
Bochner-Martinelli formulas on singular complex spaces

Vincenzo Ancona and Bernard Gaveau

Abstract.

Let C̃n be the blowing-up of Cn at a point P . We prove that the pullback to C̃n of
the Bochner-Martinelli form centered at P is logarithmic along the exceptional divisor. It
follows that the Bochner-Martinelli integral formula appears as a Leray residue formula.
Moreover the Bochner-Martinelli form is logarithmic also at infinity.

Let U be a complex space of complex dimension n ≥ 2, subject to the following
assumption: there exist a compact complex space X bimeromorphic to a Kähler manifold,

and a closed subspace T ⊂ X, such that X \T = U . An affine, or a quasi projective variety
U satisfies the above property (X is a projective compactification of U). For a point P ∈ U ,
the cohomology group H2n−1(U \{P},C), equipped with the weight filtration Wm, carries
a mixed Hodge structure. Thus the first graded quotient

BM(U \ {P}) =
W1H

2n−1(U \ {P},C)
W0H2n−1(U \ {P},CC)

carries a pure Hodge structure of weight 2n− 2, which turns out to contain only elements
of pure type (n− 1, n− 1). The elements of BM(U \ {P}) are represented by closed forms
ω on U \ {P} of pure type (n, n− 1), which are logarithmic in a suitable sense. Thanks to
a more general residue formula we prove that the forms ω give rise to an integral formula
of Bochner-Martinelli type for holomorphic functions.

We prove that the forms ω can be chosen to depend C∞ on P , that is, we prove the
existence of (∂-closed) Bochner-Martinelli Kernels. Such Kernels can be used to prove
integral formulas for differential forms (in sense of Grauert) on U .

MSC 32C15, 32A25 .
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1. The Bochner-Martinelli formula as a residue formula.

It is well known (see for example [GH]) that the Bochner-Martinelli integral formula can
be proved as a consequence of the Grothendieck residue formula. Here we show that it
can also be proved from the Leray residue formula [L]. This suggests how to extend such
formulas to complex spaces.

Let w = (w1, · · · , wn) be a point in ICn. We consider the differential form

ω′ (z − w, dz) =
n∑

k=1

(−1)k−1(zk − wk)dz1 ∧ · · · ∧ dẑk ∧ · · · ∧ dzn (1.1)

The form

ω(w, z) =
ω′ (z − w, dz) ∧ dz1 ∧ · · · ∧ dzn

‖z − w‖2n
(1.2)

with

‖z − w‖2 =
n∑

k=1

|zk − wk|2 (1.3)

is the Bochner-Martinelli form. It is d-closed and ∂-closed. The Bochner-Martinelli formula
reads as

Theorem 1.1. Let Ω ⊂ ICn be a relatively compact domain with (piecewise) smooth

boundary. Let f be a holomorphic function on Ω, which is continuous on Ω̄. For a point

w ∈ Ω one has

f(w) =
(n− 1)!
(2iπ)n

∫
∂Ω

f(z)ω(w, z) (1.4)

Proof. One can assume that w = 0. We shall prove that (1.4) can be deduced from
the Leray residue formula. Let Ω̃ be the manifold obtained by blowing-up the point 0 ∈ Ω.
Ω̃ is the submanifold of Ω× IPn−1 defined by the equations Zlzk = Zkzl for k 6= l, where
[Z1, · · · , Zn] are the homogeneous coordinates in IPn−1. We consider a point m of the
exceptional divisor (0) × IPn−1 ⊂ Ω̃ such that Zn 6= 0 at m. Then, one can choose as
complex coordinates in the neighborhood of m, the numbers

ζ1 =
Z1

Zn
, · · · , ζk =

Zk

Zn
, · · · , ζn−1 =

Zn−1

Zn
, zn

so that zk = ζkzn for k ≤ n − 1. Thus zn = 0 is the local equation of the exceptional
divisor (0)× IPn−1 in a neighborhood of m. We consider the form

φ = f(z)
ω′ (z, dz) ∧ dz1 ∧ · · · ∧ dzn

‖z‖2n
(1.5)

The the pull back of φ by the projection map p : Ω̃ → Ω is logarithmic along
the exceptional divisor D.
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In fact p∗φ is given by the following formula

p∗φ =
f(ζ1zn, · · · , ζn−1zn, zn)
|zn|2n(1 +

∑n−1
k=1 |ζk|2)n

×

[
n−1∑
k=1

(−1)k−1ζ̄kz̄nd(ζ̄1z̄n) ∧ · · · ∧ d ̂(ζ̄kz̄n) ∧ · · · ∧ dz̄n

+(−1)n−1z̄nd(ζ̄1z̄n) ∧ · · · ∧ d(ζ̄n−1z̄n)] ∧ [d(ζ1zn) ∧ · · · ∧ d(ζn−1zn) ∧ dzn]

