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Abstract: We classify the holomorphic structures of the tangent verti-
cal bundle Θ of the twistor fibration of a quaternionic manifold (M, Q) of
dimension 4n ≥ 8. In particular, we show that any self-dual quaternionic
connection D of (M, Q) induces an holomorphic structure ∂̄D on Θ. We con-
struct a Penrose transform which identifies solutions of the Penrose operator
on (M, Q) defined by D with the space of ∂̄D-holomorphic purely imaginary
sections of Θ. As a consequence we show that, when (M, Q) is compact and
admits a compatible quaternionic-Kähler metric of negative scalar curvature,
Θ admits no global non-trivial holomorphic sections with respect to any of its
holomorphic structures induced by closed quaternionic connections of (M, Q).
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1 Introduction

An almost quaternionic structure on a manifold M of dimension 4n ≥ 8 is
a rank three subbundle Q of End(TM) locally generated by three almost
complex structures which satisfy the quaternionic relations. The bundle Q
has a natural Euclidian metric, with respect to which any such system of al-
most complex structures is orthonormal. Q is called a quaternionic structure
if it is preserved by a torsion-free linear connection on M , called a quater-
nionic connection. A quaternionic manifold is a manifold together with a
fixed quaternionic structure.
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One of the main techniques to study quaternionic manifolds is provided
by twistor theory. The twistor space Z of a quaternionic manifold (M, Q)
is the total space of the unit sphere bundle of Q, or the set of complex
structures of tangent spaces of M which belong to Q. It has a natural in-
tegrable almost complex structure which makes Z a complex manifold. Of
interest in this paper is the tangent vertical bundle Θ of the twistor fibra-
tion π : Z → M , which is a hermitian complex line bundle over Z. We
show that any quaternionic connection D on (M, Q) defines a hermitian con-
nection ∇ on Θ, which is a Chern connection if and only if D is self-dual,
i.e. the curvature of connection on Λ4n(T ∗M) induced by D is Q-hermitian
(see Proposition 1). When D is a self-dual, the (0, 1)-part ∂̄D of ∇ is a real
holomorphic structure of Θ, where by ”real” we mean that the space of ∂̄D-
holomorphic sections of Θ is invariant under the canonical anti-holomorphic
involution of Z, defined as the antipodal map along the fibers of π (lifted
to Θ). However, the complex line bundle Θ admits holomorphic structures
which are not necessarily real. Our first main result is Theorem 3 of Section
3, and represents a classification of all holomorphic structures of Θ, in terms
of self-dual quaternionic connections on (M, Q) and 1-forms on M with Q-
hermitian exterior derivative. This result is analogous to Theorem 1 of [4],
which classifies the holomorphic structures of the tangent vertical bundle of
the twistor fibration of a conformal self-dual 4-manifold, in terms of self-dual
Weyl connections and Maxwell fields on the conformal 4-manifold. As shown
in [4], the tangent vertical bundle of the twistor fibration of a conformal
self-dual 4-manifold has a canonical class of equivalent holomorphic struc-
tures, defined by the Levi-Civita connections of the metrics in the conformal
class. Corollary 4 of Section 3 represents a similar result in the quaternionic
context. In the last two sections – Section 4 and Section 5 – we turn our
attention to the holomorphic sections of Θ, with respect to the holomorphic
structures ∂̄D. More precisely, in Section 4 we construct a Penrose trans-
form, which identifies the ∂̄D-holomorphic purely imaginary sections of Θ
with the kernel of the Penrose operator PD of (M, Q) defined by a self-dual
quaternionic connection D (see Proposition 5). In Section 5 we prove that
the Penrose operator PD has no global non-trivial solutions when (M, Q) is
compact and admits a compatible quaternionic-Kähler metric g of negative
scalar curvature, and D is related to the Levi-Civita connection of g in a
suitable way (see Theorem 9). This will readily imply that the holomorphic
structures of Θ induced by closed quaternionic connections on (M, Q) (i.e.
quaternionic connections which induce flat connections on Λ4n(T ∗M)) admit
no global non-trivial holomorphic sections, when (M, Q) is compact and ad-
mits a compatible quaternionic-Kähler metric of negative scalar curvature
(see Corollary 10). Similar results have been developed in [4], in the context
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of conformal self-dual 4-manifolds.
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2 Basic facts on quaternionic manifolds

