Bochner-Martinelli formulas on singular complex spaces

Vincenzo Ancona and Bernard Gaveau

Abstract

.

Let $\tilde{\mathbf{C}^{n}}$ be the blowing-up of \mathbf{C}^{n} at a point P. We prove that the pullback to $\tilde{\mathbf{C}^{n}}$ of the Bochner-Martinelli form centered at P is logarithmic along the exceptional divisor. It follows that the Bochner-Martinelli integral formula appears as a Leray residue formula. Moreover the Bochner-Martinelli form is logarithmic also at infinity.

Let U be a complex space of complex dimension $n \geq 2$, subject to the following assumption: there exist a compact complex space X bimeromorphic to a Kähler manifold, and a closed subspace $T \subset X$, such that $X \backslash T=U$. An affine, or a quasi projective variety U satisfies the above property (X is a projective compactification of U). For a point $P \in U$, the cohomology group $H^{2 n-1}(U \backslash\{P\}, \mathbf{C})$, equipped with the weight filtration W_{m}, carries a mixed Hodge structure. Thus the first graded quotient

$$
B M(U \backslash\{P\})=\frac{W_{1} H^{2 n-1}(U \backslash\{P\}, \mathbf{C})}{W_{0} H^{2 n-1}(U \backslash\{P\}, \mathbf{C C})}
$$

carries a pure Hodge structure of weight $2 n-2$, which turns out to contain only elements of pure type $(n-1, n-1)$. The elements of $B M(U \backslash\{P\})$ are represented by closed forms ω on $U \backslash\{P\}$ of pure type $(n, n-1)$, which are logarithmic in a suitable sense. Thanks to a more general residue formula we prove that the forms ω give rise to an integral formula of Bochner-Martinelli type for holomorphic functions.

We prove that the forms ω can be chosen to depend C^{∞} on P, that is, we prove the existence of ($\bar{\partial}$-closed) Bochner-Martinelli Kernels. Such Kernels can be used to prove integral formulas for differential forms (in sense of Grauert) on U.

MSC 32C15, 32A25 .

1. The Bochner-Martinelli formula as a residue formula.

It is well known (see for example [GH]) that the Bochner-Martinelli integral formula can be proved as a consequence of the Grothendieck residue formula. Here we show that it can also be proved from the Leray residue formula [L]. This suggests how to extend such formulas to complex spaces.

Let $w=\left(w_{1}, \cdots, w_{n}\right)$ be a point in \mathbb{C}^{n}. We consider the differential form

$$
\begin{equation*}
\omega^{\prime}(\overline{z-w}, d \bar{z})=\sum_{k=1}^{n}(-1)^{k-1}\left(\overline{z_{k}-w_{k}}\right) d \bar{z}_{1} \wedge \cdots \wedge d \widehat{\bar{z}_{k}} \wedge \cdots \wedge d \bar{z}_{n} \tag{1.1}
\end{equation*}
$$

The form

$$
\begin{equation*}
\omega(w, z)=\frac{\omega^{\prime}(\overline{z-w}, d \bar{z}) \wedge d z_{1} \wedge \cdots \wedge d z_{n}}{\|z-w\|^{2 n}} \tag{1.2}
\end{equation*}
$$

with

$$
\begin{equation*}
\|z-w\|^{2}=\sum_{k=1}^{n}\left|z_{k}-w_{k}\right|^{2} \tag{1.3}
\end{equation*}
$$

is the Bochner-Martinelli form. It is d-closed and $\bar{\partial}$-closed. The Bochner-Martinelli formula reads as

Theorem 1.1. Let $\Omega \subset \mathbb{C}^{n}$ be a relatively compact domain with (piecewise) smooth boundary. Let f be a holomorphic function on Ω, which is continuous on $\bar{\Omega}$. For a point $w \in \Omega$ one has

$$
\begin{equation*}
f(w)=\frac{(n-1)!}{(2 i \pi)^{n}} \int_{\partial \Omega} f(z) \omega(w, z) \tag{1.4}
\end{equation*}
$$

Proof. One can assume that $w=0$. We shall prove that (1.4) can be deduced from the Leray residue formula. Let $\tilde{\Omega}$ be the manifold obtained by blowing-up the point $0 \in \Omega$. $\tilde{\Omega}$ is the submanifold of $\Omega \times \mathbb{P}^{n-1}$ defined by the equations $Z_{l} z_{k}=Z_{k} z_{l}$ for $k \neq l$, where $\left[Z_{1}, \cdots, Z_{n}\right]$ are the homogeneous coordinates in \mathbb{P}^{n-1}. We consider a point m of the exceptional divisor $(0) \times \mathbb{P}^{n-1} \subset \tilde{\Omega}$ such that $Z_{n} \neq 0$ at m. Then, one can choose as complex coordinates in the neighborhood of m, the numbers

$$
\zeta_{1}=\frac{Z_{1}}{Z_{n}}, \cdots, \zeta_{k}=\frac{Z_{k}}{Z_{n}}, \cdots, \zeta_{n-1}=\frac{Z_{n-1}}{Z_{n}}, z_{n}
$$

so that $z_{k}=\zeta_{k} z_{n}$ for $k \leq n-1$. Thus $z_{n}=0$ is the local equation of the exceptional divisor $(0) \times \mathbb{P}^{n-1}$ in a neighborhood of m. We consider the form

$$
\begin{equation*}
\phi=f(z) \frac{\omega^{\prime}(\bar{z}, d \bar{z}) \wedge d z^{1} \wedge \cdots \wedge d z^{n}}{\|z\|^{2 n}} \tag{1.5}
\end{equation*}
$$

The the pull back of ϕ by the projection map $p: \tilde{\Omega} \rightarrow \Omega$ is logarithmic along the exceptional divisor D.

In fact $p^{*} \phi$ is given by the following formula

$$
\begin{gathered}
p^{*} \phi=\frac{f\left(\zeta_{1} z_{n}, \cdots, \zeta_{n-1} z_{n}, z_{n}\right)}{\left|z_{n}\right|^{2 n}\left(1+\sum_{k=1}^{n-1}\left|\zeta_{k}\right|^{2}\right)^{n}} \times \\
{\left[\sum_{k=1}^{n-1}(-1)^{k-1} \bar{\zeta}_{k} \bar{z}_{n} d\left(\bar{\zeta}_{1} \bar{z}_{n}\right) \wedge \cdots \wedge d\left(\widehat{\bar{\zeta}_{k} \bar{z}_{n}}\right) \wedge \cdots \wedge d \bar{z}_{n}\right.} \\
\left.+(-1)^{n-1} \bar{z}_{n} d\left(\bar{\zeta}_{1} \bar{z}_{n}\right) \wedge \cdots \wedge d\left(\bar{\zeta}_{n-1} \bar{z}_{n}\right)\right] \wedge\left[d\left(\zeta_{1} z_{n}\right) \wedge \cdots \wedge d\left(\zeta_{n-1} z_{n}\right) \wedge d z_{n}\right] \\
\equiv \frac{f\left(\zeta_{1} z_{n}, \cdots, \zeta_{n-1} z_{n}, z_{n}\right)}{\left(1+\sum_{k=1}^{n-1}\left|\zeta_{k}\right|^{2}\right)^{n}}\left(d \bar{\zeta}_{1} \wedge \cdots \wedge d \bar{\zeta}_{n-1} \wedge d \zeta_{1} \wedge \cdots \wedge d \zeta_{n-1} \wedge \frac{d z_{n}}{z_{n}}\right)
\end{gathered}
$$