≡ f(ζ1zn, · · · , ζn−1zn, zn)
(1 +

∑n−1
k=1 |ζk|2)n

(
dζ̄1 ∧ · · · ∧ dζ̄n−1 ∧ dζ1 ∧ · · · ∧ dζn−1 ∧

dzn

zn

)
(modulo smooth forms).
So the residue of p∗φ on the exceptional divisor is

Res p∗φ = f(0)

(
dζ̄1 ∧ · · · ∧ dζ̄n−1 ∧ dζ1 ∧ · · · ∧ dζn−1

)
(1 +

∑n−1
k=1 |ζk|2)n

Moreover because φ is closed, one has∫
∂Ω

φ =
∫

∂B(0,ε)

φ =
∫

S(0,ε)

φ

where B(0, ε) (resp. S(0, ε)) is the ball (resp.the sphere) of center at 0 and radius ε. But
S(0, ε) is exactly δ[(0)× IPn−1] where δ is the residue in homology. Thus in the manifold
Ω̃, one has by the residue formula∫

S(0,ε)

φ =
∫

S(0,ε)

p∗φ = (2iπ)
∫

IP n−1
Res p∗φ =

= 2iπf(0)
∫

IP n−1

(
dζ̄1 ∧ · · · ∧ dζ̄n−1 ∧ dζ1 ∧ · · · ∧ dζn−1

)
(1 +

∑n−1
k=1 |ζk|2)n

This last integral is exactly the integral of the volume form of IPn−1. Its value is

(2iπ)n−1

(n− 1)!

Hence we have seen that the pullback of the Bochner-Martinelli form on Ω̃ has a loga-
rithmic singularity along the exceptional divisor, and that the Bochner-Martinelli formula
is a residue formula in the blow-up manifold Ω̃ with respect to the exceptional divisor.
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The behaviour at the infinity of the Bochner-Martinelli form.

Next we study the behaviour at the infinity of the Bochner-Martinelli form. We
consider the projective space IPn with complex coordinates [x0, · · · , xn] and we look at ICn

as the complement of the hyperplane H defined by the equation x0 = 0. Let P be a point
of H where x1 6= 0. Then we can write

zj =
xj

x0
, j = 1, · · ·n

so that the local coordinates vj around P are related to the coordinates zj by the formulas

z1 =
1
v1
, zs =

vs

v1
for s = 2, · · · , n

and H is defined by the equation v1 = 0. Substituting the above relations in the formula
(1.2) (w = 0) we find that the Bochner-Martinelli form has a logarithmic singularity along
H, whose residue is

− (dv̄2 ∧ · · · ∧ dv̄n ∧ dv2 ∧ · · · ∧ dvn)
(1 +

∑n
k=2 |vk|2)n

2. The Leray residue theorem for a divisor with normal crossings.

In this section, X is a complex analytic manifold and D = D1 ∪ · · · ∪DN is a divisor with

normal crossings; that means that each Di is a smooth hypersurface of X, and at each
point x ∈ X, there are at most n = dim IC X divisors Dj passing through x and which are
transversal. In particular, given x, one can find complex analytic coordinates (z1, · · · , zn)
in a neighborhood U of x, such that the local equation of D ∩ U in U is z1 · · · zs = 0, s
depending on x.

We define for any ordered multiindex I = (i1, · · · , iq) ⊂ (1, ..., N)

DI = Di1 ∩ · · · ∩Diq

and
D[q] = q|I|=qDI , D[0] = X

where the symbol q denotes the disjoint union. Then the D[q] are manifolds (not connected
in general).
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The residue theorem.

Let Li → X be the line bundle associated to Di, and hi a hermitian metrics on Li.
We denote by si a holomorphic section of Li vanishing exactly on Di. There exists a
neighborhood of Di in X diffeomorphic to a neighborhood of Di (embedded as the zero
section) in Li. For εi > 0 small enough we consider the tube around Di:

Tεi
= {x ∈ X : ‖si(x)‖ < εi}

where the length ‖si(x)‖ is taken with respect to the metrics hi.
Let us define

Tε =
⋃
i

Tεi
(2.1)

The boundary ∂Tε is a cycle of dimension 2n− 1 in X \D.
Let ω be a form of type (n, n− 1) on a neighborhood of D, d-closed (hence ∂-closed),

having logarithmic singularities along D.
We define the residue of ω on D. Let x be a smooth point of D; it belongs to a unique

component Dj of D. Let ζj = 0 be the equation of Dj in a neighborhood U of x; on U we
can write

ω|U =
dζj
ζj

∧ ψ + θ

where ψ, θ are C∞ on U . We put

Res ω|U∩Dj
= ψ|U∩Dj

and we get a well defined (n−1, n−1) form Res ω on the disjoint union
⋃

j (Dj \ Sing(D))
= D \ Sing(D), having logarithmic singularities along each Dj ∩ Sing(D).