In this preliminary section we recall some basic facts we shall need about
quaternionic manifolds (quaternionic connections and twistor spaces of quater-
nionic manifolds). We follow the treatment of [2] and [3] (Chapter 14, Section
G). All our quaternionic manifolds will be of dimension 4n ≥ 8. For a man-
ifold M , TM , T ∗M and Ωk(M) will denote the real tangent bundle of M ,
the real cotangent bundle of M and the space of smooth real-valued k-forms
on M , respectively. For a vector bundle V → M , Ωk(M, V ) will denote the
space of smooth k-forms on M with values in V .

2.1 Quaternionic connections

Let (M, Q) be a quaternionic manifold and D a quaternionic connection on
(M, Q). Any other quaternionic connection D′ is related to D by the formula
D′

X = DX + Sα
X , where α ∈ Ω1(M) and

Sα
X := α(X)IdTM +α⊗X−

3∑
i=1

[α(JiX)Ji +(α◦Ji)⊗JiX], X ∈ TM. (1)

Here “IdTM”denotes the identity endomorphism of TM and {J1, J2, J3} is
an admissible basis of Q, i.e. a system of locally defined almost complex
structures which satisfy the quaternionic relations and generate Q. The con-
nections D and D′ are equivalent if α is an exact 1-form. We say that D
is closed (respectively, exact) if it induces a flat connection on Λ4n(T ∗M)
(respectively, if there is a volume form on M preserved by D). There al-
ways exist exact quaternionic connections on (M, Q): using relation (1), one
can check that D′

Xvol = DXvol − 4(n + 1)α(X)vol, where vol is an arbi-
trary volume form on M ; if DXvol = ω(X)vol for a 1-form ω ∈ Ω1(M),
then the quaternionic connection D′ := D + Sα with α := 1

4(n+1)
ω is exact,

because vol is D′-parallel). Equally easy can be shown that any two exact
quaternionic connections are equivalent. The family of exact quaternionic
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connections forms the canonical class of equivalent quaternionic con-
nections of (M, Q). We shall meet a third class of connections, the so called
self-dual quaternionic connections; a quaternionic connection is self-dual if
the induced connection on the bundle Λ4n(T ∗M) has Q-hermitian curvature,
i.e. its curvature is compatible with any complex structure which belongs to
Q.

A quaternionic curvature tensor of (M, Q) is a curvature tensor R of
M (i.e. a section of Λ2(T ∗M) ⊗ End(TM) in the kernel of the Bianchi
map) which takes values in the normalizer of Q, i.e. for any X, Y ∈ TM ,
[RX,Y , Q] ⊂ Q. The space R(N(Q)) of quaternionic curvature tensors decom-
poses into the direct sum W⊕RBil where W , called the space of quaternionic
Weyl curvatures, is the kernel of the Ricci contraction Ricci : R(N(Q)) →
Bil(TM), defined by Ricci(R)X,Y := trace{Z → RZ,XY } and RBil is iso-
morphic to the space Bil(TM) of bilinear forms on TM , by means of the
isomorphism which associates to η ∈ Bil(TM) the quaternionic curvature

Rη
X,Y := (η(Y, X)− η(X, Y )) IdTM − ηX ⊗ Y + ηY ⊗X

−
3∑

i=1

[(η(Y, JiX)− η(X, JiY ))Ji + (ηY ◦ Ji)⊗ JiX − (ηX ◦ Ji)⊗ JiY ],

where X,Y ∈ TM and ηX := η(X, ·), ηY := η(Y, ·). Hence the curvature of
any quaternionic connection D decomposes as RD = W + Rη, where W ∈
W , called the quaternionic Weyl tensor, is an invariant of the quaternionic
structure (i.e. is independent of the choice of quaternionic connection) and
satisfies

[WX,Y , A] = 0, X, Y ∈ TM, A ∈ Q.

