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EXTREMAL KÄHLER METRICS

• (M, J): a compact complex manifold.

• Ω ∈ H2(M, R): a Kähler class on M .

• ΩJ: the set of Kähler forms in Ω.

Calabi functional C : ΩJ → R;

C(ω) =
∫
M

Scal2ω volω .

Scalω is the scalar curvature of the induced

metric g = gω,J and volω is the volume form.

Fact (Calabi): ω ∈ ΩJ is a critical point of C
iff gradω Scalω is a Killing vector field.

Then ω is said to be extremal (gJ,ω is an

extremal Kähler metric).

Call Ω an extremal Kähler class on (M, J)

if ∃ω ∈ ΩJ extremal.
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BASIC QUESTIONS

1. Uniqueness? (Optimality)

2. Existence? (Usefulness)

SOME ANSWERS

1. Formally clear that extremal Kähler met-

rics in Ω are unique modulo automorphisms

of (M, J). Now proven analytically by Chen–

Tian (2005).

2. Conjectures of Donaldson, Tian and Yau:

Ω extremal ⇐⇐⇐==⇒⇒⇒ (M, J,Ω) K-polystable

⇐⇐⇐
==⇒⇒⇒

Ω has proper K-energy

⇐⇐⇐
=
=⇒⇒⇒

The precise notions of polystability and proper-

ness are not yet completely settled.
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THE EXTREMAL VECTOR FIELD

h0(M, J): Lie algebra of holomorphic vector
fields with zeros. H0(M, J): corresponding
connected group of automorphisms.

Fact (Calabi): for ω ∈ ΩJ extremal, G :=
Ham(M, ω)∩H0(M, J) is a maximal compact
subgroup of H0(M, J).

Fix G ⊂ H0(M, J) compact and let

ΩG
J = {ω ∈ ΩJ : ω is G-invariant}.

Note ω ∈ ΩG
J ⇒ G ⊂ Ham(M, ω). Let g̃ω ⊂

C∞(M, R) be the subspace of hamiltonian
generators for the G action (g̃ω

∼= g⊕ R).

C∞(M, R) = g̃ω ⊕ g̃⊥ω wrt. L2 inner product

Scalω = sω + s⊥ω .

Fact (Futaki–Mabuchi): for G maximal, χ :=
gradω sω ∈ g is independent of ω ∈ ΩJ.

ω extremal ⇔ gradω Scalω = χ ⇔ s⊥ω = 0

χ is called the extremal vector field.
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RELATIVE (OR MODIFIED) K-ENERGY

Fact (Mabuchi, Guan, Simanca):

σω(ddcf) =
∫
M

fs⊥ω volω

defines a closed 1-form on ΩG
J .

ΩG
J is contractible, so σ = −dE, where E : ΩG

J →
R is defined up to an additive constant. This

is the relative K-energy.

Clearly: ω is extremal ⇔ ω is critical for E.

The Mabuchi metric g is the L2 metric on

ΩG
J , i.e., gω(ddcf1, ddcf2) =

∫
M f1f2 volω.

Fact: E is geodesically convex wrt. g.

This underlies the Chen–Tian uniqueness re-

sult for extremal Kähler metrics. It also mo-

tivates the properness criterion. Chen–Tian

show that extremal Kähler metrics minimize

the relative K-energy.
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THE SYMPLECTIC VIEWPOINT

• (M, ω): a compact symplectic manifold.

• G ⊂ Ham(M, ω): a compact subgroup.

• DiffG
0 (M): connected normalizer of G in

Diff(M) (modulo G).

Let JG be an orbit of DiffG
0 (M) on the space

of G-invariant complex structures on M , and
let JG

ω be the set of ω-compatible J ∈ JG.

Fact: for any ω ∈ ΩG
J , there is an isomor-

phism JG
ω /SpG

0 (M, ω) ∼= ΩG
J /HG

0 (M, J).

Let g̃ ⊂ C∞(M, R) be the subspace of hamil-
tonian generators for the G action.

C∞(M, R) = g̃⊕ g̃⊥ wrt. L2 inner product

ScalJ = sJ + s⊥J .

Fact (Apostolov): sJ ∈ g̃ is independent of J

and so defines an potential for a symplectic
version of the extremal vector field.
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SCALAR CURVATURE AND STABILITY

Note µJ(gradω f) =
∫
M fs⊥J volω defines a map

µ : JG
ω → hamG(M, ω)∗

Fact (Donaldson, Fujiki): JG
ω is a (∞-diml.)