Lemma 2.1. The form Res ω is integrable on Dj .

Theorem 2.2. Let X be a complex manifold of complex dimension n ≥ 2, D ⊂ X

a divisor with normal crossings, ω a differential form of type (n, n − 1), with compact

support, on X, having logarithmic singularities along D. Then

lim
ε→0

∫
∂Tε

ω = 2iπ
∫

D

Res ω

with Tε =
⋃

i Tεi
as in (2.1).
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3. Logarithmic differential forms and the mixed Hodge structure on coho-
mology.

By a pair (of complex spaces) (X,Q) we mean the data of a complex space X and of a
closed, nowhere dense complex subspace Q. Let ρ : X \Q→ X be the natural embedding.

If X is smooth and Q = D is a divisor with normal crossings, a logarithmic differential

k-form on X (with poles of order ≤ l along D) is a form ω on X \D which, in a sufficiently
small neighborhood of any x ∈ D can be written as

ω =
∑
|I|≤l

αI ∧
(
dz

z

)I

(3.1)

where
(

dz
z

)I
= dzi1

zi1
∧ · · · ∧ dzil

zil
.

The differential dω of a logarithmic form (with poles of order ≤ l) is logarithmic (with
poles of order ≤ l). The above definition has a local nature: we can define a logarithmic
form on Y \D for any open subset Y ⊂ X, hence the sheaf Ek

X < logD > of the logarithmic
k-forms is well defined, and E .

X < logD > is a complex of fine sheaves on X.
The logarithmic forms on any open set Y ⊂ X are particular differential forms on

Y \D, hence we have an inclusion

E
.

X < logD > ⊂ ρ∗E
.

X\D

where ρ : X \D ↪→ X is the natural inclusion map.
The following statements (Griffiths-Schmid) hold:

- every closed differential form on X \D is cohomologous to a logarithmic form;
- every logarithmic differential form on X \D which is exact, is the differential of a loga-
rithmic form.

The main consequence of the above result is that the cohomology of X \ D is the
cohomology of the complex of global sections Γ(X, E .

X < logD >):

Hk(X, E
.

X < logD >) ' Hk(X, ρ∗E
.

W\D) ' Hk(X \D, IC)

We introduce the weight filtration W on Ek

X < logD >, just defining WlE
k

X < logD >

as the subsheaf of Ek

X < logD > of the forms having poles of order ≤ l.
If X is smooth and Q is any closed subspace, a a differential k-form ω on X \ Q is

said logarithmic along Q if for some blowing-up

D
i→ X̃

↓ π ↓

Q
j→ X
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such that D is a divisor with normal crossing, the pull-back π∗ω is logarithmic along D.
For a pair (X,Q), where X is possibly singular, we define a complex (in fact, a family

of complexes) of fine sheaves (Λ
.

X < logQ >, d) on X with the following properties.
(I) The restriction Λ

.

X\Q = Λ
.

X < logQ > |X\Q of Λ
.

X < logQ > to X \ Q is a
resolution of the constant sheaf IC on X \Q, and the natural morphism of complexes

Λ
.

X < logQ >→ ρ∗Λ
.

X\Q

induces isomorphisms in cohomology:

Hk(X,Λ
.

X < logQ >) = Hk(X, ρ∗Λ
.

X\Q) = Hk(X \Q, IC) (3.2)

in other words the cohomology of X\Q can be calculated as the cohomology of the complex
of sections (Γ(X,Λ

.

X < logQ >), d) of Λ
.

X < logQ >.
(II) For k > 2dimX, Λ

k

X < logQ >= 0.
The complex Λ

.

X < logQ > will be called a logarithmic complex for a pair (X,Q); we
recall its construction.

Let (X,Q) be any pair, E = Sing(X); let us consider a diagram of desingularization
of X

Ẽ
i→ X̃

q ↓ π ↓

E
j→ X

(3.3)

where X̃ is a smooth manifold, Ẽ = π−1(E), and π induces by restriction an isomorphism
X̃ \ Ẽ ' X \ E. Let

Q̃ = π−1(Q), M = E ∩Q, M̃ = Ẽ ∩ Q̃.

We suppose that Q̃ is a divisor with normal crossings.
By induction on dim(X) we can find complexes Λ

.

E < logM > and Λ
.

Ẽ
< logM̃ >,

corresponding to the pairs (E,M) and (Ẽ, M̃), a pullback

φ : Λ
.

E < logM >→ Λ
.

Ẽ
< logM̃ > (3.4)

a pullback
ψ : E

.

X̃
< logQ̃ >→ Λ

.

