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Abstract.

Let C™ be the blowing-up of C™ at a point P. We prove that the pullback to C" of
the Bochner-Martinelli form centered at P is logarithmic along the exceptional divisor. It
follows that the Bochner-Martinelli integral formula appears as a Leray residue formula.
Moreover the Bochner-Martinelli form is logarithmic also at infinity.

Let U be a complex space of complex dimension n > 2, subject to the following
assumption: there exist a compact complex space X bimeromorphic to a Kahler manifold,
and a closed subspace T C X, such that X \T = U. An affine, or a quasi projective variety
U satisfies the above property (X is a projective compactification of U). For a point P € U,
the cohomology group H*"~}(U\ {P}, C), equipped with the weight filtration W,,,, carries
a mixed Hodge structure. Thus the first graded quotient

_ W H™ YU\ {P},C)
BM(U\ {P}) = WoH2"1(U \ {P},CC)

carries a pure Hodge structure of weight 2n — 2, which turns out to contain only elements
of pure type (n —1,n —1). The elements of BM (U \ {P}) are represented by closed forms
won U\ {P} of pure type (n,n — 1), which are logarithmic in a suitable sense. Thanks to
a more general residue formula we prove that the forms w give rise to an integral formula
of Bochner-Martinelli type for holomorphic functions.

We prove that the forms w can be chosen to depend C'*° on P, that is, we prove the
existence of (0-closed) Bochner-Martinelli Kernels. Such Kernels can be used to prove
integral formulas for differential forms (in sense of Grauert) on U.
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1. The Bochner-Martinelli formula as a residue formula.

It is well known (see for example [GH]) that the Bochner-Martinelli integral formula can
be proved as a consequence of the Grothendieck residue formula. Here we show that it
can also be proved from the Leray residue formula [L]. This suggests how to extend such
formulas to complex spaces.

Let w = (w1, -+, wy) be a point in @™. We consider the differential form
W (Zmw,dz) =Y (1) —wR)dE A AdE A AN dE, (1.1)
k=1
The form

Wz —w,dZ) Ndzy A+ ANdzy,
Iz = wi

w(w,z) =

with

n

Iz —wl* =) |ze — wil? (1.3)
k=1
is the Bochner-Martinelli form. It is d-closed and d-closed. The Bochner-Martinelli formula
reads as

Theorem 1.1. Let Q C @™ be a relatively compact domain with (piecewise) smooth
boundary. Let f be a holomorphic function on 2, which is continuous on ). For a point

w € ) one has
(n—1)!

(2im)™

flw) =

Proof. One can assume that w = 0. We shall prove that (1.4) can be deduced from
the Leray residue formula. Let Q be the manifold obtained by blowing-up the point 0 € Q.
Q is the submanifold of Q x P"~! defined by the equations Z;z, = Zz; for k # [, where
[Z1,-++,Z,] are the homogeneous coordinates in IP"~1. We consider a point m of the
exceptional divisor (0) x IP*~' C Q such that Z, # 0 at m. Then, one can choose as
complex coordinates in the neighborhood of m, the numbers

f(z)w(w, 2) (1.4)
o9

Z1 _Z’“ NG 1_2”—1 Py
ySn—1 7 Zn’ n

so that zp = (g2, for kK < n — 1. Thus z, = 0 is the local equation of the exceptional
divisor (0) x IP"~! in a neighborhood of m. We consider the form

Z,dZ) Ndzt A - Ad2"
(
| 2]]2™

¢ = f(Z)w/ (1.5)

The the pull back of ¢ by the projection map p : Q — Q is logarithmic along
the exceptional divisor D.



In fact p*¢ is given by the following formula

f(c1zn7 e 7Cn—1zn7 Zn) x

*¢ — -
RPN S AR
n—1 -
D (D) 1 Gzad(Giza) A Ad(Crza) A+ Adz,
k=1

(=) 2,d(C1Z) A - - Ad(Cna1Z0)] A [d(Crzn) A Ad(Cu12n) A d2y)

= f<<12n7 R Cn—lzna Zn)
1+ ht G P)m

(modulo smooth forms).