Kähler manifold with an isometric action of

HamG(M, ω) with momentum map µ.

µ−1(0) = {J : s⊥J = 0} is then the space of

extremal Kähler metrics in JG
ω .

Geometric Invariant Theory then motivates

the idea that there is a stability condition for

the existence of extremal Kähler metrics.
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SYMPLECTIC K-ENERGY

Suppose E is HG
0 (M, J)-invariant on ΩG

J . Then
it defines a symplectic version Ê of K-energy.

Note that TJJG
ω = {LZJ : Z = Z1 + JZ2}

where Z1 ∈ spG(M, ω), Z2 ∈ hamG(M, ω). Then

σ̂J(LZJ) =
∫
M

f2s⊥J volω,

where Z2 = gradω f2, is a closed 1-form and
σ̂ = dÊ.

Fact (Gauduchon): Ê is a Ham(M, ω)-invariant
Kähler potential along integral manifolds of
{LZJ : Z1, Z2 ∈ hamG(M, ω)}. Hence it is
strongly plurisubharmonic.

Observation: geodesics in ΩG
J correspond to

integral curves of the vector field J 7→ LJZ2
J

on JG
ω , where Z2 ∈ hamG(M, ω).

Extremal Kähler metrics are critical for Ê and
this provides another way to see their formal
uniqueness.
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K-STABILITY

Suppose Ω = 2πc1(L), so (M,Ω) is Hodge,
and there is a lift of the G-action to L. It
is convenient to take G ⊂ H0(M, J) to be a
maximal torus instead of a maximal compact.

A test configuration T for (M, L, G) is:

• a polarized complex variety (or scheme)
(X,L) with an action of G;

• a G-equivariant C× action α on (X,L);

• a G-invariant and C×-equivariant flat mor-
phism p : X → C

such that (Xt,Lt)
∼= (M, L) for some t 6= 0.

(Here Xt = p−1(t) and Lt = L|Xt
.)

α induces a C× action on (X0,L0) which is
called the central fibre of (X,L).

This action has a weight called the relative
(or modified) Futaki invariant FΩ(T ) of T .

(M, L) is (relatively) K-polystable if FΩ(T ) ≥
0 for all T , with equality if X = M ×C and α
is induced by a C× action on M .
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BUNDLE CONSTRUCTIONS

Build Kähler metrics on bundles M → S for:

• S a compact Kähler 2d-manifold (e.g., Σg),

• T an `-torus (e.g., S1),

• P a principal T bundle over S (e.g., U(L)),

• V a compact Kähler manifold with an iso-
metric hamiltonian T -action (e.g., CP1),

such that M is (covered by) P ×T V , a com-
pact complex 2m-manifold with m = d +
dimC V ≥ d + ` (e.g., P (O ⊕ L) → Σg).

Simplifying assumptions:

S is (covered by)
∏

j(Sj, ωj) such that 2πc1(P )
pulls back to

∑
j[ωj]⊗ bj for bj ∈ t;

(V, T ) is essentially toric, i.e., its blow-up along
the fixed point sets of circle subgroups of T
is (covered by) P̃×T Ṽ → S̃, with Ṽ toric, and
S̃ a product of projective spaces.

Say M has order `. (P (O ⊕ L) has order 1).
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EXAMPLES

M = P (O ⊕ L) → Σ1 × · · · ×Σd (order 1).

M = P (O⊕L) → S1×· · ·×SN with L = ⊗jLj

and Lj a power of an ample line bundle on

Sj (order 1).

M = P (E) → S with E a projectively-flat

hermitian vector bundle (order 0).

M = P (E0 ⊕ E1 ⊕ · · · ⊕ E`) → S1 × · · · × SN

where Ej are projectively-flat hermitian vec-

tor bundles and c1(Ei)/rk(Ei)−c1(Ej)/rk(Ej)

is a linear combination of the Kähler forms

on the Sk (order `).

M = V toric (order dimC V ).

M = P×T V → S with V toric and S as before

(order dimC V ).
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M of order ` admit Kähler metrics of the form

g =
∑

j(〈bj, z〉+ cj)gj

+ 〈dz,Θ−1(z), dz〉+ 〈α,Θ(z), α〉,
ω =

∑
j(〈bj, z〉+ cj)ωj + 〈dz ∧ θ〉,

dα =
∑

jbjωj.

(z ∈ C∞(M, t∗) is the momentum map of the
T -action, and Θ(z) ∈ S2t∗ the matrix of in-
ner products of the generators, while θ is a
connection 1-form for P and cj ∈ R.)

