Stability and Extremal Metrics on Ruled Manifolds

David M. J. Calderbank

University of York

Luminy, October 2006

Joint work with

- Vestislav Apostolov
- Paul Gauduchon
- Christina Tønnesen-Friedman

Hamiltonian 2-forms in Kähler geometry III, Extremal metrics and stability, math.DG/0511118.

EXTREMAL KÄHLER METRICS

- (M, J): a compact complex manifold.
- $\Omega \in H^2(M, \mathbb{R})$: a Kähler class on M.
- Ω_J : the set of Kähler forms in Ω .

Calabi functional $\mathcal{C}: \Omega_J \to \mathbb{R};$

$$\mathcal{C}(\omega) = \int_M \operatorname{Scal}_{\omega}^2 \operatorname{vol}_{\omega}.$$

Scal_{ω} is the scalar curvature of the induced metric $g = g_{\omega,J}$ and vol_{ω} is the volume form.

Fact (Calabi): $\omega \in \Omega_J$ is a critical point of C iff grad_{ω} Scal_{ω} is a Killing vector field.

Then ω is said to be **extremal** $(g_{J,\omega})$ is an extremal Kähler metric).

Call Ω an **extremal Kähler class** on (M, J)if $\exists \omega \in \Omega_J$ extremal.

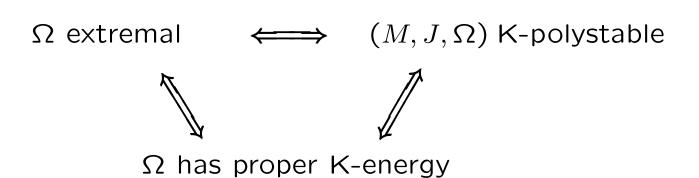
BASIC QUESTIONS

- 1. Uniqueness? (Optimality)
- 2. Existence? (Usefulness)

SOME ANSWERS

1. Formally clear that extremal Kähler metrics in Ω are unique modulo automorphisms of (M, J). Now proven analytically by Chen-Tian (2005).

2. Conjectures of Donaldson, Tian and Yau:



The precise notions of polystability and properness are not yet completely settled.

THE EXTREMAL VECTOR FIELD

 $\mathfrak{h}_0(M, J)$: Lie algebra of holomorphic vector fields with zeros. $H_0(M, J)$: corresponding connected group of automorphisms.

Fact (Calabi): for $\omega \in \Omega_J$ extremal, G :=Ham $(M, \omega) \cap H_0(M, J)$ is a maximal compact subgroup of $H_0(M, J)$.

Fix $G \subset H_0(M, J)$ compact and let

 $\Omega_J^G = \{ \omega \in \Omega_J : \omega \text{ is } G \text{-invariant} \}.$

Note $\omega \in \Omega_J^G \Rightarrow G \subset \operatorname{Ham}(M, \omega)$. Let $\tilde{\mathfrak{g}}_{\omega} \subset C^{\infty}(M, \mathbb{R})$ be the subspace of hamiltonian generators for the *G* action ($\tilde{\mathfrak{g}}_{\omega} \cong \mathfrak{g} \oplus \mathbb{R}$).

 $C^{\infty}(M,\mathbb{R}) = \tilde{\mathfrak{g}}_{\omega} \oplus \tilde{\mathfrak{g}}_{\omega}^{\perp}$ wrt. L_2 inner product Scal $_{\omega} = s_{\omega} + s_{\omega}^{\perp}$.

Fact (Futaki–Mabuchi): for G maximal, $\chi :=$ grad_{ω} $s_{\omega} \in \mathfrak{g}$ is independent of $\omega \in \Omega_J$.

 $\omega \text{ extremal } \Leftrightarrow \operatorname{grad}_{\omega} \operatorname{Scal}_{\omega} = \chi \Leftrightarrow s_{\omega}^{\perp} = 0$

 χ is called the **extremal vector field**.