With respect to an admissible basis {J1, J2, J3} of Q,

[RD
X,Y , Ji] = Ωk(X, Y )Jj − Ωj(X,Y )Jk, (2)

where (i, j, k) is a cyclic permutation of (1, 2, 3) and

Ωi(X, Y ) := 2 (η(X, JiY )− η(Y, JiX)) , X, Y ∈ TM, i ∈ {1, 2, 3}. (3)

The bilinear form η is related to the Ricci tensor Ricci(RD) of D in the
following way (see [2], p. 223)

η =
1

4(n + 1)
Ricci(RD)skew+

1

4n
Ricci(RD)sym− 1

2n(n + 2)
Ph

(
Ricci(RD)sym

)
,

(4)
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where “sym” and “skew” denote the symmetric, respectively skew-symmetric
parts of a bilinear form and Ph is the projection

Ph(η) :=
1

4

(
η +

3∑
i=1

η(Ji·, Ji·)

)
of Bil(TM) onto the space of Q-hermitian bilinear forms. We mention that
in general, Ricci(RD) is not symmetric. More precisely, Ricci(RD)skew is half
of the curvature of the connection induced by D on the canonical bundle
Λ4n(T ∗M) (see [2], p. 222 and p. 224), so that D has symmetric Ricci tensor
(respectively, the skew part of the Ricci tensor of D is Q-hermitian) if and
only if D is a closed (respectively, self-dual) quaternionic connection. Finally,
we remark that if D′ = D+Sα, then the Ricci tensors of D and D′ are related
by the following formulas (see [2], p. 263)

Ricci(RD′
)sym = Ricci(RD)sym + 4n

(
α⊗ α−

3∑
i=1

(α ◦ Ji)⊗ (α ◦ Ji)− (Dα)sym

)

+ 8Ph

(
α⊗ α−

3∑
i=1

(α ◦ Ji)⊗ (α ◦ Ji)− (Dα)sym

)
Ricci(RD′

)skew = Ricci(RD)skew − 4(n + 1)dα.

2.2 Twistor theory of quaternionic manifolds

The twistor space of a quaternionic manifold: As mentioned in the In-
troduction, the twistor space Z of (M, Q), defined as the unit sphere bundle
of Q, has a natural complex structure. In order to define it, we first consider
a twistor line Zp, i.e the fiber of the natural projection π : Z → M corre-
sponding to a point p ∈ M. Let 〈·, ·〉 be the natural Euclidian metric of the
bundle Q. Then TJZp consists of all J-anti-linear endomorphisms of TpM
which belong Qp, or to the orthogonal complement J⊥ of J in Qp, with re-
spect to the metric 〈·, ·〉 . Note that Zp is a Kähler manifold: it has a complex
structure J , defined as J (A) := J ◦A, for any A ∈ TJZp, and a compatible
Riemannian metric, induced from the metric of Qp, since TJZp ⊂ Qp. Now
we are able to define the complex structure J of Z: chose a quaternionic
connection D of (M, Q). Since it preserves Q and 〈·, ·〉, it induces a connec-
tion on the twistor bundle π : Z → M , i.e. a decomposition of every tangent
space TJZ into the vertical tangent space TJZp and horisontal space HorJ .
On HorJ , identified with TpM by means of the differential π∗, J is equal to
J . On TJZp, J is defined as above. It can be shown that J so defined is
independent of the choice of quaternionic connection and is integrable. The

5



twistor space Z becomes a complex manifold of dimension 2n + 1 and the
twistor lines are complex projective lines of Z with normal bundle C2n⊗O(1).

The tangent vertical bundle Θ: The tangent vertical bundle Θ of the
twistor projection π : Z → M is a complex line bundle over the complex
manifold Z, with complex structure of the fibers defined by the complex
structure of the twistor lines. Moreover, it has a canonical hermitian metric
h(X, Y ) := 1

2
(〈X, Y 〉 − i〈JX, Y 〉), for any X, Y ∈ ΘJ = TJZp ⊂ Qp. Due to

this, there is an isomorphism between Chern connections of Θ (i.e. hermitian
connections with J -invariant curvature) and holomorphic structures of Θ, i.e.
operators

∂̄ : Γ(Θ) → Ω0,1(Z, Θ)

which satisfy the Liebniz rule

∂̄(fs) = f∂̄(s) + ∂̄(f)s, f ∈ C∞(Z, C), s ∈ Γ(Θ)

and whose natural extension to the complex Ω0,∗(Z, Θ) satisfies ∂̄2 = 0. The
isomorphism associates to a Chern connection ∇ its (0, 1)-part

∂̄Us :=
1

2
(∇Us + J∇JUs) , U ∈ TZ, s ∈ Γ(Θ).