(modulo smooth forms).
So the residue of $p^{*} \phi$ on the exceptional divisor is

$$
\text { Res } p^{*} \phi=f(0) \frac{\left(d \bar{\zeta}_{1} \wedge \cdots \wedge d \bar{\zeta}_{n-1} \wedge d \zeta_{1} \wedge \cdots \wedge d \zeta_{n-1}\right)}{\left(1+\sum_{k=1}^{n-1}\left|\zeta_{k}\right|^{2}\right)^{n}}
$$

Moreover because ϕ is closed, one has

$$
\int_{\partial \Omega} \phi=\int_{\partial B(0, \epsilon)} \phi=\int_{S(0, \epsilon)} \phi
$$

where $B(0, \epsilon)$ (resp. $S(0, \epsilon)$) is the ball (resp.the sphere) of center at 0 and radius ϵ. But $\underset{\sim}{S}(0, \epsilon)$ is exactly $\delta\left[(0) \times \mathbb{P}^{n-1}\right]$ where δ is the residue in homology. Thus in the manifold $\tilde{\Omega}$, one has by the residue formula

$$
\begin{aligned}
& \int_{S(0, \epsilon)} \phi=\int_{S(0, \epsilon)} p^{*} \phi=(2 i \pi) \int_{\mathbb{P}^{n-1}} \text { Res } p^{*} \phi= \\
= & 2 i \pi f(0) \int_{\mathbb{P}^{n-1}} \frac{\left(d \bar{\zeta}_{1} \wedge \cdots \wedge d \bar{\zeta}_{n-1} \wedge d \zeta_{1} \wedge \cdots \wedge d \zeta_{n-1}\right)}{\left(1+\sum_{k=1}^{n-1}\left|\zeta_{k}\right|^{2}\right)^{n}}
\end{aligned}
$$

This last integral is exactly the integral of the volume form of \mathbb{P}^{n-1}. Its value is

$$
\frac{(2 i \pi)^{n-1}}{(n-1)!}
$$

Hence we have seen that the pullback of the Bochner-Martinelli form on $\tilde{\Omega}$ has a logarithmic singularity along the exceptional divisor, and that the Bochner-Martinelli formula is a residue formula in the blow-up manifold $\tilde{\Omega}$ with respect to the exceptional divisor.

The behaviour at the infinity of the Bochner-Martinelli form.

Next we study the behaviour at the infinity of the Bochner-Martinelli form. We consider the projective space \mathbb{P}^{n} with complex coordinates $\left[x_{0}, \cdots, x_{n}\right]$ and we look at \mathbb{C}^{n} as the complement of the hyperplane H defined by the equation $x_{0}=0$. Let P be a point of H where $x_{1} \neq 0$. Then we can write

$$
z_{j}=\frac{x_{j}}{x_{0}}, \quad j=1, \cdots n
$$

so that the local coordinates v_{j} around P are related to the coordinates z_{j} by the formulas

$$
z_{1}=\frac{1}{v_{1}}, \quad z_{s}=\frac{v_{s}}{v_{1}} \text { for } s=2, \cdots, n
$$

and H is defined by the equation $v_{1}=0$. Substituting the above relations in the formula $(1.2)(w=0)$ we find that the Bochner-Martinelli form has a logarithmic singularity along H, whose residue is

$$
-\frac{\left(d \bar{v}_{2} \wedge \cdots \wedge d \bar{v}_{n} \wedge d v_{2} \wedge \cdots \wedge d v_{n}\right)}{\left(1+\sum_{k=2}^{n}\left|v_{k}\right|^{2}\right)^{n}}
$$

2. The Leray residue theorem for a divisor with normal crossings.

In this section, X is a complex analytic manifold and $D=D_{1} \cup \cdots \cup D_{N}$ is a divisor with normal crossings; that means that each D_{i} is a smooth hypersurface of X, and at each point $x \in X$, there are at most $n=\operatorname{dim}_{C} X$ divisors D_{j} passing through x and which are transversal. In particular, given x, one can find complex analytic coordinates $\left(z_{1}, \cdots, z_{n}\right)$ in a neighborhood U of x, such that the local equation of $D \cap U$ in U is $z_{1} \cdots z_{s}=0$,s depending on x.

We define for any ordered multiindex $I=\left(i_{1}, \cdots, i_{q}\right) \subset(1, \ldots, N)$

$$
D_{I}=D_{i_{1}} \cap \cdots \cap D_{i_{q}}
$$

and

$$
D^{[q]}=\amalg_{|I|=q} D_{I}, \quad D^{[0]}=X
$$

where the symbol \amalg denotes the disjoint union. Then the $D^{[q]}$ are manifolds (not connected in general).

The residue theorem.

Let $L_{i} \rightarrow X$ be the line bundle associated to D_{i}, and h_{i} a hermitian metrics on L_{i}. We denote by s_{i} a holomorphic section of L_{i} vanishing exactly on D_{i}. There exists a neighborhood of D_{i} in X diffeomorphic to a neighborhood of D_{i} (embedded as the zero section) in L_{i}. For $\epsilon_{i}>0$ small enough we consider the tube around D_{i} :

$$
T_{\epsilon_{i}}=\left\{x \in X:\left\|s_{i}(x)\right\|<\epsilon_{i}\right\}
$$

where the length $\left\|s_{i}(x)\right\|$ is taken with respect to the metrics h_{i}.
Let us define

$$
\begin{equation*}
T_{\underline{\epsilon}}=\bigcup_{i} T_{\epsilon_{i}} \tag{2.1}
\end{equation*}
$$

The boundary $\partial T_{\underline{\epsilon}}$ is a cycle of dimension $2 n-1$ in $X \backslash D$.
Let ω be a form of type $(n, n-1)$ on a neighborhood of D, d-closed (hence $\bar{\partial}$-closed), having logarithmic singularities along D.

We define the residue of ω on D. Let x be a smooth point of D; it belongs to a unique component D_{j} of D. Let $\zeta_{j}=0$ be the equation of D_{j} in a neighborhood U of x; on U we can write

$$
\left.\omega\right|_{U}=\frac{d \zeta_{j}}{\zeta_{j}} \wedge \psi+\theta
$$

where ψ, θ are C^{∞} on U. We put

$$
\left.\operatorname{Res} \omega\right|_{U \cap D_{j}}=\left.\psi\right|_{U \cap D_{j}}
$$

and we get a well defined $(n-1, n-1)$ form Res ω on the disjoint union $\bigcup_{j}\left(D_{j} \backslash \operatorname{Sing}(D)\right)$ $=D \backslash \operatorname{Sing}(D)$, having logarithmic singularities along each $D_{j} \cap \operatorname{Sing}(D)$.