<d§1A---Ad§n_1AdclA---Adén_lAdﬁ)

n

So the residue of p*¢ on the exceptional divisor is

(dGi A ANdGua AdG A - NdGan)

Res p*¢ = f(0) (14 00 (Gl

Moreover because ¢ is closed, one has

/ b= / o=[ o
o0 0B(0,¢) S(0,¢)

where B(0,¢€) (resp. S(0,€)) is the ball (resp.the sphere) of center at 0 and radius e. But
S(0,€) is exactly §[(0) x IP"~!] where § is the residue in homology. Thus in the manifold

(2, one has by the residue formula

/ ¢ = / PP = (2i7r)/ Res p*¢ =
S(O,G) S(O,E) Pn—1

. (dG A AdCuy AdCG A ANdCoq)
=2 0
Z7Tf( )/Pnl (1 "J’_ZZ;II |Ck‘2)n

This last integral is exactly the integral of the volume form of IP"~!. Its value is

(2im)n—1
(n—1)!

Hence we have seen that the pullback of the Bochner-Martinelli form on 2 has a loga-
rithmic singularity along the exceptional divisor, and that the Bochner-Martinelli formula
is a residue formula in the blow-up manifold €2 with respect to the exceptional divisor.
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The behaviour at the infinity of the Bochner-Martinelli form.

Next we study the behaviour at the infinity of the Bochner-Martinelli form. We
consider the projective space IP™ with complex coordinates [zg, - - -, x,] and we look at @'
as the complement of the hyperplane H defined by the equation xg = 0. Let P be a point
of H where z; # 0. Then we can write

2

zj = j=1--n

Zo ’
so that the local coordinates v; around P are related to the coordinates z; by the formulas

1 Vs
21 = —, Rs = —
U1 U1

for s=2---'n

and H is defined by the equation v; = 0. Substituting the above relations in the formula
(1.2) (w = 0) we find that the Bochner-Martinelli form has a logarithmic singularity along
H, whose residue is

(dTa A -~ ANdy Advg A --- A doy,)

(14> ks [vs])"

2. The Leray residue theorem for a divisor with normal crossings.

In this section, X is a complex analytic manifold and D = D, U---U Dy is a divisor with
normal crossings; that means that each D; is a smooth hypersurface of X, and at each
point x € X, there are at most n = dim ¢ X divisors D; passing through x and which are
transversal. In particular, given x, one can find complex analytic coordinates (z1,-- -, z,)
in a neighborhood U of z, such that the local equation of DNU in U is z1---2, =0, s
depending on x.

We define for any ordered multiindex I = (iy,---,i,) C (1,...,N)

Dr=DyN---ND;,

and
pld — 11, 71= D1, plol — x

where the symbol IT denotes the disjoint union. Then the D% are manifolds (not connected
in general).



The residue theorem.

Let L; — X be the line bundle associated to D;, and h; a hermitian metrics on L;.
We denote by s; a holomorphic section of L; vanishing exactly on D;. There exists a
neighborhood of D; in X diffeomorphic to a neighborhood of D; (embedded as the zero
section) in L;. For ¢; > 0 small enough we consider the tube around D;:

T, ={x € X : [|si(2)| < &}

where the length ||s;(z)] is taken with respect to the metrics h;.
Let us define

7. =T, (2.1)

The boundary 97 is a cycle of dimension 2n — 1 in X \ D.

Let w be a form of type (n,n — 1) on a neighborhood of D, d-closed (hence d-closed),
having logarithmic singularities along D.

We define the residue of w on D. Let x be a smooth point of D; it belongs to a unique
component D; of D. Let (; = 0 be the equation of D; in a neighborhood U of x; on U we
can write

_ 4

= 0
2 A+

w]U
where 1,0 are C'"™° on U. We put

Res w|lunp,; = Y|unp,

and we get a well defined (n—1,n—1) form Res w on the disjoint union (J; (D; \ Sing(D))
= D\ Sing(D), having logarithmic singularities along each D; N Sing(D).