RELATIVE (OR MODIFIED) K-ENERGY

Fact (Mabuchi, Guan, Simanca):

$$\sigma_{\omega}(dd^{c}f) = \int_{M} fs_{\omega}^{\perp} \operatorname{vol}_{\omega}$$

defines a closed 1-form on Ω_J^G .

 Ω_J^G is contractible, so $\sigma = -d\mathcal{E}$, where $\mathcal{E} : \Omega_J^G \to \mathbb{R}$ is defined up to an additive constant. This is the relative K-energy.

Clearly: ω is extremal $\Leftrightarrow \omega$ is critical for \mathcal{E} .

The Mabuchi metric g is the L_2 metric on Ω_J^G , i.e., $g_{\omega}(dd^c f_1, dd^c f_2) = \int_M f_1 f_2 \operatorname{vol}_{\omega}$.

Fact: \mathcal{E} is geodesically convex wrt. g.

This underlies the Chen–Tian uniqueness result for extremal Kähler metrics. It also motivates the properness criterion. Chen–Tian show that extremal Kähler metrics minimize the relative K-energy.

THE SYMPLECTIC VIEWPOINT

- (M, ω) : a compact symplectic manifold.
- $G \subset Ham(M, \omega)$: a compact subgroup.
- $\text{Diff}_0^G(M)$: connected normalizer of G in Diff(M) (modulo G).

Let \mathcal{J}^G be an orbit of $\text{Diff}_0^G(M)$ on the space of *G*-invariant complex structures on *M*, and let \mathcal{J}^G_ω be the set of ω -compatible $J \in \mathcal{J}^G$.

Fact: for any $\omega \in \Omega_J^G$, there is an isomorphism $\mathcal{J}_{\omega}^G/\mathrm{Sp}_0^G(M,\omega) \cong \Omega_J^G/\mathrm{H}_0^G(M,J)$.

Let $\tilde{\mathfrak{g}} \subset C^{\infty}(M, \mathbb{R})$ be the subspace of hamiltonian generators for the *G* action.

 $C^{\infty}(M,\mathbb{R}) = \tilde{\mathfrak{g}} \oplus \tilde{\mathfrak{g}}^{\perp}$ wrt. L_2 inner product $\operatorname{Scal}_J = s_J + s_J^{\perp}$.

Fact (Apostolov): $s_J \in \tilde{\mathfrak{g}}$ is independent of J and so defines an potential for a symplectic version of the extremal vector field.

SCALAR CURVATURE AND STABILITY

Note $\mu_J(\operatorname{grad}_{\omega} f) = \int_M f s_J^{\perp} \operatorname{vol}_{\omega}$ defines a map $\mu \colon \mathcal{J}_{\omega}^G \to \mathfrak{ham}^G(M, \omega)^*$

Fact (Donaldson, Fujiki): \mathcal{J}^G_{ω} is a (∞ -diml.) Kähler manifold with an isometric action of Ham^G(M, ω) with momentum map μ .

 $\mu^{-1}(0) = \{J : s_J^{\perp} = 0\}$ is then the space of extremal Kähler metrics in \mathcal{J}_{ω}^{G} .

Geometric Invariant Theory then motivates the idea that there is a stability condition for the existence of extremal Kähler metrics.

SYMPLECTIC K-ENERGY

Suppose \mathcal{E} is $H_0^G(M, J)$ -invariant on Ω_J^G . Then it defines a symplectic version $\widehat{\mathcal{E}}$ of K-energy.

Note that $T_J \mathcal{J}^G_{\omega} = \{\mathcal{L}_Z J : Z = Z_1 + J Z_2\}$ where $Z_1 \in \mathfrak{sp}^G(M, \omega), Z_2 \in \mathfrak{ham}^G(M, \omega)$. Then

$$\widehat{\sigma}_J(\mathcal{L}_Z J) = \int_M f_2 s_J^{\perp} \operatorname{vol}_{\omega},$$

where $Z_2 = \operatorname{grad}_{\omega} f_2$, is a closed 1-form and $\hat{\sigma} = d\hat{\mathcal{E}}$.