Lemma 2.1. The form Res ω is integrable on D_{j}.
Theorem 2.2. Let X be a complex manifold of complex dimension $n \geq 2, D \subset X$ a divisor with normal crossings, ω a differential form of type $(n, n-1)$, with compact support, on X, having logarithmic singularities along D. Then

$$
\lim _{\epsilon \rightarrow 0} \int_{\partial T_{\epsilon}} \omega=2 i \pi \int_{D} \operatorname{Res} \omega
$$

with $T_{\underline{\epsilon}}=\bigcup_{i} T_{\epsilon_{i}}$ as in (2.1).

3. Logarithmic differential forms and the mixed Hodge structure on cohomology.

By a pair (of complex spaces) (X, Q) we mean the data of a complex space X and of a closed, nowhere dense complex subspace Q. Let $\rho: X \backslash Q \rightarrow X$ be the natural embedding.

If X is smooth and $Q=D$ is a divisor with normal crossings, a logarithmic differential k-form on X (with poles of order $\leq l$ along D) is a form ω on $X \backslash D$ which, in a sufficiently small neighborhood of any $x \in D$ can be written as

$$
\begin{equation*}
\omega=\sum_{|I| \leq l} \alpha_{I} \wedge\left(\frac{d z}{z}\right)^{I} \tag{3.1}
\end{equation*}
$$

where $\left(\frac{d z}{z}\right)^{I}=\frac{d z_{i_{1}}}{z_{i_{1}}} \wedge \cdots \wedge \frac{d z_{i_{l}}}{z_{i_{l}}}$.
The differential $d \omega$ of a logarithmic form (with poles of order $\leq l$) is logarithmic (with poles of order $\leq l)$. The above definition has a local nature: we can define a logarithmic form on $Y \backslash D$ for any open subset $Y \subset X$, hence the sheaf $\mathcal{E}_{X}^{k}<\log D>$ of the logarithmic k-forms is well defined, and $\mathcal{E}_{X}<\log D>$ is a complex of fine sheaves on X.

The logarithmic forms on any open set $Y \subset X$ are particular differential forms on $Y \backslash D$, hence we have an inclusion

$$
\mathcal{E}_{X}<\log D>\subset \rho_{*} \mathcal{E}_{X \backslash D}
$$

where $\rho: X \backslash D \hookrightarrow X$ is the natural inclusion map.
The following statements (Griffiths-Schmid) hold:

- every closed differential form on $X \backslash D$ is cohomologous to a logarithmic form;
- every logarithmic differential form on $X \backslash D$ which is exact, is the differential of a logarithmic form.

The main consequence of the above result is that the cohomology of $X \backslash D$ is the cohomology of the complex of global sections $\Gamma\left(X, \mathcal{E}_{X}<\log D>\right)$:

$$
H^{k}\left(X, \mathcal{E}_{X}<\log D>\right) \simeq H^{k}\left(X, \rho_{*} \mathcal{E}_{W \backslash D}\right) \simeq H^{k}(X \backslash D, \mathbb{C})
$$

We introduce the weight filtration W on $\mathcal{E}_{X}^{k}<\log D>$, just defining $W_{l} \mathcal{E}_{X}^{k}<\log D>$ as the subsheaf of $\mathcal{E}_{X}^{k}<\log D>$ of the forms having poles of order $\leq l$.

If X is smooth and Q is any closed subspace, a a differential k-form ω on $X \backslash Q$ is said logarithmic along Q if for some blowing-up

$$
\begin{array}{llr}
D & \xrightarrow{i} & \tilde{X} \\
\downarrow & & \pi \downarrow \\
Q & \xrightarrow{j} & X
\end{array}
$$

such that D is a divisor with normal crossing, the pull-back $\pi^{*} \omega$ is logarithmic along D.
For a pair (X, Q), where X is possibly singular, we define a complex (in fact, a family of complexes) of fine sheaves $\left(\Lambda_{X}<\log Q>, d\right)$ on X with the following properties.
(I) The restriction $\Lambda_{X \backslash Q}=\Lambda_{X}<\log Q>\left.\right|_{X \backslash Q}$ of $\Lambda_{X}<\log Q>$ to $X \backslash Q$ is a resolution of the constant sheaf \mathbb{C} on $X \backslash Q$, and the natural morphism of complexes

$$
\Lambda_{X}<\log Q>\rightarrow \rho_{*} \Lambda_{X \backslash Q}
$$

induces isomorphisms in cohomology:

$$
\begin{equation*}
H^{k}\left(X, \Lambda_{X}<\log Q>\right)=H^{k}\left(X, \rho_{*} \Lambda_{X \backslash Q}\right)=H^{k}(X \backslash Q, C) \tag{3.2}
\end{equation*}
$$

in other words the cohomology of $X \backslash Q$ can be calculated as the cohomology of the complex of sections $\left(\Gamma\left(X, \Lambda_{X}<\log Q>\right), d\right)$ of $\Lambda_{X}<\log Q>$.
(II) For $k>2 \operatorname{dim} X, \Lambda_{X}^{k}<\log Q>=0$.

The complex $\Lambda_{X}<\log Q>$ will be called a logarithmic complex for a pair (X, Q); we recall its construction.

Let (X, Q) be any pair, $E=\operatorname{Sing}(X)$; let us consider a diagram of desingularization of X

$$
\begin{array}{rlr}
\tilde{E} & \xrightarrow{i} & \tilde{X} \\
q \downarrow & & \pi \downarrow \tag{3.3}\\
E & \xrightarrow{j} & X
\end{array}
$$

where \tilde{X} is a smooth manifold, $\tilde{E}=\pi^{-1}(E)$, and π induces by restriction an isomorphism $\tilde{X} \backslash \tilde{E} \simeq X \backslash E$. Let

$$
\tilde{Q}=\pi^{-1}(Q), M=E \cap Q, \tilde{M}=\tilde{E} \cap \tilde{Q}
$$

We suppose that \tilde{Q} is a divisor with normal crossings.
By induction on $\operatorname{dim}(X)$ we can find complexes $\Lambda_{E}<\log M>$ and $\Lambda_{\tilde{E}}<\log \tilde{M}>$, corresponding to the pairs (E, M) and (\tilde{E}, \tilde{M}), a pullback

$$
\begin{equation*}
\phi: \Lambda_{E}<\log M>\rightarrow \Lambda_{\tilde{E}}<\log \tilde{M}> \tag{3.4}
\end{equation*}
$$

a pullback

$$
\psi: \mathcal{E}_{\tilde{X}}<\log \tilde{Q}>\rightarrow \Lambda_{\tilde{E}}<\log \tilde{M}>
$$

so that we define the complex

$$
\begin{equation*}
\Lambda_{X}^{k}<\log Q>=\pi_{*} \mathcal{E}_{\tilde{X}}^{k}<\log \tilde{Q}>\oplus j_{*} \Lambda_{E}^{k}<\log M>\oplus(j \circ q)_{*} \Lambda_{\tilde{E}}^{k-1}<\log \tilde{M}> \tag{3.5}
\end{equation*}
$$

whose differential is by definition

$$
\begin{equation*}
d(\omega, \sigma, \theta)=\left(d \omega, d \sigma, d \theta+(-1)^{k}(\psi(\omega)-\phi(\sigma))\right. \tag{3.6}
\end{equation*}
$$