Ẽ
< logM̃ >

so that we define the complex

Λ
k

X < logQ >= π∗E
k

X̃
< logQ̃ > ⊕j∗Λ

k

E < logM > ⊕(j ◦ q)∗Λ
k−1

Ẽ
< logM̃ > (3.5)

whose differential is by definition
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d(ω, σ, θ) = (dω, dσ, dθ + (−1)k(ψ(ω)− φ(σ)). (3.6)

Note that Λ
k

X < logQ > is a fine sheaf defined on all of X.
From the construction of Λ

.

X < logQ > it follows that there is a uniquely determined family
((Xa, Qa), ha)a∈A of pairs (Xa, Qa), whereXa is a smooth manifold andQa is (either empty
or) a divisor with normal crossings in Xa, and proper maps of pairs ha : (Xa, Qa) → (X,Q)
such that

Λ
k

X < logQ >=
⊕
a∈A

(ha)∗E
k−q(a)

Xa
< logQa > (3.7)

where q(a) = q
X

(a) is a nonnegative integer, which depends only on a ∈ A and not on k.
The family (Xa, Qa)a∈A will be called the hypercovering of (X,Q) associated to the com-
plex Λ

.

X < logQ >, and q
X

(a) will be the rank of (Xa, Qa).

Remark.
1) In the situation of the diagram (3.3) and of the complex (3.5), we notice that (X̃, Q̃)

is a pair (Xa, Qa) of the hypercovering, with q(a) = 0.

2) Notice also that dimXa ≤ dimX, and equality holds if and only if Xa = X̃.

The weight filtration W and the Hodge filtration F .
If Λ

.

X < logQ > is a logarithmic complex, we can rewrite the equation (3.5) defining
the complex as

Λ
k

X < logQ >= E
k

X̃
< logQ̃ > ⊕Λ

k

E < logM > ⊕Λ
k−1

Ẽ
< logM̃ > (3.8)

where we have skipped the symbols of direct images of sheaves. The weight filtration W

on the complex (Λ
.

X < logQ >, d) is defined by the formula

WmΛ
k

X < logQ >=

= WmE
k

X̃
< logQ̃ > ⊕WmΛ

k

E < logM > ⊕ Wm+1Λ
k−1

Ẽ
< logM̃ > (3.9)

In (3.9) WmΛ
k

E < logM > and Wm+1Λ
k−1

Ẽ
< logM̃ > are defined by recursion on the

dimension of the spaces, and WmE
.

X̃
< logQ̃ > is the filtration by the order of the poles.

(Λ
.

X < logQ >, d) is a filtered complex for Wm:

d( WmΛ
k

X < logQ >) ⊂WmΛ
k+1

X < logQ > (3.10)

As well, the Hodge filtration F on the complex (Λ
.

X < logQ >, d) is defined by the
formula

F pΛ
k

X < logQ >=

= F pE
k

X̃
< logQ̃ > ⊕F pΛ

k

E < logM > ⊕ F pΛ
k−1

Ẽ
< logM̃ > (3.11)
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where F pΛ
k

E < logM > and F pΛ
k−1

Ẽ
< logM̃ > are defined by recursion on the dimension

of the spaces, and F pE .

X̃
< logQ̃ > is the usual Hodge filtration.

By the isomorphism (3.2) the filtrations W and F induce a weight and a Hodge
filtrations on the cohomology spaces Hk(X \Q, IC), which we denote by the same symbols.

The spectral sequence associated to the weight filtration.
For the spectral sequences (associated to a filtration) we use notations, which are

different from those which usually appear in the literature. In our notation Em,k
r , m is the

degree of the filtration and k is the degree of the complex (the degree of differential forms
in the case of the De Rham complex). In particular

dr : Em,k
r → Em−r,k+1

r

If one is willing to work with the classical indices E′p,q
r can use the following dictionary:

Em,k
r = E′−p,p+q

r

E′p,q
r = E−m,k+m

r

The mixed Hodge structure.
Let us suppose that X is a compact complex space bimeromorphic to a Kähler mani-

fold.

We consider the spectral sequence Em,k
r attached to the weight filtration of the complex

Γ(X,Λ
.

X < logQ >).
The following (highly non trivial) results hold.

1) the first terms are

Em,k
1 = Em,k

1 (X) =
⊕

a

E
m+q(a),k−q(a)
1 (Xa) (3.12)

where

Er,s
1 (Xa) = Hs−r(Qa

[r], IC) (3.13)

(recall: Qa
[0] = Xa);

2) the spectral sequence degenerates at the level 2: dr = 0 , hence Em,k
r = Em,k

2 , for
r ≥ 2;

3) the second terms Em,k
2 carry a pure Hodge structure, and they are isomorphic to

the graded quotients WmHk(X\Q, IC)
Wm−1Hk(X\Q, IC)

of the cohomology Hk(X \ Q, IC) with respect to
the weight filtration;

4) the Hodge filtration on Em,k
2 coincides with the filtration induced in cohomology,

by means of residues, by the Hodge filtration of the complex Λ
.