In particular, if ` = 1, with cj = bj/xj, then
rescaling ωj by bj gives

g =
∑
j

1 + xjz

xj
gj +

dz2

Θ(z)
+ Θ(z)α2,

ω =
∑
j

1 + xjz

xj
ωj + dz ∧ θ,

dα =
∑
j

ωj.

If the image of z is [−1,1] and 0 < |xj| ≤ 1,
this generalizes the form of metric on ruled
surfaces as presented by Christina.

Note the symplectic viewpoint.
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EXTREMAL KÄHLER METRICS OF OR-
DER ONE

Suppose M has order one. Then for any ad-
missible Kähler class Ω = Ω(x) (i.e., contain-
ing a metric of the previous form) ∃! poly-
nomial FΩ(z) (the extremal polynomial) s.t.
TFAE

• Ω is extremal;

• g (as before), with Θ(z) = FΩ(z)/PΩ(z)
and PΩ(z) =

∏
j(1 + xjz)

dj, is extremal;

• FΩ(z) > 0 for z ∈ (−1,1).

This completely solves the existence problem
for a large class of ruled manifolds. How does
it relate to stability and properness?

AMAZING FACT: for z ∈ (−1,1)∩Q ∃ a test
configuration T (z) for (M,Ω, T ) such that
FΩ(T (z)) = FΩ(z).

So FΩ(z) > 0 for z ∈ (−1,1)∩Q is a stability
condition!
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AN EXAMPLE

What if FΩ(z) > 0 for z ∈ (−1,1) ∩ Q but

FΩ(z) = 0 for some z ∈ (−1,1) \Q?

This can happen.

Let M = P (O⊕(L1⊗L2⊗L3)) → Σ1×Σ2×Σ3.

Then the freedom in the genera of Σj and

degrees of Lj can be used to obtain FΩ(z) =

(1−z2)(z2+rz−1)2 for any r ∈ Q+. z2+rz−1

has an irrational root in (−1,1) for r in a

nonempty open subset of Q.

How to handle this problem?

1. Allow analytic test configurations.

2. Require a uniform bound on FΩ(T ):

FΩ(T ) ≥ λ||T ||

→ notion of uniform K-polystability (Székelyhidi).
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UNIFORM K-STABILITY

Let ||π(T )|| be the L2 norm of the generator

of the C× action on the central fibre (X0,L0)

projected orthogonally to g.

Defn (M,Ω, G) is L2-uniformly K-polystable

if ∃λ > 0 s.t. ∀ test configurations T ,

FΩ(T ) ≥ λ||π(T )||

A similar definition can be made for a wide

range of semi-norms on test configurations

as long as the semi-norm vanishes when the

test configuration is a product M × C.

In his work on toric surfaces, Donaldson uses

a boundary integral over the momentum poly-

gon to bound the Futaki invariant below.
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TORIC KÄHLER MANIFOLDS AND BUN-
DLES

Let M = P ×T V → S be a bundle of toric
Kähler manifolds. The image of z is a com-
pact convex polytope ∆ in t∗, generalizing
[−1,1] in the order one case.

Assume M is toric for simplicity (S = {pt}).

Let C = {f : ∆ → R convex}.

Let S be the space of “symplectic poten-
tials”: a subspace of strictly convex func-
tions such that S/{affine linear functions on
∆} ∼= J T

ω /HamT (M, ω) ∼= ΩT
J /HT

0(M, ω).

Then (Donaldson) as a function on S:

E(u) = −
∫
M

log detHess(u)dµ + FΩ(u)

where FΩ(u): C → R is linear.

The “amazing fact” generalizes: for any PL
f ∈ C there is a test configuration T (f) with
Futaki invariant FΩ(T (f)) = FΩ(f).
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TWO OBSERVATIONS OF DONALDSON,

ENHANCED.

Theorem For any λ > 0 TFAE:

1. (Uniform K-stability)

FΩ(f) ≥ λ||π(f)|| ∀ PL f ∈ C.

2. (Proper K-energy) For 0 ≤ δ < λ ∃Cδ s.t.

E(u) ≥ δ||π(u)||+ Cδ ∀u ∈ S

Idea of proof By approximation, can suppose

f, u smooth. Also without loss, π(f) = f and

π(u) = u.

(i) ⇒ (ii) Compare E to

Ea(u) := −
∫
M

log detHess(u)dµ + Fa(u)

where Fa(u) (linear) is chosen so that Ea is

bounded below.

(ii) ⇒ (i) Consider E(u + kf) and let k →∞.

17