Hence the study of holomorphic structures of Θ reduces to the study of Chern
connections.

Distinguished sections of Θ: Note that any section A ∈ Γ(Q) defines
a section Ã of Θ, by the formula:

Ã(J) = ΠJ(A) :=
1

2
(A + J ◦ A ◦ J) = A− 〈A, J〉J, J ∈ Z,

where the bundle homomorphism Π : π∗Q → Θ is the orthogonal projection
onto Θ ⊂ π∗Q with respect to the metric of π∗Q induced by the natural
Euclidian metric 〈·, ·〉 of Q. Such sections of Θ will be called distinguished.
The differential σ∗ : TZ → TZ of the antipodal map σ : Z → Z, σ(J) = −J
induces an involution on the space of smooth sections of Θ, which associates
to a section s the section s̄ defined as follows: for any J ∈ Z, s̄J := σ∗

(
sσ(J)

)
.

If s := Ã is distinguished, then s̄ = −s. This is why the distinguished sections
are also called purely imaginary. Moreover, J s is real, i.e. J s = J s. The
distinguished sections of Θ will play a fundamental role in our treatment.
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3 Holomorphic structures on Θ

In this section, we adapt the arguments used in [4] (Sections II2, II4, II5) to
the quaternionic context. To keep our text short, we refer to [4] whenever
the analogy is straightforward.

Consider a quaternionic connection D on (M, Q). Then π∗D is a con-
nection on the pull-back bundle π∗Q and ∇ := Π ◦ π∗D is a connection on
Θ. Since D preserves 〈·, ·〉, the connection ∇ preserves the Euclidian metric
of Θ. Like in [4], one shows that ∇ is C-linear, i.e. that ∇J = 0, where J
denotes the complex structure of the fibers of Θ.

Proposition 1. The connection ∇ is a Chern connection if and only if D
is self-dual.

Proof. For any distinguished section Ã of Θ and U ∈ TJZ, with π∗U = X ∈
TpM ,

∇U Ã = D̃XA− 〈J, A〉vD̄(U). (5)

Here vD̄(U) ∈ TJZp = ΘJ denotes the vertical part of U with respect to
the connection D̄ induced by D on the twistor bundle π : Z → M. From
relation (5) we obtain, like in [4] (see p. 585 and Appendix A), the following
expression of the curvature R∇ :

R∇
X̃,Ỹ

A = ΠJ

(
[RD

X,Y , A]
)

R∇
B,CA = −Ωp(B, C)J (A)

R∇
X̃,B

A = 0,

where X̃, Ỹ ∈ TJZ are D̄-horisontal lifts of X, Y ∈ TpM , B, C ∈ TJZp,
A ∈ ΘJ , ΠJ : Qp → J⊥ is the orthogonal projection and Ωp is the Kähler
form of the twistor line Zp, which is obviously J -invariant. Hence ∇ is a
Chern connection if and only if the horisontal part of R∇ is J -invariant, i.e.
for every J ∈ Z and A ∈ Q with A ⊥ J ,

ΠJ

(
[RD

JX∧JY−X∧Y , A]
)

= 0. (6)

In order to study condition (6), we take an admissible basis {J1, J2, J3}
of Q with J = J1, so that A = λ2J2 + λ3J3 for some λ2, λ3 ∈ R. Then ΠJ

becomes the projection onto the subspace generated by J2 and J3. Recall
now that RD = W + Rη, for some η ∈ Bil(TM) and that the quaternionic
Weyl tensor W commutes with the endomorphisms of Q. Using relations (2)
and (3), we easily obtain:

ΠJ1

(
[RD

J1X∧J1Y−X∧Y , A]
)

= (Ω1(J1X, J1Y )− Ω1(X, Y )) J1A

= −4
(
ηskew(J1X, Y ) + ηskew(X, J1Y )

)
J1A.
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From relation (4) we deduce that Ricci(RD)skew is Q-hermitian. It follows
that D is a self-dual quaternionic connection.