Fact (Gauduchon): $\hat{\mathcal{E}}$ is a Ham (M, ω) -invariant Kähler potential along integral manifolds of $\{\mathcal{L}_Z J : Z_1, Z_2 \in \mathfrak{ham}^G(M, \omega)\}$. Hence it is strongly plurisubharmonic.

Observation: geodesics in Ω_J^G correspond to integral curves of the vector field $J \mapsto \mathcal{L}_{JZ_2}J$ on \mathcal{J}_{ω}^G , where $Z_2 \in \mathfrak{ham}^G(M, \omega)$.

Extremal Kähler metrics are critical for $\hat{\mathcal{E}}$ and this provides another way to see their formal uniqueness.

K-STABILITY

Suppose $\Omega = 2\pi c_1(L)$, so (M, Ω) is Hodge, and there is a lift of the *G*-action to *L*. It is convenient to take $G \subset H_0(M, J)$ to be a maximal torus instead of a maximal compact.

A test configuration \mathcal{T} for (M, L, G) is:

• a polarized complex variety (or scheme) (X, \mathcal{L}) with an action of G;

- a G-equivariant \mathbb{C}^{\times} action α on (X, \mathcal{L}) ;
- \bullet a G-invariant and $\mathbb{C}^{\times}\text{-equivariant}$ flat morphism $p\colon X\to\mathbb{C}$

such that $(X_t, \mathcal{L}_t) \cong (M, L)$ for some $t \neq 0$.

(Here $X_t = p^{-1}(t)$ and $\mathcal{L}_t = \mathcal{L}|_{X_t}$.)

 α induces a \mathbb{C}^{\times} action on (X_0, \mathcal{L}_0) which is called the **central fibre** of (X, \mathcal{L}) .

This action has a weight called the relative (or modified) **Futaki invariant** $\mathcal{F}_{\Omega}(\mathcal{T})$ of \mathcal{T} .

(M, L) is (relatively) **K-polystable** if $\mathcal{F}_{\Omega}(\mathcal{T}) \geq$ 0 for all \mathcal{T} , with equality if $X = M \times \mathbb{C}$ and α is induced by a \mathbb{C}^{\times} action on M.

BUNDLE CONSTRUCTIONS

Build Kähler metrics on bundles $M \to S$ for:

- S a compact Kähler 2d-manifold (e.g., Σ_g),
- T an ℓ -torus (e.g., S^1),
- P a principal T bundle over S (e.g., $U(\mathcal{L})$),
- V a compact Kähler manifold with an isometric hamiltonian T-action (e.g., $\mathbb{C}P^1$),

such that M is (covered by) $P \times_T V$, a compact complex 2m-manifold with $m = d + \dim_{\mathbb{C}} V \ge d + \ell$ (e.g., $P(\mathcal{O} \oplus \mathcal{L}) \to \Sigma_g)$.

Simplifying assumptions:

S is (covered by) $\prod_j (S_j, \omega_j)$ such that $2\pi c_1(P)$ pulls back to $\sum_j [\omega_j] \otimes b_j$ for $b_j \in \mathfrak{t}$;

(V,T) is essentially toric, i.e., its blow-up along the fixed point sets of circle subgroups of Tis (covered by) $\tilde{P} \times_T \tilde{V} \to \tilde{S}$, with \tilde{V} toric, and \tilde{S} a product of projective spaces.

Say *M* has order ℓ . ($P(\mathcal{O} \oplus \mathcal{L})$ has order 1).

EXAMPLES

 $M = P(\mathcal{O} \oplus \mathcal{L}) \rightarrow \Sigma_1 \times \cdots \times \Sigma_d \text{ (order 1).}$

 $M = P(\mathcal{O} \oplus \mathcal{L}) \rightarrow S_1 \times \cdots \times S_N$ with $\mathcal{L} = \bigotimes_j \mathcal{L}_j$ and \mathcal{L}_j a power of an ample line bundle on S_j (order 1).