Lemma 2.1. The form Res w is integrable on D).

Theorem 2.2. Let X be a complex manifold of complex dimension n > 2, D C X
a divisor with normal crossings, w a differential form of type (n,n — 1), with compact
support, on X, having logarithmic singularities along D. Then

lim w= 22'7?/ Res w
«=0Jar1, D

with Te = |J, T¢, as in (2.1).



3. Logarithmic differential forms and the mixed Hodge structure on coho-
mology.

By a pair (of complex spaces) (X, Q) we mean the data of a complex space X and of a
closed, nowhere dense complex subspace Q). Let p : X \ @ — X be the natural embedding.

If X is smooth and ) = D is a divisor with normal crossings, a logarithmic differential
k-form on X (with poles of order <[ along D) is a form w on X \ D which, in a sufficiently
small neighborhood of any z € D can be written as

dz\"
w= oy A (—) 3.1
l% . (3.1)
where (%)I: %/\---/\%.

The differential dw of a légarithmic form (with poles of order < [) is logarithmic (with
poles of order < [). The above definition has a local nature: we can define a logarithmic
form on Y\ D for any open subset Y C X, hence the sheaf 8;9( < logD > of the logarithmic
k-forms is well defined, and £y < logD > is a complex of fine sheaves on X.

The logarithmic forms on any open set Y C X are particular differential forms on

Y \ D, hence we have an inclusion
Ex <logD > C p.&x\p

where p: X \ D — X is the natural inclusion map.

The following statements (Griffiths-Schmid) hold:
- every closed differential form on X \ D is cohomologous to a logarithmic form;
- every logarithmic differential form on X \ D which is exact, is the differential of a loga-
rithmic form.

The main consequence of the above result is that the cohomology of X \ D is the
cohomology of the complex of global sections I'(X, £y < logD >):

H*(X,Ex <logD >) ~ H*(X, p.Ey\p) ~ H* (X \ D, @)

We introduce the weight filtration W on 5; < logD >, just defining WZS; < logD >
as the subsheaf of 5; < logD > of the forms having poles of order < [.

If X is smooth and @ is any closed subspace, a a differential k-form w on X \ @ is
said logarithmic along () if for some blowing-up

D 4 X
l 7|
o L X



such that D is a divisor with normal crossing, the pull-back 7*w is logarithmic along D.
For a pair (X, @), where X is possibly singular, we define a complex (in fact, a family

of complexes) of fine sheaves (Ay < logQ >,d) on X with the following properties.
(I) The restriction A’

x\o = Ax < logQ > Ix\@ of Ay < logQ > to X\ Qis a
resolution of the constant sheaf @ on X \ @, and the natural morphism of complexes
Ay <logQ >— plAy\ g

induces isomorphisms in cohomology:

H(X,Ax <logQ >) = H"(X, phy o) = H'(X\ Q, @) (3-2)

in other words the cohomology of X \ @ can be calculated as the cohomology of the complex
of sections (I'(X, Ay <logQ >),d) of Ay < logQ >.
(IT) For k > 2dimX, A; <logQ >= 0.

The complex Ay < log@ > will be called a logarithmic complex for a pair (X, Q); we
recall its construction.

Let (X, Q) be any pair, E = Sing(X); let us consider a diagram of desingularization
of X

E 5 X
ql m | (3.3)
E 4 X

where X is a smooth manifold, £ = 7~(E), and m induces by restriction an isomorphism
X\E~X\E. Let

Q=7"YQ), M=EnQ, M=EnNQ.
We suppose that Q is a divisor with normal crossings.

By induction on dim(X) we can find complexes Ay < logM > and A, < logM >,
corresponding to the pairs (E, M) and (E, M), a pullback

¢:Ag <logM >— Az < logM > (3.4)
a pullback

P 6}( < logQ >— AE < logM >
so that we define the complex

A; < logQ >= mé’; < logQ > @j*AI; <logM > ®(j o q)*AkE_l < logM > (3.5)
whose differential is by definition



d(w,0,0) = (dw, do, df + (—1)*(b(w) — ¢(0)). (3.6)

Note that A; < log@ > is a fine sheaf defined on all of X.