Note that $\Lambda_{X}^{k}<\log Q>$ is a fine sheaf defined on all of X.
From the construction of $\Lambda_{X}<\log Q>$ it follows that there is a uniquely determined family $\left(\left(X_{a}, Q_{a}\right), h_{a}\right)_{a \in A}$ of pairs $\left(X_{a}, Q_{a}\right)$, where X_{a} is a smooth manifold and Q_{a} is (either empty or) a divisor with normal crossings in X_{a}, and proper maps of pairs $h_{a}:\left(X_{a}, Q_{a}\right) \rightarrow(X, Q)$ such that

$$
\begin{equation*}
\Lambda_{X}^{k}<\log Q>=\bigoplus_{a \in A}\left(h_{a}\right)_{*} \mathcal{E}_{X_{a}}^{k-q(a)}<\log Q_{a}> \tag{3.7}
\end{equation*}
$$

where $q(a)=q_{X}(a)$ is a nonnegative integer, which depends only on $a \in A$ and not on k. The family $\left(X_{a}, Q_{a}\right)_{a \in A}$ will be called the hypercovering of (X, Q) associated to the complex $\Lambda_{X}<\log Q>$, and $q_{X}(a)$ will be the rank of $\left(X_{a}, Q_{a}\right)$.

Remark.

1) In the situation of the diagram (3.3) and of the complex (3.5), we notice that ($\tilde{X}, \tilde{Q})$ is a pair $\left(X_{a}, Q_{a}\right)$ of the hypercovering, with $q(a)=0$.
2) Notice also that $\operatorname{dim} X_{a} \leq \operatorname{dim} X$, and equality holds if and only if $X_{a}=\tilde{X}$.

The weight filtration W and the Hodge filtration F.

If $\Lambda_{X}<\log Q>$ is a logarithmic complex, we can rewrite the equation (3.5) defining the complex as

$$
\begin{equation*}
\Lambda_{X}^{k}<\log Q>=\mathcal{E}_{\tilde{X}}^{k}<\log \tilde{Q}>\oplus \Lambda_{E}^{k}<\log M>\oplus \Lambda_{\tilde{E}}^{k-1}<\log \tilde{M}> \tag{3.8}
\end{equation*}
$$

where we have skipped the symbols of direct images of sheaves. The weight filtration W on the complex $\left(\Lambda_{X}<\log Q>, d\right)$ is defined by the formula

$$
\begin{gather*}
W_{m} \Lambda_{X}^{k}<\log Q>= \\
=W_{m} \mathcal{E}_{\tilde{X}}^{k}<\log \tilde{Q}>\oplus W_{m} \Lambda_{E}^{k}<\log M>\oplus W_{m+1} \Lambda_{\tilde{E}}^{k-1}<\log \tilde{M}> \tag{3.9}
\end{gather*}
$$

In (3.9) $W_{m} \Lambda_{E}^{k}<\log M>$ and $W_{m+1} \Lambda_{\tilde{E}}^{\tilde{Q}} \tilde{D}^{k-1}<\log \tilde{M}>$ are defined by recursion on the dimension of the spaces, and $W_{m} \mathcal{E}_{\tilde{X}}<\log \tilde{Q}>$ is the filtration by the order of the poles. $\left(\Lambda_{X}<\log Q>, d\right)$ is a filtered complex for W_{m} :

$$
\begin{equation*}
d\left(W_{m} \Lambda_{X}^{k}<\log Q>\right) \subset W_{m} \Lambda_{X}^{k+1}<\log Q> \tag{3.10}
\end{equation*}
$$

As well, the Hodge filtration F on the complex $\left(\Lambda_{X}<\log Q>, d\right)$ is defined by the formula

$$
\begin{gather*}
F^{p} \Lambda_{X}^{k}<\log Q>= \\
=F^{p} \mathcal{E}_{\tilde{X}}^{k}<\log \tilde{Q}>\oplus F^{p} \Lambda_{E}^{k}<\log M>\oplus F^{p} \Lambda_{\tilde{E}}^{k-1}<\log \tilde{M}> \tag{3.11}
\end{gather*}
$$

where $F^{p} \Lambda_{E}^{k}<\log M>$ and $F^{p} \Lambda_{\tilde{E}}^{k-1}<\log \tilde{M}>$ are defined by recursion on the dimension of the spaces, and $F^{p} \mathcal{E}_{\tilde{X}}<\log \tilde{Q}>$ is the usual Hodge filtration.

By the isomorphism (3.2) the filtrations W and F induce a weight and a Hodge filtrations on the cohomology spaces $H^{k}(X \backslash Q, \mathbb{C})$, which we denote by the same symbols.

The spectral sequence associated to the weight filtration.
For the spectral sequences (associated to a filtration) we use notations, which are different from those which usually appear in the literature. In our notation $E_{r}^{m, k}, m$ is the degree of the filtration and k is the degree of the complex (the degree of differential forms in the case of the De Rham complex). In particular

$$
d_{r}: E_{r}^{m, k} \rightarrow E_{r}^{m-r, k+1}
$$

If one is willing to work with the classical indices $E_{r}^{\prime p, q}$ can use the following dictionary:

$$
\begin{aligned}
& E_{r}^{m, k}=E_{r}^{\prime-p, p+q} \\
& E_{r}^{\prime p, q}=E_{r}^{-m, k+m}
\end{aligned}
$$

The mixed Hodge structure.

Let us suppose that X is a compact complex space bimeromorphic to a Kähler manifold.
We consider the spectral sequence $E_{r}^{m, k}$ attached to the weight filtration of the complex $\Gamma\left(X, \Lambda_{X}<\log Q>\right)$.
The following (highly non trivial) results hold.

1) the first terms are

$$
\begin{equation*}
E_{1}^{m, k}=E_{1}^{m, k}(X)=\bigoplus_{a} E_{1}^{m+q(a), k-q(a)}\left(X_{a}\right) \tag{3.12}
\end{equation*}
$$

where

$$
\begin{equation*}
E_{1}^{r, s}\left(X_{a}\right)=H^{s-r}\left(Q_{a}^{[r]}, \mathbb{C}\right) \tag{3.13}
\end{equation*}
$$

(recall: $Q_{a}{ }^{[0]}=X_{a}$);
2) the spectral sequence degenerates at the level 2: $d_{r}=0$, hence $E_{r}^{m, k}=E_{2}^{m, k}$, for $r \geq 2$;
3) the second terms $E_{2}^{m, k}$ carry a pure Hodge structure, and they are isomorphic to the graded quotients $\frac{W_{m} H^{k}(X \backslash Q, \Phi)}{W_{m-1} H^{k}(X \backslash Q, \mathbb{C})}$ of the cohomology $H^{k}(X \backslash Q, C)$ with respect to the weight filtration;
4) the Hodge filtration on $E_{2}^{m, k}$ coincides with the filtration induced in cohomology, by means of residues, by the Hodge filtration of the complex $\Lambda_{X}<\log Q>$.