 $M = P(E) \rightarrow S$ with E a projectively-flat hermitian vector bundle (order 0).

 $M = P(E_0 \oplus E_1 \oplus \cdots \oplus E_{\ell}) \to S_1 \times \cdots \times S_N$ where E_j are projectively-flat hermitian vector bundles and $c_1(E_i)/\operatorname{rk}(E_i) - c_1(E_j)/\operatorname{rk}(E_j)$ is a linear combination of the Kähler forms on the S_k (order ℓ).

M = V toric (order dim_{\mathbb{C}} V).

 $M = P \times_T V \to S$ with V toric and S as before (order dim_C V). M of order ℓ admit Kähler metrics of the form

$$g = \sum_{j} (\langle b_{j}, z \rangle + c_{j}) g_{j} + \langle dz, \Theta^{-1}(z), dz \rangle + \langle \alpha, \Theta(z), \alpha \rangle, \omega = \sum_{j} (\langle b_{j}, z \rangle + c_{j}) \omega_{j} + \langle dz \wedge \theta \rangle, d\alpha = \sum_{j} b_{j} \omega_{j}.$$

 $(z \in C^{\infty}(M, \mathfrak{t}^*))$ is the momentum map of the T-action, and $\Theta(z) \in S^2 \mathfrak{t}^*$ the matrix of inner products of the generators, while θ is a connection 1-form for P and $c_j \in \mathbb{R}$.)

In particular, if $\ell = 1$, with $c_j = b_j/x_j$, then rescaling ω_j by b_j gives

$$g = \sum_{j} \frac{1 + x_{j}z}{x_{j}} g_{j} + \frac{dz^{2}}{\Theta(z)} + \Theta(z)\alpha^{2},$$
$$\omega = \sum_{j} \frac{1 + x_{j}z}{x_{j}} \omega_{j} + dz \wedge \theta,$$
$$d\alpha = \sum_{j} \omega_{j}.$$

If the image of z is [-1, 1] and $0 < |x_j| \le 1$, this generalizes the form of metric on ruled surfaces as presented by Christina.

Note the symplectic viewpoint.

EXTREMAL KÄHLER METRICS OF OR-DER ONE

Suppose M has order one. Then for any admissible Kähler class $\Omega = \Omega(x)$ (i.e., containing a metric of the previous form) \exists ! polynomial $F_{\Omega}(z)$ (the extremal polynomial) s.t. TFAE

- Ω is extremal;
- g (as before), with $\Theta(z) = F_{\Omega}(z)/P_{\Omega}(z)$ and $P_{\Omega}(z) = \prod_{j} (1 + x_{j}z)^{d_{j}}$, is extremal;

•
$$F_{\Omega}(z) > 0$$
 for $z \in (-1, 1)$.

This completely solves the existence problem for a large class of ruled manifolds. How does it relate to stability and properness?

AMAZING FACT: for $z \in (-1, 1) \cap \mathbb{Q} \exists$ a test configuration $\mathcal{T}(z)$ for (M, Ω, T) such that $\mathcal{F}_{\Omega}(\mathcal{T}(z)) = F_{\Omega}(z)$.

So $F_{\Omega}(z) > 0$ for $z \in (-1, 1) \cap \mathbb{Q}$ is a stability condition!

AN EXAMPLE

What if $F_{\Omega}(z) > 0$ for $z \in (-1,1) \cap \mathbb{Q}$ but $F_{\Omega}(z) = 0$ for some $z \in (-1,1) \setminus \mathbb{Q}$?

This can happen.