From the construction of Ay < log(@ > it follows that there is a uniquely determined family
((X4,Q4),ha)aca of pairs (Xg, Q,), where X, is a smooth manifold and @, is (either empty
or) a divisor with normal crossings in X, and proper maps of pairs h, : (X4, Q4) — (X, Q)
such that

k—q(a)

Ay <1ogQ >= P (ha)Ex,"” < 10gQq > (3.7)
acA

where ¢(a) = g, (a) is a nonnegative integer, which depends only on a € A and not on k.
The family (X,,Q4)aca will be called the hypercovering of (X, Q) associated to the com-
plex Ay <logQ >, and ¢, (a) will be the rank of (X,,Q,).

Remark.
1) In the situation of the diagram (3.3) and of the complex (3.5), we notice that (X, Q)
is a pair (Xg, Qq) of the hypercovering, with q(a) = 0.
2) Notice also that dimX, < dimX, and equality holds if and only if X, = X.

The weight filtration W and the Hodge filtration F'.
If Ay <logQ > is a logarithmic complex, we can rewrite the equation (3.5) defining
the complex as

A;— < logQ >= 5; < logQ > @A};; < logM > @Agl < logM > (3.8)

where we have skipped the symbols of direct images of sheaves. The weight filtration W
on the complex (Ay < logQ >,d) is defined by the formula

WmA; <logQ >=

= Wmé'; < logQ > @WmA’;; < logM > & Wm+1Ag1 < logM > (3.9)

In (3.9) WmA};; < logM > and Wm+1Agl < logM > are defined by recursion on the

dimension of the spaces, and Wmé}( < logQ > is the filtration by the order of the poles.
(Ax <logQ >,d) is a filtered complex for W,,:

d( WAy <logQ >) C WAy < logQ > (3.10)

As well, the Hodge filtration F' on the complex (Ay < logQ >,d) is defined by the
formula
F? A; < logQ) >=

= Fpé'; < logQ > @FPAZ <logM > & FI‘JAkE_1 < logM > (3.11)
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where F pA% < logM > and FZDAE:1 < logM > are defined by recursion on the dimension
of the spaces, and FPE f( < logQ > is the usual Hodge filtration.

By the isomorphism (3.2) the filtrations W and F' induce a weight and a Hodge
filtrations on the cohomology spaces H*(X \ Q, @'), which we denote by the same symbols.

The spectral sequence associated to the weight filtration.

For the spectral sequences (associated to a filtration) we use notations, which are
different from those which usually appear in the literature. In our notation E™* m is the
degree of the filtration and k is the degree of the complex (the degree of differential forms
in the case of the De Rham complex). In particular

dr . Em,k N Em—r,k—l—l
* T T
If one is willing to work with the classical indices E/P*? can use the following dictionary:
Emk — pl-ppta
™ T
E/paq — E_m7k+m
T T

The mixed Hodge structure.

Let us suppose that X is a compact complex space bimeromorphic to a Kahler mani-
fold.
We consider the spectral sequence E™* attached to the weight filtration of the complex
I'(X, Ay <logQ >).
The following (highly non trivial) results hold.

1) the first terms are

m, m, m a),k—q(a
EPF = BF(X) = @ BPTOFI9 (x,) (3.12)

where

B} (Xa) = H* " (Qa", @) (3.13)

(recall: Q.1 = X,);

2) the spectral sequence degenerates at the level 2: d, = 0 , hence E™* = EY" ’k, for
r>2;

3) the second terms E5" ok carry a pure Hodge structure, and they are isomorphic to

the graded quotients WWT?;?(()}?@@()D) of the cohomology H*(X \ @, @) with respect to

the weight filtration;
4) the Hodge filtration on EJ" * coincides with the filtration induced in cohomology,
by means of residues, by the Hodge filtration of the complex Ay < logQ >.
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4. The general Bochner-Martinelli formula.