X < logQ >.
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4. The general Bochner-Martinelli formula.

Definition 4.1. Let U be a complex space, S ⊂ U a closed subspace. Let α be a

differential form on U \ (Sing(U)∪S). We say that α is logarithmic along S if there exists

a proper modification π : Ũ → U with the following properties

1) Ũ is non singular;

2) π induces an isomorphism h : Ũ \ π−1(Sing(U) ∪ S) → U \ (Sing(U) ∪ S);
3) S̃ = π−1(S) is a divisor with normal crossings in Ũ ;

4) π∗α extends to a differential form on Ũ \ S̃, logarithmic along S̃.

If S is a point P ∈ U , we will say that α is logarithmic at P .

Throughout the present talk, U will be a complex space of complex dimension n ≥ 2,
subject to the following assumption: there exist a compact complex space X bimeromor-

phic to a Kähler manifold, and a closed subspace T ⊂ X, such thatX\T = U . An affine, or
a quasi projective variety U satisfies the above property (X is a projective compactification
of U).

Let p : Y → X be a desingularization of X (so that p−1(U) is a desingularization of
U).

Let P be a point of U . Let u : X̃ → Y be the blowing-up of Y along a suitable
subspace of the fiber p−1(P ) such that D = (p◦u)−1(P ) is a divisor with normal crossings
in X̃. We denote π : X̃ → X the composition p ◦ u. Let Ũ = π−1(U). Then Ũ \ D is
a desingularization of U \ {P}. Replacing Y by a suitable blowing-up along a subspace
of p−1(T ) (not affecting p−1(U)) we can assume that H = Y \ p−1(U) = X̃ \ Ũ is also a
divisor with normal crossings.

The cohomology groups Hk(U \ {P}, IC) carry a mixed Hodge structure [D]. We are
interested in the case k = 2n− 1. We follow the contructions in [AG], part II, chapters 2
and 4 to describe the mixed Hodge structure.
Let

Q = T ∪ {P}

Let us fix a complex Λ
.

X < logQ > corresponding to the above desingularization X̃ of X,
and let ((Xa, Qa)) be the associated hypercovering. Let na = dimXa. Let us notice that

Q̃ = D ∪H

hence (X̃, Q̃) is a pair of the hypercovering. The weight filtration Wm of the complex
Γ(X,Λ

.

X < logQ >) gives rise to a spectral sequence whose first term, by (3.12) and
(3.13), is

Em,k
1 = Em,k

1 (X) =
⊕

a

E
m+q(a),k−q(a)
1 (Xa) (4.1)

where
E

m+q(a),k−q(a)
1 (Xa) = Hk−m−2q(a)(Qa

[m+q(a)], IC) (4.2)
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which vanishes unless
k −m− 2q(a) ≤ 2na − 2m− 2q(a)

that is
k ≤ 2na −m (4.3)

We want to compute the term E1,2n−1
2 of the spectral sequence, hence we are interested

in E0,2n
1 , E1,2n−1

1 and E2,2n−2
1 . For (m, k) = (0, 2n), (1, 2n− 1), (2, 2n− 2), from (4.3) we

obtain na = n. There is only one Xa with na = n, that is Xa = X̃. The corresponding
q(a) is zero.
It follows

E0,2n
1 = H2n(X̃, IC)

E1,2n−1
1 =

p⊕
l=1

H2n−2(Hl, IC)⊕
N⊕

ls=1

H2n−2(Ds, IC)

where H = H1 ∪ · · · ∪Hp and D = D1 ∪ · · · ∪DN are the decompositions of the divisors
H and D into irreducible components, and

E2,2n−2
1 = H2n−4(H [2], IC)⊕H2n−4(D[2], IC)

It follows that E0,2n
1 , E1,2n−1

1 and E2,2n−2
1 carry a pure Hodge structure of weight 2n,

2n − 2 and 2n − 4 respectively, admitting only elements of type (n, n), (n − 1, n − 1),
(n− 2, n− 2) respectively.
The differentials

d1,2n−1
1 : E1,2n−1

1 → E0,2n
1 , d2,2n

1 : E2,2n−2
1 → E1,2n−1

1

are sums with coefficients ±1 of Gysin maps, which are morphism of pure Hodge structures
(suitably shifted).
The term

E1,2n−1
2 =

Ker d1,2n−1
1

Im d0,2n
1

carries a pure Hodge structure of weight 2n−2 whose elements are of pure type (n−1, n−1).
Since the Hodge filtration on E1,2n−1

2 is induced, by means of residues, by the Hodge
filtration on Λ

.