4. The general Bochner-Martinelli formula.

Definition 4.1. Let U be a complex space, $S \subset U$ a closed subspace. Let α be a differential form on $U \backslash(\operatorname{Sing}(U) \cup S)$. We say that α is logarithmic along S if there exists a proper modification $\pi: \tilde{U} \rightarrow U$ with the following properties

1) \tilde{U} is non singular;
2) π induces an isomorphism $h: \tilde{U} \backslash \pi^{-1}(\operatorname{Sing}(U) \cup S) \rightarrow U \backslash(\operatorname{Sing}(U) \cup S)$;
3) $\tilde{S}=\pi^{-1}(S)$ is a divisor with normal crossings in \tilde{U};
4) $\pi^{*} \alpha$ extends to a differential form on $\tilde{U} \backslash \tilde{S}$, logarithmic along \tilde{S}.

If S is a point $P \in U$, we will say that α is logarithmic at P.
Throughout the present talk, U will be a complex space of complex dimension $n \geq 2$, subject to the following assumption: there exist a compact complex space X bimeromorphic to a Kähler manifold, and a closed subspace $T \subset X$, such that $X \backslash T=U$. An affine, or a quasi projective variety U satisfies the above property (X is a projective compactification of $U)$.

Let $p: Y \rightarrow X$ be a desingularization of X (so that $p^{-1}(U)$ is a desingularization of $U)$.

Let P be a point of U. Let $u: \tilde{X} \rightarrow Y$ be the blowing-up of Y along a suitable subspace of the fiber $p^{-1}(P)$ such that $D=(p \circ u)^{-1}(P)$ is a divisor with normal crossings in \tilde{X}. We denote $\pi: \tilde{X} \rightarrow X$ the composition $p \circ u$. Let $\tilde{U}=\pi^{-1}(U)$. Then $\tilde{U} \backslash D$ is a desingularization of $U \backslash\{P\}$. Replacing Y by a suitable blowing-up along a subspace of $p^{-1}(T)$ (not affecting $p^{-1}(U)$) we can assume that $H=Y \backslash p^{-1}(U)=\tilde{X} \backslash \tilde{U}$ is also a divisor with normal crossings.

The cohomology groups $H^{k}(U \backslash\{P\}, C)$ carry a mixed Hodge structure [D]. We are interested in the case $k=2 n-1$. We follow the contructions in [AG], part II, chapters 2 and 4 to describe the mixed Hodge structure.
Let

$$
Q=T \cup\{P\}
$$

Let us fix a complex $\Lambda_{X}<\log Q>$ corresponding to the above desingularization \tilde{X} of X, and let $\left(\left(X_{a}, Q_{a}\right)\right)$ be the associated hypercovering. Let $n_{a}=\operatorname{dim} X_{a}$. Let us notice that

$$
\tilde{Q}=D \cup H
$$

hence (\tilde{X}, \tilde{Q}) is a pair of the hypercovering. The weight filtration W_{m} of the complex $\Gamma\left(X, \Lambda_{X}<\log Q>\right)$ gives rise to a spectral sequence whose first term, by (3.12) and (3.13), is

$$
\begin{equation*}
E_{1}^{m, k}=E_{1}^{m, k}(X)=\bigoplus_{a} E_{1}^{m+q(a), k-q(a)}\left(X_{a}\right) \tag{4.1}
\end{equation*}
$$

where

$$
\begin{equation*}
E_{1}^{m+q(a), k-q(a)}\left(X_{a}\right)=H^{k-m-2 q(a)}\left(Q_{a}^{[m+q(a)]}, \mathbb{C}\right) \tag{4.2}
\end{equation*}
$$

which vanishes unless

$$
k-m-2 q(a) \leq 2 n_{a}-2 m-2 q(a)
$$

that is

$$
\begin{equation*}
k \leq 2 n_{a}-m \tag{4.3}
\end{equation*}
$$

We want to compute the term $E_{2}^{1,2 n-1}$ of the spectral sequence, hence we are interested in $E_{1}^{0,2 n}, E_{1}^{1,2 n-1}$ and $E_{1}^{2,2 n-2}$. For $(m, k)=(0,2 n),(1,2 n-1),(2,2 n-2)$, from (4.3) we obtain $n_{a}=n$. There is only one X_{a} with $n_{a}=n$, that is $X_{a}=\tilde{X}$. The corresponding $q(a)$ is zero.
It follows

$$
\begin{gathered}
E_{1}^{0,2 n}=H^{2 n}(\tilde{X}, \mathbb{C}) \\
E_{1}^{1,2 n-1}=\bigoplus_{l=1}^{p} H^{2 n-2}\left(H_{l}, \mathbb{C}\right) \oplus \bigoplus_{l s=1}^{N} H^{2 n-2}\left(D_{s}, \mathbb{C}\right)
\end{gathered}
$$

where $H=H_{1} \cup \cdots \cup H_{p}$ and $D=D_{1} \cup \cdots \cup D_{N}$ are the decompositions of the divisors H and D into irreducible components, and

$$
E_{1}^{2,2 n-2}=H^{2 n-4}\left(H^{[2]}, \mathbb{C}\right) \oplus H^{2 n-4}\left(D^{[2]}, \mathbb{C}\right)
$$

It follows that $E_{1}^{0,2 n}, E_{1}^{1,2 n-1}$ and $E_{1}^{2,2 n-2}$ carry a pure Hodge structure of weight $2 n$, $2 n-2$ and $2 n-4$ respectively, admitting only elements of type $(n, n),(n-1, n-1)$, ($n-2, n-2$) respectively.
The differentials

$$
d_{1}^{1,2 n-1}: E_{1}^{1,2 n-1} \rightarrow E_{1}^{0,2 n}, \quad d_{1}^{2,2 n}: E_{1}^{2,2 n-2} \rightarrow E_{1}^{1,2 n-1}
$$

are sums with coefficients ± 1 of Gysin maps, which are morphism of pure Hodge structures (suitably shifted).
The term

$$
E_{2}^{1,2 n-1}=\frac{\operatorname{Ker} d_{1}^{1,2 n-1}}{\operatorname{Im} d_{1}^{0,2 n}}
$$

carries a pure Hodge structure of weight $2 n-2$ whose elements are of pure type ($n-1, n-1$). Since the Hodge filtration on $E_{2}^{1,2 n-1}$ is induced, by means of residues, by the Hodge filtration on $\Lambda_{X}<\log Q>$, and the spectral sequence degenerates at E_{2}, we obtain the following

Theorem 4.2. Let W_{m} be the weight filtration on the cohomology $H^{2 n-1}(U \backslash\{P\}, \mathbb{C})$, and denote $B M(U \backslash\{P\})=\frac{W_{1} H^{2 n-1}(U \backslash\{P\}, \mathbb{C})}{W_{0} H^{2 n-1}(U \backslash\{P\}, \mathbb{C})}$, which is isomorphic to $E_{2}^{1,2 n-1}$. For any element $\alpha \in B M(U \backslash\{P\})$ there exists a differential form ω on $U \backslash\{P\}$, logarithmic at P
and along T (in sense of definition 4.1), of type ($n, n-1$), d-closed (hence $\bar{\partial}$-closed), whose class modulo W_{0} is α. Such a form will be called a Bochner-Martinelli form on $U \backslash\{P\}$.