Definition 4.1. Let U be a complex space, S C U a closed subspace. Let o be a
differential form on U \ (Sing(U)US). We say that « is logarithmic along S if there exists
a proper modification 7 : U — U with the following properties

1) U is non singular;

2) © induces an isomorphism h : U \ 7= (Sing(U) U S) — U \ (Sing(U) U S);

3) S =n~1(S) is a divisor with normal crossings in U;

4) 7« extends to a differential form on U \ S, logarithmic along S.

If S is a point P € U, we will say that « is logarithmic at P.

Throughout the present talk, U will be a complex space of complex dimension n > 2,
subject to the following assumption: there exist a compact complex space X bimeromor-
phic to a Kéhler manifold, and a closed subspace T' C X, such that X \T = U. An affine, or
a quasi projective variety U satisfies the above property (X is a projective compactification
of U).

Let p: Y — X be a desingularization of X (so that p~!(U) is a desingularization of
U).

Let P be a point of U. Let u : X — Y be the blowing-up of Y along a suitable
subspace of the fiber p~!(P) such that D = (powu)~!(P) is a divisor with normal crossings
in X. We denote 7 : X — X the composition pou. Let U = #~'(U). Then U \ D is
a desingularization of U \ {P}. Replacing Y by a suitable blowing-up along a subspace
of p~!(T") (not affecting p~*(U)) we can assume that H =Y \ p~'(U) = X \ U is also a
divisor with normal crossings.

The cohomology groups H*(U \ {P}, @) carry a mixed Hodge structure [D]. We are
interested in the case k = 2n — 1. We follow the contructions in [AG], part II, chapters 2
and 4 to describe the mixed Hodge structure.

Let
Q=Tu{P)

Let us fix a complex Ay < log(Q) > corresponding to the above desingularization X of X,
and let ((X,,Q,)) be the associated hypercovering. Let n, = dimX,. Let us notice that

Q=DUH

hence (X' , Q) is a pair of the hypercovering. The weight filtration W,, of the complex
I'(X,Ay < logQ >) gives rise to a spectral sequence whose first term, by (3.12) and
(3.13), is

B = BN (X) = @@ BUTUOT (X,) (4.1)

where

E;,L+q(a),k—q(a) (X,) = Hk—m—Qq(a)(Qa[m+CI(a)]’ @) (4.2)
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which vanishes unless
kE—m —2q(a) < 2n, —2m — 2q(a)

that is
k<2n,—m (4.3)

We want to compute the term E21 21—l of the spectral sequence, hence we are interested

in 2" B and B2 72 For (m, k) = (0,2n), (1,2n — 1), (2,2n — 2), from (4.3) we
obtain n, = n. There is only one X, with n, = n, that is X, = X. The corresponding
q(a) is zero.

It follows

EY? = H™(X, @)

p N
E1172n_1 = @H2R_Q(Hl, @‘) 7] @ Hgn_2(st w)
=1 ls=1

where H = HiU---UH, and D = D; U---U Dy are the decompositions of the divisors
H and D into irreducible components, and

Ef,2n72 — I_]Zn—4(f_][2]7 Gv) D HZ”_4(D[2], w)

It follows that EY*", E1*"~! and E?*""? carry a pure Hodge structure of weight 2n,
2n — 2 and 2n — 4 respectively, admitting only elements of type (n,n), (n — 1,n — 1),
(n — 2,n — 2) respectively.

The differentials

12n—1 | 1,2n-1 0,2 2,2 2,2n—2 1,2n—1
dy" BT — EPY, AT BT — BT

are sums with coefficients +1 of Gysin maps, which are morphism of pure Hodge structures
(suitably shifted).