X < logQ >, and the spectral sequence degenerates at E2, we obtain the
following

Theorem 4.2. Let Wm be the weight filtration on the cohomology H2n−1(U \ {P}, IC),
and denote BM(U \ {P}) = W1H2n−1(U\{P}, IC)

W0H2n−1(U\{P}, IC) , which is isomorphic to E1,2n−1
2 . For any

element α ∈ BM(U \ {P}) there exists a differential form ω on U \ {P}, logarithmic at P
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and along T (in sense of definition 4.1), of type (n, n−1), d-closed (hence ∂-closed), whose

class modulo W0 is α. Such a form will be called a Bochner-Martinelli form on U \ {P}.

By construction the form ω is in fact a differential form on X̃ \ (D ∪H), logarithmic
along D ∪ H, and has the property that the residue Res ω is a closed form of type
(n− 1, n− 1) on D1 t · · · tDN tH1 t · · · tHp which detects an element of Ker d1,2n−1

1 .
A Bochner-Martinelli form ω on U \ {P} induces an ordinary differential form of type

(n, n− 1) on U \ {P} \ Sing(U) which we still denote ω.

Theorem 4.3. Let ω be a Bochner-Martinelli form on U \ {P}, Ω ⊂ U a relatively

compact domain containing the point P , such that Ω̄ is subanalytic, and no component

of ∂Ω is contained in Sing(U). Let f be a holomorphic function on Ω, continuous on Ω̄.

Then the integral of fω converges on ∂Ω \ Sing(U) and the following equality holds:

2iπf(P )
∫

D

Res ω =
∫

∂Ω\Sing(U)

fω (4.4)

Proof. Since Ω̄ is subanalytic, the closure of π−1
(
Ω̄ \ Sing(U)

)
in Ũ is subanalytic.

Hence one can define the strict transforms Ω̃ and Ω̃, through π, of Ω and Ω̄ respectively.
Because ω is logarithmic along D, by theorem 2.2

lim
ε→0

∫
∂Tε

(f ◦ π) ω = 2iπ
∫

D

Res ((f ◦ π) ω)

where Tε =
⋃

i Tεi
is a neighborhood of D defined as in (2.1). Because (f ◦ π) is constant

on H, Res ((f ◦ π) ω) = f(P )Res ω; because fω is ∂-closed, hence d-closed, on Ũ \D,∫
∂Tε

(f ◦ π) ω =
∫

∂Ω̃

(f ◦ π) ω

It is clear that ∂Ω̃ and ∂Ω \ Sing(U) differ by a set of measure zero, so that∫
∂Ω̃

(f ◦ π) ω =
∫

∂Ω\Sing(U)

fω

which implies (4.4).

Remark. The space BM(U \ {P}) is intrinsic, because the mixed Hodge structure on

H2n−1(U \ {P}, IC) is unique. In particular, it does not depend on the choice of a desin-

gularization of X.

Let us remark also that a closed (2n − 1)-form whose class is in BM(U \ {P}) is a
Bochner-Martinelli form if and only if it has type (n, n− 1); otherwise it is not necessarily
∂-closed.

The following theorem gives more information about the Bochner-Martinelli forms.
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Theorem 4.4. Under the assumptions of theorem 4.3, let ω1 and ω2 be two Bochner-

Martinelli forms on U \ {P}. Then

i) ω1 and ω2 are cohomologous for d as logarithmic forms if and only if they are coho-

mologous for d as forms on X̃ \ Q̃; as well, they are cohomologous for ∂ as logarithmic

forms if and only if they are cohomologous for ∂ as forms on X̃ \ Q̃.

ii) ω1 and ω2 are cohomologous for d as logarithmic forms if and only if they are coho-

mologous for ∂ as logarithmic forms.

iii) ω1 and ω2 have same class in H2n−1(U \{P}, IC) if and only if they are cohomologous

for d on X̃ \ Q̃.

iv) Let Ωk
X̃
< logQ̃ > be the sheaf of holomorphic k-forms on X̃ \Q̃ which are logarithmic

along Q̃. There is a natural surjective morphism

Hn−1(X̃,Ωn
X̃
< logQ̃ >) → BM(U \ {P}) (4.5)

inducing an isomorphism

W1H
n−1(X̃,Ωn

X̃
< logQ̃ >)

W0Hn−1(X̃,Ωn
X̃
< logQ̃ >)

' BM(U \ {P}) (4.6)

5. Dependence on the point: the Bochner-Martinelli Kernels.

Let us keep the notations and the assumptions of the previous section. Let V ⊂ U be an
open set of U . Let Z = V ×X, the diagram of desingularization of X:

Ẽ → Y

↓ p ↓

E → X

We can suppose that H = p−1(T ) is a divisor with normal crossings in Y . In Z ′ =
p−1(V )× Y let R′ = {(P,Q) ∈ Z : P = Q}. Then R′ is a closed subspace of Z ′, contained
in p−1(V )×p−1(V ), isomorphic to p−1(V ). Let π′ : Z̃ → Z ′ be the blowing-up of Z ′ along
R′, π : Z̃ → Z the composite mapping, R̃ = π−1(R′). Finally, let S = R′ ∪ (p−1(V )× T ),
S̃ = R̃ ∪ π−1(p−1(V )×H).