Self-dual quaternionic connections exist on any quaternionic manifold. If
D is a self-dual quaternionic connection, then any other self-dual quaternionic
connection is of the form D′ = D + Sα, with dα Q-hermitian. The way the
Chern connections of Θ determined by two self-dual quaternionic connections
of (M, Q) are related is described in the following proposition.

Proposition 2. Let D, D′ = D + Sα be two self-dual quaternionic connec-
tions. Then the Chern connections ∇ and ∇′ induced by D and D′ are related
as follows:

∇′ = ∇+ 2J (π∗α)⊗ J .

Proof. Fix an arbitrary J ∈ Z and an admissible basis {J1, J2, J3} of Q with
J = J1. Any A ∈ ΘJ is of the form λ2J2 + λ3J3, for some λ2, λ3 ∈ R. For
every U ∈ TJZ with π∗U = X,

(∇′ −∇)U(A) = ΠJ1 [D
′
X −DX , A] = 2α(J1X)(−λ2J3 + λ3J2)

= −2α(J1X)J1(λ2J2 + λ3J3)

= 2(J π∗α)(U)J1A.

Remark: Recall that two holomorphic structures on a complex line bun-
dle V → N over a complex manifold (N, J) are equivalent, if they are conju-
gated by an element of the gauge group C∞(N, C∗). Suppose now that V has
a hermitian structure. Let ∂̄1 and ∂̄2 be two holomorphic structures of V and
∇1 and ∇2 the Chern connections, with (0, 1)-parts ∂̄1 and ∂̄2 respectively.
Then ∂̄1 and ∂̄2 are equivalent if and only if

∇2 = ∇1 + (dJ logρ− dθ)⊗ J , (7)

where ρ is a positive smooth function, θ is a smooth function with values in
S1 and J is the complex structure of the fibers of V . The connections ∇1

and ∇2 are equivalent as hermitian connections if dJ logρ = 0.
The main result of this Section is the following classification theorem:

Theorem 3. Any holomorphic structure of Θ is equivalent with an holo-
morphic structure ∂̄D,β := ∂̄D + β̃, where ∂̄D is the (0, 1)-part of the Chern
connection of Θ induced by a self-dual quaternionic connection D of (M, Q),
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β ∈ Ω1(M) has Q-hermitian exterior differential and β̃ ∈ Ω0,1(Z, EndC(Θ))
is defined as follows: for any U ∈ TJZ with π∗U = X and s ∈ Γ(Θ),

β̃U(s) :=
1

2
(β(X)J s− β(JX)s) .

Moreover, two holomorphic structures ∂̄D,β and ∂̄D′,β′
are equivalent if and

only if D and D′ are equivalent as quaternionic connections of (M, Q) and
dβ := d + iβ and dβ′

:= d + iβ′ are equivalent as hermitian connections of
the hermitian trivial line bundle M × C.

Proof. The proof follows the same steps as the proof of Theorem 1 of [4]
(note that, our Proposition 1 corresponds to Proposition 2 of [4] and our
Proposition 2 corresponds to Lemma 4 of [4]). Due to this, we content
ourselves to explain why ∂̄D,β is an holomorphic structure. Since dβ is Q-
hermitian, the pull-back connection d + iπ∗β is a Chern connection on the
hermitian trivial line bundle Z × C. Let ∇ be the Chern connection of Θ
induced by a self-dual quaternionic connection D, as in Proposition 1. The
tensor product connection∇β := ∇⊗(d+iπ∗β) = ∇+π∗β⊗J on Θ = Θ⊗CC
is also a Chern connection on Θ. It can be readily checked that its (0, 1)-part
is precisely ∂̄D,β. In particular, ∂̄D,β is an holomorphic structure of Θ.