The term

plan-1 _ Ker d%’%il
2 Im d%2"
1

carries a pure Hodge structure of weight 2n—2 whose elements are of pure type (n—1,n—1).
Since the Hodge filtration on E%’Qn_l is induced, by means of residues, by the Hodge
filtration on Ay < logQ >, and the spectral sequence degenerates at Es, we obtain the
following

Theorem 4.2. Let W, be the weight filtration on the cohomology H*"~Y(U \ {P}, @),

and denote BM (U \ {P}) = V“;;g;::igg&ii gg, which is isomorphic to Ey*" ', For any

element « € BM (U \ {P}) there exists a differential form w on U \ { P}, logarithmic at P
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and along T (in sense of definition 4.1), of type (n,n — 1), d-closed (hence d-closed), whose
class modulo Wy is a. Such a form will be called a Bochner-Martinelli form on U \ {P}.

By construction the form w is in fact a differential form on X \ (D U H), logarithmic
along D U H, and has the property that the residue Res w is a closed form of type
(n—1,n—1)on Dy U---UDyUH;,U---UH, which detects an element of Ker d}’%_l.

A Bochner-Martinelli form w on U \ {P} induces an ordinary differential form of type
(n,n—1) on U\ {P}\ Sing(U) which we still denote w.

Theorem 4.3. Let w be a Bochner-Martinelli form on U \ {P}, Q C U a relatively
compact domain containing the point P, such that Q is subanalytic, and no component
of OQ is contained in Sing(U). Let f be a holomorphic function on 2, continuous on €.
Then the integral of fw converges on 92\ Sing(U) and the following equality holds:

i f(P R = 4.4
Zﬂ—f( )/D e /89\Sing(U) fw ( )

Proof. Since (2 is subanalytic, the closure of 7= (Q\ Sing(U)) in U is subanalytic.

Hence one can define the strict transforms Q and 6, through m, of Q and  respectively.
Because w is logarithmic along D, by theorem 2.2

lim (fow)w:2i7r/ Res ((fom) w)

<=0Jar, D

where T, = |J, T, is a neighborhood of D defined as in (2.1). Because (f o) is constant
on H, Res ((for) w)= f(P)Res w; because fw is d-closed, hence d-closed, on U \ D,

/aTe(fwT)w:/m(fM)w

It is clear that 0Q and 0Q \ Sing(U) differ by a set of measure zero, so that

/afz(f °mw= /an\smg(U) fu

which implies (4.4).

Remark. The space BM (U \ {P}) is intrinsic, because the mixed Hodge structure on
H?"=1(U \ {P}, @) is unique. In particular, it does not depend on the choice of a desin-
gularization of X.

Let us remark also that a closed (2n — 1)-form whose class is in BM (U \ {P}) is a
Bochner-Martinelli form if and only if it has type (n,n — 1); otherwise it is not necessarily
O-closed.

The following theorem gives more information about the Bochner-Martinelli forms.
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Theorem 4.4. Under the assumptions of theorem 4.3, let w1 and ws be two Bochner-
Martinelli forms on U \ {P}. Then
i) w1 and we are cohomologous for d as logarithmic forms if and only if they are coho-
mologous for d as forms on X \ Q; as well, they are cohomologous for @ as logarithmic
forms if and only if they are cohomologous for 0 as forms on X \ Q.
ii) wy and we are cohomologous for d as logarithmic forms if and only if they are coho-
mologous for 0 as logarithmic forms.
iii) wy and wy have same class in H?"~1(U \ { P}, @) if and only if they are cohomologous
for d on X \ Q.
iv) Let Q]}( < logQ~ > be the sheaf of holomorphic k-forms on X \ Q which are logarithmic

along Q. There is a natural surjective morphism
n—1/vy n e
H" (X, Q% <logQ >) — BM(U \ {P}) (4.5)
inducing an isomorphism

WiH™ (X, Q% < logQ >)
WoH" (X, Q7 < logQ >)

~ BM(U\ {P}) (4.6)

5. Dependence on the point: the Bochner-Martinelli Kernels.

Let us keep the notations and the assumptions of the previous section. Let V' C U be an
open set of U. Let Z =V x X, the diagram of desingularization of X:

E - Y
! pl
EF — X

We can suppose that H = p~!(T) is a divisor with normal crossings in Y. In Z' =
p t(V)xYlet R = {(P,Q) € Z:P=Q}. Then R'is a closed subspace of Z’, contained
in p~ (V) x p~1(V), isomorphic to p~ (V). Let «’ : Z — Z’ be the blowing-up of Z’ along
R', 7 : Z — Z the composite mapping, R = 7~ '(R’). Finally, let S = R' U (p~ (V) x T),
S=RUn'(p~Y(V) x H).