Let V1 be the open set of smooth points of V . For a point P of V! let

XP = {P} ×X, X̃P = π−1({P} ×X)

13



DP = X̃P ∩ R̃

TP = {P} × T, HP = {P} ×H

QP = {(P, P )} ∪ TP , Q̃P = DP ∪HP

It is easy to see that X̃P is the blowing-up of YP = {P} × Y at the point (P, P ), whose
exceptional divisor is DP . The pair (XP , QP ) gives rise to a complex Λ

.

XP
< log QP >

which describes the cohomology of U \ {P}, and there is a natural restriction mapping

Λ
.

Z < logS >→ Λ
.

XP
< log QP >

which is compatible with the respective differentials and weight filtrations.
Let π1 : Z̃ → V be the composition of the blowing-up π′ : Z̃ → Z ′ = p−1(V )×Y with

the projection p−1(V )× Y → V .

Theorem 5.1. Let U = X \ T be a complex space, such that X is a compact complex

space bimeromorphic to a Kähler manifold, and T is a closed subspace of X; let V ⊂ U be

a Stein open subset of U , and P ′ a smooth point of V . Let R = {(P,Q) ∈ V ×U : P = Q}.
For every Bochner-Martinelli form ω ∈ BM(U \ {P ′}) on U \ {P ′} there exists a form

ω(P,Q) of type (n, n − 1) on (V × U) \ R, ∂-closed, logarithmic along R and V × T (in

sense of definition 4.1), which induces ω and for each P ∈ V a induces Bochner-Martinelli

form on U \ {P}.

In other terms, the above theorem states, under the above assumptions, that Bochner-
Martinelli forms at smooth points admit ∂-closed, logarithmic kernels. We do not know if
it is possible in general to find kernels of pure type (n, n− 1) which are also d-closed.

Corollary 5.2. Let U be a smooth affine variety, and ∆ ⊂ U × U be the diagonal. For

every Bochner-Martinelli form ω ∈ BM(U \ {P ′}) on U \ {P ′} there exists a form ω(P,Q)
of type (n, n− 1) on (U × U) \∆, ∂-closed, logarithmic along ∆ and at infinity (in sense

of definition 4.1), which induces ω and for each P ∈ U induces a Bochner-Martinelli form

on U \ {P}.

The Bochner -Martinelli form (1.2), as a form on ICn × ICn, is not logarithmic along

the diagonal ∆ = {(w, z) : z = w}. In order to fulfill the conclusions of corollary 5.2 it
must be replaced by the form

ω̃(w, z) =
ω̃′ (z − w, d(z − w)) ∧ d(z1 − w1) ∧ · · · ∧ d(zn − wn)

‖z − w‖2n
(5.1)

with

ω̃′ (z − w, d(z − w)) =
n∑

k=1

(−1)k(zk − wk)d(z1 − w1) ∧ · · · ∧ ̂d(zk − wk) ∧ · · · ∧ d(zn − wn)

The form ω̃(w, z) is ∂-closed and d-closed on ( ICn × ICn) \ ∆, and is logaritmic along ∆
(that is, its pullback to the blowing-up of ICn × ICn along ∆ is logarithmic along the
exceptional divisor).
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Corollary 5.3. Let ω(P,Q) be a Bochner-Martinelli kernel as in theorem 5.1. The

integral
∫

DP
Res ω(P,Q) dQ appearing in formula (4.4) is locally constant with respect to

P ∈ V .

6. Integral formulas for differential forms.

Theorem 6.1. Let U be a complex manifold of complex dimension n, V ⊂ U a connected

open subset, Z = V × U , R = {(P,Q) ∈ V × U : P = Q}, π : Z̃ → Z the blowing-up of Z

along R, R̃ = π−1(R). Let ω(w, z) be a differential form of type (n, n−1) on (V ×U)\R, ∂-

closed, logarithmic along R, (that is, its pullback to Z̃ is logarithmic along R̃). Let Ω ⊂ U

be a relatively compact domain with piecewise C1-boundary, φ = φ(z) a differential form

of type (p, q) defined in a neighborhood of Ω. Then

(i) The integral

C =
∫

R̃∩{w=const}
Res ω(w, z)

is constant with respect to w ∈ V .