Let $M = P(\mathcal{O} \oplus (\mathcal{L}_1 \otimes \mathcal{L}_2 \otimes \mathcal{L}_3)) \to \Sigma_1 \times \Sigma_2 \times \Sigma_3.$

Then the freedom in the genera of Σ_j and degrees of \mathcal{L}_j can be used to obtain $F_{\Omega}(z) = (1-z^2)(z^2+rz-1)^2$ for any $r \in \mathbb{Q}^+$. z^2+rz-1 has an irrational root in (-1,1) for r in a nonempty open subset of \mathbb{Q} .

How to handle this problem?

- 1. Allow analytic test configurations.
- 2. Require a uniform bound on $\mathcal{F}_{\Omega}(\mathcal{T})$:

$$\mathcal{F}_{\Omega}(\mathcal{T}) \geq \lambda ||\mathcal{T}||$$

 \rightarrow notion of uniform K-polystability (Székelyhidi).

UNIFORM K-STABILITY

Let $||\pi(\mathcal{T})||$ be the L_2 norm of the generator of the \mathbb{C}^{\times} action on the central fibre (X_0, \mathcal{L}_0) projected orthogonally to \mathfrak{g} .

Defn (M, Ω, G) is L_2 -uniformly K-polystable if $\exists \lambda > 0$ s.t. \forall test configurations \mathcal{T} ,

$\mathcal{F}_{\Omega}(\mathcal{T}) \geq \lambda ||\pi(\mathcal{T})||$

A similar definition can be made for a wide range of semi-norms on test configurations as long as the semi-norm vanishes when the test configuration is a product $M \times \mathbb{C}$.

In his work on toric surfaces, Donaldson uses a boundary integral over the momentum polygon to bound the Futaki invariant below.

TORIC KÄHLER MANIFOLDS AND BUN-DLES

Let $M = P \times_T V \to S$ be a bundle of toric Kähler manifolds. The image of z is a compact convex polytope Δ in \mathfrak{t}^* , generalizing [-1, 1] in the order one case.

Assume M is toric for simplicity $(S = \{pt\})$.

Let $\mathcal{C} = \{f \colon \Delta \to \mathbb{R} \text{ convex}\}.$

Let S be the space of "symplectic potentials": a subspace of strictly convex functions such that $S/\{affine \text{ linear functions on } \Delta\} \cong \mathcal{J}^T_{\omega}/\text{Ham}^T(M,\omega) \cong \Omega^T_J/\text{H}^T_0(M,\omega).$

Then (Donaldson) as a function on \mathcal{S} :

 $\mathcal{E}(u) = -\int_M \log \det \operatorname{Hess}(u) d\mu + F_{\Omega}(u)$ where $F_{\Omega}(u) \colon \mathcal{C} \to \mathbb{R}$ is linear.

The "amazing fact" generalizes: for any PL $f \in C$ there is a test configuration $\mathcal{T}(f)$ with Futaki invariant $\mathcal{F}_{\Omega}(\mathcal{T}(f)) = F_{\Omega}(f)$.

TWO OBSERVATIONS OF DONALDSON, ENHANCED.

Theorem For any $\lambda > 0$ TFAE:

1. (Uniform K-stability) $F_{\Omega}(f) \geq \lambda ||\pi(f)|| \quad \forall \ \mathsf{PL} \ f \in \mathcal{C}.$

2. (Proper K-energy) For $0 \le \delta < \lambda \exists C_{\delta}$ s.t. $\mathcal{E}(u) \ge \delta ||\pi(u)|| + C_{\delta} \quad \forall u \in S$

Idea of proof By approximation, can suppose f, u smooth. Also without loss, $\pi(f) = f$ and $\pi(u) = u$.

(i) \Rightarrow (ii) Compare \mathcal{E} to

 $\mathcal{E}_a(u) := -\int_M \log \det \operatorname{Hess}(u) d\mu + F_a(u)$ where $F_a(u)$ (linear) is chosen so that \mathcal{E}_a is bounded below.

(ii)
$$\Rightarrow$$
 (i) Consider $\mathcal{E}(u + kf)$ and let $k \to \infty$.