Let V7 be the open set of smooth points of V. For a point P of V) let
Xp={P}x X, Xp=n'({P}xX)
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Dp:XpﬂR
TPZ{P}XT, Hp:{P}XH
Qp ={(P,P)}UTp, Qp=DpUHp

It is easy to see that Xp is the blowing-up of Yp = {P} x Y at the point (P, P), whose
exceptional divisor is Dp. The pair (Xp,Qp) gives rise to a complex Ay < log Qp >
which describes the cohomology of U \ {P}, and there is a natural restriction mapping

Ay <logS >— Ay, <log Qp >

which is compatible with the respective differentials and weight filtrations.
Let 7, : Z — V be the composition of the blowing-up 7’ : Z — Z’ = p~ (V) x Y with
the projection p~1(V) x Y — V.

Theorem 5.1. Let U = X \ T be a complex space, such that X is a compact complex
space bimeromorphic to a Kahler manifold, and T is a closed subspace of X ; let V C U be
a Stein open subset of U, and P" a smooth point of V. Let R = {(P,Q) € V. xU : P = Q}.
For every Bochner-Martinelli form w € BM (U \ {P'}) on U \ {P'} there exists a form
w(P,Q) of type (n,n — 1) on (V x U) \ R, d-closed, logarithmic along R and V x T (in
sense of definition 4.1), which induces w and for each P € V' a induces Bochner-Martinelli

form on U \ {P}.

In other terms, the above theorem states, under the above assumptions, that Bochner-
Martinelli forms at smooth points admit 0-closed, logarithmic kernels. We do not know if
it is possible in general to find kernels of pure type (n,n — 1) which are also d-closed.

Corollary 5.2. Let U be a smooth affine variety, and A C U x U be the diagonal. For
every Bochner-Martinelli form w € BM (U \ {P'}) on U\ {P'} there exists a form w(P, Q)
of type (n,n — 1) on (U x U) \ A, 0-closed, logarithmic along A and at infinity (in sense
of definition 4.1), which induces w and for each P € U induces a Bochner-Martinelli form
on U\ {P}.

The Bochner -Martinelli form (1.2), as a form on @™ x @™, is not logarithmic along
the diagonal A = {(w,z) : z = w}. In order to fulfill the conclusions of corollary 5.2 it
must be replaced by the form

O (z—w,d(z—w))ANd(z1 —wi) A+ ANd(zp — wy)
Iz = wi

o(w,z) = (5.1)

with

O E=wdE—w) = 3 (1) —wn)d(zr —wi) A Ad(ze — wr) A A d(z — wn)
k=1

The form &(w, z) is O-closed and d-closed on (@™ x @™) \ A, and is logaritmic along A
(that is, its pullback to the blowing-up of @™ x (@™ along A is logarithmic along the
exceptional divisor).
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Corollary  5.3. Let w(P,Q) be a Bochner-Martinelli kernel as in theorem 5.1. The
integral [ p, Btes w(P, Q) dQ appearing in formula (4.4) is locally constant with respect to
PeV.