Recall now that any two exact quaternionic connections are equivalent.
The following Corollary is a consequence of Theorem 3.

Corollary 4. The tangent vertical bundle of the twistor fibration of a quater-
nionic manifold (M, Q) has a canonical class of equivalent holomorphic struc-
tures, determined by the exact quaternionic connections of (M, Q).

4 A Penrose transform

In this section we shall use the E −H formalism developed in [5]. We begin
with a brief review of some basic facts we shall need about the representation
theory of the group Sp(1). Let H ∼= C2 be an abstract 2-dimensional complex
vector space on which Sp(1) ∼= SU(2) acts, leaving invariant a complex
symplectic form ω and a compatible quaternionic structure, i.e. a C-anti-
linear map q : H → H, which satisfies q2 = −IdH , ω(qv, qw) = ω(v, w)
and ω(v, qv) > 0, for any v, w ∈ H. The 2-form ω together with q define
an invariant hermitian positive definite metric 〈·, ·〉 := ω(·, q·) on H. By
means of the identification H 3 h → ω(h, ·) ∈ H between H and its dual
H∗, S2(H) ⊂ H ⊗ H ∼= H∗ ⊗ H ⊂ End(H) acts on H and its real part
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(with respect to the real structure induced by q) is isomorphic to the Lie
algebra sp(1) ⊂ End(H) of imaginary quaternions. We also need to recall
that H ⊗ S2(H) has two Sp(1)-irreducible components: S3(H), which is the
kernel of the map F : H ⊗ S2(H) → H defined by

F (h, h1h2 + h2h1) = ω(h, h1)h2 + ω(h, h2)h1, h1, h2, h ∈ H, (8)

and H, isomorphic to the hermitian orthogonal of S3(H) in H ⊗S2(H) with
respect to the hermitian metric of H⊗S2(H) induced by the hermitian metric
〈·, ·〉 of H (to simplify notations, we sometimes omit the tensor product signs,
so that h1h2 + h2h1 denotes h1 ⊗ h2 + h2 ⊗ h1).

Coming back to geometry, the quaternionic structure of (M, Q) deter-
mines a G = GL(n, H)Sp(1) structure F0, i.e. a G-subbundle of the principal
frame bundle of M , consisting of all frames f : TpM → Hn which convert the
standard basis of imaginary quaternions, acting by multiplication on Hn on
the right, onto an admissible basis of Qp, acting naturally on TpM . Any rep-
resentation of G̃ = GL(n, H)×Sp(1) determines a locally defined bundle over
M , which is globally defined when the representation descends to G (in which
case the bundle is associated to the principal G-bundle F0). Real represen-
tations and real vector bundles over M will be automatically complexified.
There are two locally defined complex vector bundles E and H on M , which
are associated to the standard representations of GL(n, H) and Sp(1) on
E ∼= C2n and H ∼= C2 respectively, extended trivially to GL(n, H) × Sp(1).
The Sp(1)-invariant structures of H induce similar structures on the bundle
H, which will be denoted with the same symbols (e.g. ω will denote the sym-
plectic form of H as well as the induced symplectic form on the bundle H;
in particular, we shall identify H with its dual H∗ by means of the isomor-
phism H 3 h → ω(h, ·) ∈ H∗; similarly, 〈·, ·〉 will denote the hermitian inner
product of H and the induced hermitian metric on the bundle H). Some of
the natural bundles over M are isomorphic with tensor products and direct
sums of H and E. For example, TM is isomorphic with E ⊗H, T ∗M with
E∗ ⊗H, Q with S2(H) and the product T ∗M ⊗Q decomposes as

T ∗M ⊗Q ∼= E∗ ⊗H⊗ S2(H) ∼= E∗ ⊗ S3(H)⊕ E∗ ⊗H, (9)

since H ⊗ S2(H) ∼= S3(H) ⊕ H. The Penrose operator PD : Γ(Q) →
Γ(E∗ ⊗ S3(H)) defined by a quaternionic connection D of (M, Q) is the
composition of D : Γ(Q) → Γ(T ∗M ⊗ Q) with the projection onto the first
component of the decomposition (9).