(ii) One has the equality

(−1)p+q2iπCφ =
∫

z∈∂Ω

φ(z) ∧ ω(w, z)−
∫

z∈Ω

∂φ(z) ∧ ω(w, z)+

+∂
∫

z∈Ω

φ(z) ∧ ω(w, z) (on V ) (6.1)

We define, for a form η and A = Ω or ∂Ω:

(B
A
η)(w) =

∫
z∈A

η(z) ∧ ω(w, z)

so that (6.1) can be written

(−1)p+q2iπCφ = B
∂Ωφ−BΩ(∂φ) + ∂(BΩφ) (on V ) (6.2)

Proof. (i) is a consequence of corollary 5.3.
(ii) Let v(w) be a differential form of type (n− p, n− q) with compact support on V . As
in [HL] (theorem 1.11.1) we must prove the identity

(−1)p+q2iπC
∫

w∈V

φ(w) ∧ v(w) =
∫

(w,z)∈V×∂Ω

φ(z) ∧ ω(w, z) ∧ v(w)
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−
∫

(w,z)∈V×Ω

∂φ(z) ∧ ω(w, z) ∧ v(w)− (−1)p+q−1

∫
(w,z)∈V×Ω

φ(z) ∧ ω(w, z) ∧ ∂v(w)

The form φ(z) ∧ ω(w, z) ∧ v(w) has type (2n, 2n− 1), hence

d(φ(z) ∧ ω(w, z) ∧ v(w)) = ∂(φ(z) ∧ ω(w, z) ∧ v(w))

= ∂φ(z) ∧ ω(w, z) ∧ v(w) + (−1)p+q−1φ(z) ∧ ω(w, z) ∧ ∂v(w)

It follows from Stokes formula∫
(w,z)∈(V×Ω)\Tε

∂φ(z)∧ω(w, z)∧ v(w)+ (−1)p+q−1

∫
(w,z)∈(V×Ω)\Tε

φ)(z)∧ω(w, z)∧∂v(w)

=
∫

(w,z)∈V×∂Ω

φ(z) ∧ ω(w, z) ∧ v(w)−
∫

(w,z)∈∂Tε

φ(z) ∧ ω(w, z) ∧ v(w)

where Tε is a small tubular neighborhood of R in V ×U . Tε is also a tubular neighborhood
of R̃ in Z̃. Thus the last integral can be computed on Z̃ using the residue theorem:

lim
ε→0

∫
(w,z)∈∂Tε

φ(z) ∧ ω(w, z) ∧ v(w) = 2iπ
∫

R̃

Res (π∗2φ ∧ π∗ω ∧ π∗1v)

where π : Z̃ → V × U is the blowing-up along R and π1 : Z̃ → V , π2 : Z̃ → U are the
projections. On R̃ one has π∗2φ = π∗1φ so that the integral becomes

(−1)p+q2iπ
∫

R̃

π∗1(φ ∧ v) ∧Res π∗ω =

(−1)p+q2iπ
∫

w∈V

φ(w)∧ v(w)
∫

R̃∩{w=const}
Res ω(w, z) = (−1)p+q2iπC

∫
w∈V

φ(w)∧ v(w)

Taking the limit for ε→ 0 in the above formulas we get (6.1).

Theorem 6.2. (Bochner-Martinelli formula for differential forms). Let U be a normal

complex space of complex dimension n; let V ⊂ U be a connected open subset of U ,

Z = V × U , R = {(P,Q) ∈ V × U : P = Q}, π : Z̃ → Z the blowing-up of Z along R,

R̃ = π−1(R), and ω(w, z) a Bochner-Martinelli kernel on (V ×U)\R (∂-closed, logarithmic

along R). Let Ω ⊂ U be a relatively compact domain such that Ω̄ is subanalytic, and no

component of ∂Ω is contained in Sing(U), φ = φ(w) a differential form in sense of Grauert,

of type (p, q), defined in a neighborhood of Ω. Then

(i) The integral

C =
∫

R̃∩{w=const}
Res ω(w, z)

is constant with respect to w ∈ V .
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(ii) The integrals

B
∂Ω\Sing(U)φ,BΩ\Sing(U)(∂φ), (BΩ\Sing(U)φ)

converge on V \ Sing(U) and we have the equality

(−1)p+q2iπCφ|V \Sing(U) = B
∂Ω\Sing(U)φ−BΩ\Sing(U)(∂φ) + ∂(BΩ\Sing(U)φ) (6.3)

The form ω(w, z) lives by construction on a desingularization X̃ of X, and the form φ

extends to a form on X̃. Hence the proof of the theorem is an easy consequence of theorem
6.1 (on X̃) and its proof.
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