(\phi\wedge v)\wedge Res\ \pi^*\omega=$$

$$(-1)^{p+q}2i\pi \int_{w\in V} \phi(w) \wedge v(w) \int_{\tilde{R}\cap\{w=const\}} \operatorname{Res}\,\omega(w,z) = (-1)^{p+q}2i\pi C \int_{w\in V} \phi(w) \wedge v(w)$$

Taking the limit for $\epsilon \to 0$ in the above formulas we get (6.1).

Theorem 6.2. (Bochner-Martinelli formula for differential forms). Let U be a normal complex space of complex dimension n; let $V \subset U$ be a connected open subset of U, $Z = V \times U$, $R = \{(P,Q) \in V \times U : P = Q\}$, $\pi : \tilde{Z} \to Z$ the blowing-up of Z along R, $\tilde{R} = \pi^{-1}(R)$, and $\omega(w, z)$ a Bochner-Martinelli kernel on $(V \times U) \setminus R$ ($\overline{\partial}$ -closed, logarithmic along R). Let $\Omega \subset U$ be a relatively compact domain such that $\overline{\Omega}$ is subanalytic, and no component of $\partial\Omega$ is contained in Sing(U), $\phi = \phi(w)$ a differential form in sense of Grauert, of type (p, q), defined in a neighborhood of Ω . Then

(i) The integral

$$C = \int_{\tilde{R} \cap \{w = const\}} Res \ \omega(w, z)$$

is constant with respect to $w \in V$.

(ii) The integrals

$$B_{\partial\Omega\backslash Sing(U)}\phi, B_{\Omega\backslash Sing(U)}(\partial\phi), (B_{\Omega\backslash Sing(U)}\phi)$$

converge on $V \setminus Sing(U)$ and we have the equality

$$(-1)^{p+q} 2i\pi C\phi|_{V\setminus Sing(U)} = B_{\partial\Omega\setminus Sing(U)}\phi - B_{\Omega\setminus Sing(U)}(\overline{\partial}\phi) + \overline{\partial}(B_{\Omega\setminus Sing(U)}\phi)$$
(6.3)

The form $\omega(w, z)$ lives by construction on a desingularization \tilde{X} of X, and the form ϕ extends to a form on \tilde{X} . Hence the proof of the theorem is an easy consequence of theorem 6.1 (on \tilde{X}) and its proof.

References

- [AG] V. Ancona, B. Gaveau, Differential forms on singular varieties: De Rham and Hodge theory simplified. Pure and applied mathematics series, Chapman and Hall/CRC, Boca Raton, London, New York, Singapore 2005.
- [AG1] V. Ancona, B. Gaveau, Families of differential forms on complex spaces, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 1, 119-150 (2002).
 - [D] P. Deligne, Théorie de Hodge II et III. Publ. Math. IHES, 40, 5-58, (1971) et 44, 5-77, (1974).
 - [Do] P. Dolbeault, Théorème de Plemelj en plusieurs variables. Riv. Mat. Univ. Parma (4) 10 (1984), special vol. 10^{*}, 47–54.
- [GH] P. Griffiths, J. Harris, Principles of algebraic geometry, Wiley Interscience, New York 1978.
- [GS] P. Griffiths, W. Schmid, Recent developments in Hodge theory: a discussion of techniques and results, Proceedings of the International Colloquium on Discrete subgroups of Lie groups (Bombay 1973), Oxford university Press 1975.
- [HL] G. M. Henkin, J. Leiterer, Theory of functions on complex manifolds, Monographs in mathematics 79, Birkhäuser, Basel-Boston-Stuttgart 1984.
- [HL1] G. M. Henkin, J. Leiterer, Andreotti-Grauert theory by integral formulas. Progress in Mathematics, 74. Birkhäuser, Basel-Boston-Stuttgart 1988.
- [HP] G. M. Henkin, P. L. Polyakov, The Grothendieck-Dolbeault lemma for complete intersections. C. R. Acad. Sci. Paris Sr. I Math. 308 (1989), no. 13, 405–409.
- [HP1] G. M. Henkin, P. L. Polyakov, Integral formulas for solution of the ∂-equation, and interpolation problems in analytic polyhedra. Trudy Moskov. Mat. Obshch. 53 (1990), 130–170, 260–261; translation in Trans. Moscow Math. Soc. 1991, 135–175.
- [LT] C. Laurent-Thiébaut, Formules intégrales et théorèmes du type "Bochner" sur une variété de Stein. C. R. Acad. Sci. Paris Sr. I Math. 295 (1982), no. 12, 661–664.
 - [L] J. Leray, Problème de Cauchy III, Bull. Soc. Math. France 87, 81-180 (1959).