By construction the form ω is in fact a differential form on $\tilde{X} \backslash(D \cup H)$, logarithmic along $D \cup H$, and has the property that the residue Res ω is a closed form of type $(n-1, n-1)$ on $D_{1} \sqcup \cdots \sqcup D_{N} \sqcup H_{1} \sqcup \cdots \sqcup H_{p}$ which detects an element of Ker $d_{1}^{1,2 n-1}$.

A Bochner-Martinelli form ω on $U \backslash\{P\}$ induces an ordinary differential form of type $(n, n-1)$ on $U \backslash\{P\} \backslash \operatorname{Sing}(U)$ which we still denote ω.

Theorem 4.3. Let ω be a Bochner-Martinelli form on $U \backslash\{P\}, \Omega \subset U$ a relatively compact domain containing the point P, such that $\bar{\Omega}$ is subanalytic, and no component of $\partial \Omega$ is contained in $\operatorname{Sing}(U)$. Let f be a holomorphic function on Ω, continuous on $\bar{\Omega}$. Then the integral of $f \omega$ converges on $\partial \Omega \backslash \operatorname{Sing}(U)$ and the following equality holds:

$$
\begin{equation*}
2 i \pi f(P) \int_{D} \operatorname{Res} \omega=\int_{\partial \Omega \backslash \operatorname{Sing}(U)} f \omega \tag{4.4}
\end{equation*}
$$

Proof. Since $\bar{\Omega}$ is subanalytic, the closure of $\pi^{-1}(\bar{\Omega} \backslash \operatorname{Sing}(U))$ in \tilde{U} is subanalytic. Hence one can define the strict transforms $\tilde{\Omega}$ and $\bar{\Omega}$, through π, of Ω and $\bar{\Omega}$ respectively. Because ω is logarithmic along D, by theorem 2.2

$$
\lim _{\epsilon \rightarrow 0} \int_{\partial T_{\underline{\epsilon}}}(f \circ \pi) \omega=2 i \pi \int_{D} \operatorname{Res}((f \circ \pi) \omega)
$$

where $T_{\underline{\epsilon}}=\bigcup_{i} T_{\epsilon_{i}}$ is a neighborhood of D defined as in (2.1). Because $(f \circ \pi)$ is constant on H, Res $((f \circ \pi) \omega)=f(P)$ Res ω; because $f \omega$ is $\bar{\partial}$-closed, hence d-closed, on $\tilde{U} \backslash D$,

$$
\int_{\partial T_{\underline{\epsilon}}}(f \circ \pi) \omega=\int_{\partial \tilde{\Omega}}(f \circ \pi) \omega
$$

It is clear that $\partial \tilde{\Omega}$ and $\partial \Omega \backslash \operatorname{Sing}(U)$ differ by a set of measure zero, so that

$$
\int_{\partial \tilde{\Omega}}(f \circ \pi) \omega=\int_{\partial \Omega \backslash \operatorname{Sing}(U)} f \omega
$$

which implies (4.4).
Remark. The space $B M(U \backslash\{P\})$ is intrinsic, because the mixed Hodge structure on $H^{2 n-1}(U \backslash\{P\}, C)$ is unique. In particular, it does not depend on the choice of a desingularization of X.

Let us remark also that a closed $(2 n-1)$-form whose class is in $B M(U \backslash\{P\})$ is a Bochner-Martinelli form if and only if it has type ($n, n-1$); otherwise it is not necessarily $\bar{\partial}$-closed.

The following theorem gives more information about the Bochner-Martinelli forms.

Theorem 4.4. Under the assumptions of theorem 4.3, let ω_{1} and ω_{2} be two BochnerMartinelli forms on $U \backslash\{P\}$. Then
i) ω_{1} and ω_{2} are cohomologous for d as logarithmic forms if and only if they are cohomologous for d as forms on $\tilde{X} \backslash \tilde{Q}$; as well, they are cohomologous for $\bar{\partial}$ as logarithmic forms if and only if they are cohomologous for $\bar{\partial}$ as forms on $\tilde{X} \backslash \tilde{Q}$.
ii) ω_{1} and ω_{2} are cohomologous for d as logarithmic forms if and only if they are cohomologous for $\bar{\partial}$ as logarithmic forms.
iii) ω_{1} and ω_{2} have same class in $H^{2 n-1}(U \backslash\{P\}, C)$ if and only if they are cohomologous for d on $\tilde{X} \backslash \tilde{Q}$.
iv) Let $\Omega_{\tilde{X}}^{k}<\log \tilde{Q}>$ be the sheaf of holomorphic k-forms on $\tilde{X} \backslash \tilde{Q}$ which are logarithmic along \tilde{Q}. There is a natural surjective morphism

$$
\begin{equation*}
H^{n-1}\left(\tilde{X}, \Omega_{\tilde{X}}^{n}<\log \tilde{Q}>\right) \rightarrow B M(U \backslash\{P\}) \tag{4.5}
\end{equation*}
$$

inducing an isomorphism

$$
\begin{equation*}
\frac{W_{1} H^{n-1}\left(\tilde{X}, \Omega_{\tilde{X}}^{n}<\log \tilde{Q}>\right)}{W_{0} H^{n-1}\left(\tilde{X}, \Omega_{\tilde{X}}^{n}<\log \tilde{Q}>\right)} \simeq B M(U \backslash\{P\}) \tag{4.6}
\end{equation*}
$$

5. Dependence on the point: the Bochner-Martinelli Kernels.

Let us keep the notations and the assumptions of the previous section. Let $V \subset U$ be an open set of U. Let $Z=V \times X$, the diagram of desingularization of X :

We can suppose that $H=p^{-1}(T)$ is a divisor with normal crossings in Y. In $Z^{\prime}=$ $p^{-1}(V) \times Y$ let $R^{\prime}=\{(P, Q) \in Z: P=Q\}$. Then R^{\prime} is a closed subspace of Z^{\prime}, contained in $p^{-1}(V) \times p^{-1}(V)$, isomorphic to $p^{-1}(V)$. Let $\pi^{\prime}: \tilde{Z} \rightarrow Z^{\prime}$ be the blowing-up of Z^{\prime} along $R^{\prime}, \pi: \tilde{Z} \rightarrow Z$ the composite mapping, $\tilde{R}=\pi^{-1}\left(R^{\prime}\right)$. Finally, let $S=R^{\prime} \cup\left(p^{-1}(V) \times T\right)$, $\tilde{S}=\tilde{R} \cup \pi^{-1}\left(p^{-1}(V) \times H\right)$.