Proposition 5. Let D be a self-dual quaternionic connection on (M, Q) and
A ∈ Γ(Q). Then the distinguished section Ã of Θ is ∂̄D-holomorphic if and
only if A is a solution of the Penrose operator PD.
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Proof. The section Ã is ∂̄D-holomorphic if and only if it satisfies

∇JU(Ã) = J∇U(Ã), ∀U ∈ TJZ, ∀J ∈ Z, (10)

where ∇ is the Chern connection of Θ induced by D. Using relation (5), it
can be seen that (10) is equivalent with

DJXA−〈DJXA, J〉J−JDXA−〈DXA, J〉IdTM = 0, ∀X ∈ TM, ∀J ∈ Z.

For every unit j ∈ sp(1) ⊂ End(E ⊗H) (acting trivially on E), define

Tj : E∗ ⊗H∗ ⊗ S2(H) → E∗ ⊗H∗ ⊗ S2(H)

in the following way: for any γ ∈ E∗ ⊗H∗ ⊗ S2(H) and v ∈ E ⊗H,

Tj(γ)(v) := γ(jv)− 〈γ(jv), j〉j − j ◦ γ(v)− 〈γ(v), j〉IdE⊗H .

Here 〈·, ·〉 denotes the hermitian inner product of H ⊗ H induced by the
Sp(1)-invariant hermitian inner product 〈·, ·〉 of H, i.e.

〈h1h2, h3h4〉 =
1

2
〈h1, h3〉〈h2, h4〉, ∀hi ∈ H,

so that the restriction of 〈·, ·〉 to sp(1) ⊂ S2(H) induces the natural Euclidian
metric of the bundle Q; recall that Q is associated to the adjoint represen-
tation of Sp(1) on its Lie algebra sp(1), extended trivially to G̃. The group
Sp(1) acts naturally on H∗ ⊗ S2(H) ⊂ H∗ ⊗ End(H), by

(A · α)(h) = A ◦ α(A−1h) ◦ A−1, A ∈ Sp(1), α ∈ H∗ ⊗ S2(H), h ∈ H.

We can extend this action to an action of G̃ on E∗ ⊗ H∗ ⊗ S2(H), with
GL(n, H) acting naturally on E∗. This extended action preserves the C-
linear condition

Tj(γ) = 0, ∀j ∈ sp(1), j2 = −IdH (11)

on E∗ ⊗H∗ ⊗ S2(H), since

Tj(A · γ)(v) = A ◦ Tj′(γ)(A−1v) ◦ A−1, v ∈ E ⊗H,

where j′ := A−1 ◦ j ◦ A. Since E∗ ⊗ H and E∗ ⊗ S3(H) are irreducible
components of E∗ ⊗ H ⊗ S2(H) and there are distinguished sections of Θ
which are not ∂̄D-holomorphic, from Shur’s lemma it is enough to check that
any element of E∗ ⊗ H satisfies (11). This can be done in the following
way: let e∗h ∈ E∗ ⊗ H be decomposable. Without loss of generality, we
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can take 〈h, h〉 = 1. Define h̃ := q(h). Then the basis {h, h̃} is unitary
with respect 〈·, ·〉 and ω(h, h̃) = 1. As an element of E∗ ⊗ H ⊗ S2(H) ⊂
E∗ ⊗H ⊗ End(E ⊗H), e∗h has the following form

γ(v) =
(
2(e∗h̃)(v)hh− (e∗h)(v)(h̃h + hh̃)

)
IdE, v ∈ E ⊗H. (12)

The identity endomorphism of H is IdH = hh̃ − h̃h and a basis of unit
imaginary quaternions can be chosen to be

j1 := −i(hh̃ + h̃h)IdE

j2 := −(hh + h̃h̃)IdE

j3 := i(h̃h̃− hh)IdE.