6. Integral formulas for differential forms.

Theorem 6.1. Let U be a complex manifold of complex dimension n, V C U a connected
open subset, Z=V x U, R={(P,Q) €V xU : P=Q}, n: Z— Z the blowing-up of Z
along R, R = n='(R). Let w(w, z) be a differential form of type (n,n—1) on (V xU)\R, 0-
closed, logarithmic along R, (that is, its pullback to Z is logarithmic along R). Let Q C U
be a relatively compact domain with piecewise C'-boundary, ¢ = ¢(z) a differential form
of type (p,q) defined in a neighborhood of Q). Then

(i) The integral

C = Res w(w, 2)

RN{w=const}

is constant with respect tow € V.
(ii)) One has the equality

(—1)PT92ixC¢p = d(2) Nw(w, z) — /eQ 06(2) A w(w, 2)+

z€002

+5/eﬂ o(2) N\w(w,z) (on V) (6.1)

We define, for a form 7 and A = Q or 0€2:
Baw) = [ ) Awlw,2
z€EA

so that (6.1) can be written

(=1)P*92irC¢ = Byy ¢ — B, (09) + 0(Bog) (on V) (6.2)

Proof. (i) is a consequence of corollary 5.3.
(ii) Let v(w) be a differential form of type (n — p,n — q) with compact support on V. As
in [HL] (theorem 1.11.1) we must prove the identity

(—=1)P*92ixC d(w) ANv(w) = / d(2) Nw(w, z) A v(w)
weV (w,2)EV X0
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—/ 0p(2) A w(w, 2) ANv(w) — (—1)Pra—? / (2) Aw(w, z) A v(w)
(w,2)EVXQ

(w,z)eV xQ

The form ¢(z) A w(w, z) A v(w) has type (2n,2n — 1), hence
d(p(2) Nw(w, z) Av(w)) = A(d(2) Aw(w,z) Av(w))

= 06(2) Aw(w,2) Av(w) + (=1)PT1p(2) Aw(w, 2) A dv(w)
It follows from Stokes formula

B(2) A w(w, 2) Av(w) + (=1)P+ / 6)(2) Aw(w, 2) A Fv(w)

/(w,z)e(VxQ)\Te (w,z)€(V X\T.

_ / 6(2) A wl(w, ) A v(w) — / 6(2) Aw(w, 2) A v(w)
(w,2)EV xR

(w,z)€0T

where T, is a small tubular neighborhood of R in V x U. T is also a tubular neighborhood
of R in Z. Thus the last integral can be computed on Z using the residue theorem:

lim o(2) Nw(w, z) ANv(w) = 2i7r/ Res (m5¢ A m*w A miv)
e—0 (w,z)€0T, R

where 7 : Z — V x U is the blowing-up along R and 71 : Z — V, my : Z — U are the
projections. On R one has m5¢ = 7] ¢ so that the integral becomes

(—1)p+q2i7r/~ (6 Av) A Res m*w =
R

(—1)p+q2i7r/€V d(w) A v(w)/ Res w(w, z) = (—1)p+q2i7TC’/ d(w) ANv(w)

RN{w=const} weV
Taking the limit for ¢ — 0 in the above formulas we get (6.1).

Theorem 6.2. (Bochner-Martinelli formula for differential forms). Let U be a normal
complex space of complex dimension n; let V. C U be a connected open subset of U,
Z=VxU R={(P,Q) €V xU:P=Q} n:Z— Z the blowing-up of Z along R,
R =n"Y(R), and w(w, z) a Bochner-Martinelli kernel on (V x U)\ R (9-closed, logarithmic
along R). Let Q C U be a relatively compact domain such that Q is subanalytic, and no
component of 05} is contained in Sing(U), ¢ = ¢(w) a differential form in sense of Grauert,
of type (p, q), defined in a neighborhood of Q). Then

(i) The integral
C = / Res w(w, 2)
RN{w=const}

is constant with respect tow € V.
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(ii) The integrals

BaQ\smg(U) ¢7 BQ\Sing(U) (5¢), (BQ\Sing(U) QS)

converge on V' \ Sing(U) and we have the equality

(_1)p+q2i7rc¢|V\Sing(U) = BaQ\smg(U)¢ - BQ\Sing(U) (5¢) + E(BQ\Sing(U)gb) (6'3)

The form w(w, z) lives by construction on a desingularization X of X, and the form ¢

extends to a form on X. Hence the proof of the theorem is an easy consequence of theorem
6.1 (on X) and its proof.

[AG]
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