Let V_{1} be the open set of smooth points of V. For a point P of $V_{!}$let

$$
X_{P}=\{P\} \times X, \quad \tilde{X}_{P}=\pi^{-1}(\{P\} \times X)
$$

$$
\begin{gathered}
D_{P}=\tilde{X}_{P} \cap \tilde{R} \\
T_{P}=\{P\} \times T, \quad H_{P}=\{P\} \times H \\
Q_{P}=\{(P, P)\} \cup T_{P}, \quad \tilde{Q}_{P}=D_{P} \cup H_{P}
\end{gathered}
$$

It is easy to see that \tilde{X}_{P} is the blowing-up of $Y_{P}=\{P\} \times Y$ at the point (P, P), whose exceptional divisor is D_{P}. The pair $\left(X_{P}, Q_{P}\right)$ gives rise to a complex $\Lambda_{X_{P}}<\log Q_{P}>$ which describes the cohomology of $U \backslash\{P\}$, and there is a natural restriction mapping

$$
\Lambda_{Z}<\log S>\rightarrow \Lambda_{X_{P}}<\log Q_{P}>
$$

which is compatible with the respective differentials and weight filtrations.
Let $\pi_{1}: \tilde{Z} \rightarrow V$ be the composition of the blowing-up $\pi^{\prime}: \tilde{Z} \rightarrow Z^{\prime}=p^{-1}(V) \times Y$ with the projection $p^{-1}(V) \times Y \rightarrow V$.

Theorem 5.1. Let $U=X \backslash T$ be a complex space, such that X is a compact complex space bimeromorphic to a Kähler manifold, and T is a closed subspace of X; let $V \subset U$ be a Stein open subset of U, and P^{\prime} a smooth point of V. Let $R=\{(P, Q) \in V \times U: P=Q\}$. For every Bochner-Martinelli form $\omega \in B M\left(U \backslash\left\{P^{\prime}\right\}\right)$ on $U \backslash\left\{P^{\prime}\right\}$ there exists a form $\omega(P, Q)$ of type $(n, n-1)$ on $(V \times U) \backslash R, \bar{\partial}$-closed, logarithmic along R and $V \times T$ (in sense of definition 4.1), which induces ω and for each $P \in V$ a induces Bochner-Martinelli form on $U \backslash\{P\}$.

In other terms, the above theorem states, under the above assumptions, that BochnerMartinelli forms at smooth points admit $\overline{\bar{D}}$-closed, logarithmic kernels. We do not know if it is possible in general to find kernels of pure type $(n, n-1)$ which are also d-closed.

Corollary 5.2. Let U be a smooth affine variety, and $\Delta \subset U \times U$ be the diagonal. For every Bochner-Martinelli form $\omega \in B M\left(U \backslash\left\{P^{\prime}\right\}\right)$ on $U \backslash\left\{P^{\prime}\right\}$ there exists a form $\omega(P, Q)$ of type $(n, n-1)$ on $(U \times U) \backslash \Delta, \bar{\partial}$-closed, logarithmic along Δ and at infinity (in sense of definition 4.1), which induces ω and for each $P \in U$ induces a Bochner-Martinelli form on $U \backslash\{P\}$.

The Bochner -Martinelli form (1.2), as a form on $\mathbb{C}^{n} \times \mathbb{C}^{n}$, is not logarithmic along the diagonal $\Delta=\{(w, z): z=w\}$. In order to fulfill the conclusions of corollary 5.2 it must be replaced by the form

$$
\begin{equation*}
\tilde{\omega}(w, z)=\frac{\tilde{\omega}^{\prime}(\overline{z-w}, d(\overline{z-w})) \wedge d\left(z_{1}-w_{1}\right) \wedge \cdots \wedge d\left(z_{n}-w_{n}\right)}{\|z-w\|^{2 n}} \tag{5.1}
\end{equation*}
$$

with
$\tilde{\omega}^{\prime}(\overline{z-w}, d(\overline{z-w}))=\sum_{k=1}^{n}(-1)^{k}\left(\overline{z_{k}-w_{k}}\right) d\left(\overline{z_{1}-w_{1}}\right) \wedge \cdots \wedge d\left(\widehat{z_{k}-w_{k}}\right) \wedge \cdots \wedge d\left(\overline{z_{n}-w_{n}}\right)$
The form $\tilde{\omega}(w, z)$ is $\bar{\partial}$-closed and d-closed on $\left(\mathbb{C}^{n} \times \mathbb{C}^{n}\right) \backslash \Delta$, and is logaritmic along Δ (that is, its pullback to the blowing-up of $\mathbb{C}^{n} \times \mathbb{C}^{n}$ along Δ is logarithmic along the exceptional divisor).

Corollary 5.3. Let $\omega(P, Q)$ be a Bochner-Martinelli kernel as in theorem 5.1. The integral $\int_{D_{P}}$ Res $\omega(P, Q) d Q$ appearing in formula (4.4) is locally constant with respect to $P \in V$.

6. Integral formulas for differential forms.

Theorem 6.1. Let U be a complex manifold of complex dimension $n, V \subset U$ a connected open subset, $Z=V \times U, R=\{(P, Q) \in V \times U: P=Q\}, \pi: \tilde{Z} \rightarrow Z$ the blowing-up of Z along $R, \tilde{R}=\pi^{-1}(R)$. Let $\omega(w, z)$ be a differential form of type $(n, n-1)$ on $(V \times U) \backslash R, \bar{\partial}$ closed, logarithmic along R, (that is, its pullback to \tilde{Z} is logarithmic along \tilde{R}). Let $\Omega \subset U$ be a relatively compact domain with piecewise C^{1}-boundary, $\phi=\phi(z)$ a differential form of type (p, q) defined in a neighborhood of Ω. Then
(i) The integral

$$
C=\int_{\tilde{R} \cap\{w=\text { const }\}} \operatorname{Res} \omega(w, z)
$$

is constant with respect to $w \in V$.
(ii) One has the equality

$$
\begin{align*}
(-1)^{p+q} 2 i \pi C \phi & =\int_{z \in \partial \Omega} \phi(z) \wedge \omega(w, z)-\int_{z \in \Omega} \bar{\partial} \phi(z) \wedge \omega(w, z)+ \\
& +\bar{\partial} \int_{z \in \Omega} \phi(z) \wedge \omega(w, z) \quad(\text { on } \quad V) \tag{6.1}
\end{align*}
$$

We define, for a form η and $A=\Omega$ or $\partial \Omega$:

$$
\left(B_{A} \eta\right)(w)=\int_{z \in A} \eta(z) \wedge \omega(w, z)
$$

so that (6.1) can be written

$$
\begin{equation*}
(-1)^{p+q} 2 i \pi C \phi=B_{\partial \Omega} \phi-B_{\Omega}(\bar{\partial} \phi)+\bar{\partial}\left(B_{\Omega} \phi\right) \quad(\text { on } \quad V) \tag{6.2}
\end{equation*}
$$

Proof. (i) is a consequence of corollary 5.3.
(ii) Let $v(w)$ be a differential form of type $(n-p, n-q)$ with compact support on V. As in [HL] (theorem 1.11.1) we must prove the identity

$$
(-1)^{p+q} 2 i \pi C \int_{w \in V} \phi(w) \wedge v(w)=\int_{(w, z) \in V \times \partial \Omega} \phi(z) \wedge \omega(w, z) \wedge v(w)
$$

$$
-\int_{(w, z) \in V \times \Omega} \bar{\partial} \phi(z) \wedge \omega(w, z) \wedge v(w)-(-1)^{p+q-1} \int_{(w, z) \in V \times \Omega} \phi(z) \wedge \omega(w, z) \wedge \bar{\partial} v(w)
$$

The form $\phi(z) \wedge \omega(w, z) \wedge v(w)$ has type $(2 n, 2 n-1)$, hence

$$
\begin{gathered}
d(\phi(z) \wedge \omega(w, z) \wedge v(w))=\bar{\partial}(\phi(z) \wedge \omega(w, z) \wedge v(w)) \\
=\bar{\partial} \phi(z) \wedge \omega(w, z) \wedge v(w)+(-1)^{p+q-1} \phi(z) \wedge \omega(w, z) \wedge \bar{\partial} v(w)
\end{gathered}
$$

It follows from Stokes formula

$$
\begin{gathered}
\left.\int_{(w, z) \in(V \times \Omega) \backslash T_{\epsilon}} \bar{\partial} \phi(z) \wedge \omega(w, z) \wedge v(w)+(-1)^{p+q-1} \int_{(w, z) \in(V \times \Omega) \backslash T_{\epsilon}} \phi\right)(z) \wedge \omega(w, z) \wedge \bar{\partial} v(w) \\
=\int_{(w, z) \in V \times \partial \Omega} \phi(z) \wedge \omega(w, z) \wedge v(w)-\int_{(w, z) \in \partial T_{\epsilon}} \phi(z) \wedge \omega(w, z) \wedge v(w)
\end{gathered}
$$

where T_{ϵ} is a small tubular neighborhood of R in $V \times U . T_{\epsilon}$ is also a tubular neighborhood of \tilde{R} in \tilde{Z}. Thus the last integral can be computed on \tilde{Z} using the residue theorem:

$$
\lim _{\epsilon \rightarrow 0} \int_{(w, z) \in \partial T_{\epsilon}} \phi(z) \wedge \omega(w, z) \wedge v(w)=2 i \pi \int_{\tilde{R}} \operatorname{Res}\left(\pi_{2}^{*} \phi \wedge \pi^{*} \omega \wedge \pi_{1}^{*} v\right)
$$

where $\pi: \tilde{Z} \rightarrow V \times U$ is the blowing-up along R and $\pi_{1}: \tilde{Z} \rightarrow V, \pi_{2}: \tilde{Z} \rightarrow U$ are the projections. On \tilde{R} one has $\pi_{2}^{*} \phi=\pi_{1}^{*} \phi$ so that the integral becomes

$$
\begin{gathered}
(-1)^{p+q} 2 i \pi \int_{\tilde{R}} \pi_{1}^{*}(\phi \wedge v) \wedge \operatorname{Res} \pi^{*} \omega= \\
(-1)^{p+q} 2 i \pi \int_{w \in V} \phi(w) \wedge v(w) \int_{\tilde{R} \cap\{w=c o n s t\}} \operatorname{Res} \omega(w, z)=(-1)^{p+q} 2 i \pi C \int_{w \in V} \phi(w) \wedge v(w)
\end{gathered}
$$

Taking the limit for $\epsilon \rightarrow 0$ in the above formulas we get (6.1).
Theorem 6.2. (Bochner-Martinelli formula for differential forms). Let U be a normal complex space of complex dimension n; let $V \subset U$ be a connected open subset of U, $Z=V \times U, R=\{(P, Q) \in V \times U: P=Q\}, \pi: \tilde{Z} \rightarrow Z$ the blowing-up of Z along R, $\tilde{R}=\pi^{-1}(R)$, and $\omega(w, z)$ a Bochner-Martinelli kernel on $(V \times U) \backslash R(\bar{\partial}$-closed, logarithmic along R). Let $\Omega \subset U$ be a relatively compact domain such that $\bar{\Omega}$ is subanalytic, and no component of $\partial \Omega$ is contained in $\operatorname{Sing}(U), \phi=\phi(w)$ a differential form in sense of Grauert, of type (p, q), defined in a neighborhood of Ω. Then
(i) The integral

$$
C=\int_{\tilde{R} \cap\{w=\text { const }\}} \operatorname{Res} \omega(w, z)
$$

is constant with respect to $w \in V$.
(ii) The integrals

$$
B_{\partial \Omega \backslash \operatorname{Sing}(U)} \phi, B_{\Omega \backslash \operatorname{Sing}(U)}(\bar{\partial} \phi),\left(B_{\Omega \backslash \operatorname{Sing}(U)} \phi\right)
$$

converge on $V \backslash \operatorname{Sing}(U)$ and we have the equality

$$
\begin{equation*}
\left.(-1)^{p+q} 2 i \pi C \phi\right|_{V \backslash \operatorname{Sing}(U)}=B_{\partial \Omega \backslash \operatorname{Sing}(U)} \phi-B_{\Omega \backslash \operatorname{Sing}(U)}(\bar{\partial} \phi)+\bar{\partial}\left(B_{\Omega \backslash \operatorname{Sing}(U)} \phi\right) \tag{6.3}
\end{equation*}
$$

The form $\omega(w, z)$ lives by construction on a desingularization \tilde{X} of X, and the form ϕ extends to a form on \tilde{X}. Hence the proof of the theorem is an easy consequence of theorem 6.1 (on \tilde{X}) and its proof.

References

[AG] V. Ancona, B. Gaveau, Differential forms on singular varieties: De Rham and Hodge theory simplified. Pure and applied mathematics series, Chapman and Hall/CRC, Boca Raton, London, New York, Singapore 2005.
[AG1] V. Ancona, B. Gaveau, Families of differential forms on complex spaces, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 1, 119-150 (2002).
[D] P. Deligne, Théorie de Hodge II et III. Publ. Math. IHES, 40, 5-58, (1971) et 44, 5-77, (1974).
[Do] P. Dolbeault, Théorème de Plemelj en plusieurs variables. Riv. Mat. Univ. Parma (4) 10 (1984), special vol. $10^{*}, 47-54$.
[GH] P. Griffiths, J. Harris, Principles of algebraic geometry, Wiley Interscience, New York 1978.
[GS] P. Griffiths, W. Schmid, Recent developments in Hodge theory: a discussion of techniques and results, Proceedings of the International Colloquium on Discrete subgroups of Lie groups (Bombay 1973), Oxford university Press 1975.
[HL] G. M. Henkin, J. Leiterer, Theory of functions on complex manifolds, Monographs in mathematics 79, Birkhäuser, Basel-Boston-Stuttgart 1984.
[HL1] G. M. Henkin, J. Leiterer, Andreotti-Grauert theory by integral formulas. Progress in Mathematics, 74. Birkhäuser, Basel-Boston-Stuttgart 1988.
[HP] G. M. Henkin, P. L. Polyakov, The Grothendieck-Dolbeault lemma for complete intersections. C. R. Acad. Sci. Paris Sr. I Math. 308 (1989), no. 13, 405-409.
[HP1] G. M. Henkin, P. L. Polyakov, Integral formulas for solution of the ∂-equation, and interpolation problems in analytic polyhedra. Trudy Moskov. Mat. Obshch. 53 (1990), 130-170, 260-261; translation in Trans. Moscow Math. Soc. 1991, 135-175.
[LT] C. Laurent-Thiébaut, Formules intégrales et théorèmes du type "Bochner" sur une variété de Stein. C. R. Acad. Sci. Paris Sr. I Math. 295 (1982), no. 12, 661-664.
[L] J. Leray, Problème de Cauchy III, Bull. Soc. Math. France 87, 81-180 (1959).