Consider now j = a1j1 + a2j2 + a3j3 ∈ sp(1) an arbitrary unit imaginary
quaternion (so that the ai’s are real and a2

1 + a2
2 + a2

3 = 1). Then, for every
v ∈ E ⊗H,

γ(jv) = 2hh
(
a1i(e

∗h̃)(v) + (a2 + ia3)(e
∗h)(v)

)
IdE

+ (hh̃ + h̃h)
(
a1i(e

∗h)(v) + (a2 − ia3)(e
∗h̃)(v)

)
IdE;

〈γ(jv), j〉 = (−a2 + ia3)
(
a1i(e

∗h̃)(v) + (a2 + ia3)(e
∗h)(v)

)
+ a1

(
−a1(e

∗h)(v) + (a3 + ia2)(e
∗h̃)(v)

)
;

j ◦ γ(v) = (e∗h)(v)
(
(a2 + ia3)hh + (−a2 + ia3)h̃h̃ + ia1(hh̃− h̃h)

)
IdE

+ 2(e∗h̃)(v)
(
ia1hh + (a2 − ia3)hh̃

)
IdE;

〈γ(v), j〉 = (e∗h̃)(v)(−a2 + ia3)− (e∗h)(v)ia1.

From these relations it is straightforward to check that Tj(γ) = 0.

5 A vanishing theorem

In this section we consider a quaternionic manifold (M, Q) which admits a
compatible quaternionic-Kähler metric g, i.e. the Levi-Civita connection Dg

of g is a quaternionic connection of (M, Q) and the endomorphisms of Q are
skew-symmetric with respect to g. Let g∗ : T ∗M → TM be the isomorphism
defined by g.

12



Borrowing the terminology of [6], we define a conformal weight operator

B : T ∗M ⊗Q → T ∗M ⊗Q

by the following formula:

B(α⊗ A)(X) := [Sα
X , A], X ∈ TM, α ∈ T ∗M, A ∈ Q, (13)

where Sα was defined in (1). (A conformal weight operator has been defined
in [4], for vector bundles on conformal manifolds, associated to the principal
bundle of conformal frames, and in [6] for vector bundles associated to the
reduced frame bundle of a Riemannian manifold with special holonomy). The
following lemma is a straightforward calculation:

Lemma 6. Let {J1, J2, J3} be an admissible basis of Q. Then for every
X ∈ TM , α ∈ T ∗M and A ∈ Q,

B(α⊗ A)(X) = α ([J1, A](X)) J1 + α ([J2, A](X)) J2 + α ([J3, A](X)) J3.

Proposition 7. Consider the decomposition (9) of T ∗M⊗Q. The conformal
weight operator B acts as −2 · IdE∗⊗S3(H) on E∗ ⊗ S3(H) and as 4 · IdE∗⊗H

on E∗ ⊗H.

Proof. Let e∗h ∈ Γ(E∗⊗H) be a decomposable local section, with 〈h, h〉 = 1.
Define h̃ := q(h). As a section of T ∗M ⊗Q, e∗h = α⊗ A + α̃⊗ Ã, where

A := 2hhIdE ∈ Γ(Q),

Ã := −(h̃h + hh̃)IdE ∈ Γ(Q)

α := e∗h̃ ∈ Ω1(M)

α̃ := e∗h ∈ Ω1(M).

As in the proof of Proposition 5, we chose the admissible basis of Q:

J1 := −i(hh̃ + h̃h)IdE

J2 := −(hh + h̃h̃)IdE

J3 := i(h̃h̃− hh)IdE.

It is easy to check the equalities:

[J1, A] = −2i[hh̃ + h̃h, hh]IdE = 4ihhIdE

[J2, A] = −2[hh + h̃h̃, hh]IdE = 2(hh̃ + h̃h)IdE

[J3, A] = 2i[h̃h̃− hh, hh]IdE = −2i(hh̃ + h̃h)IdE.
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Using Lemma 6, we get that

B(α⊗ A)(X) = −4(e∗h)(X)(hh̃ + h̃h)IdE + 4(e∗h̃)(X)hhIdE, X ∈ TM.

A similar calculation shows that B(α̃ ⊗ Ã)(X) = 4(e∗h̃)(X)hhIdE, which
readily implies that

B(α⊗ A + α̃⊗ Ã) = 4(α⊗ A + α̃⊗ Ã),

i.e. that E∗⊗H is the eigenspace of B corresponding to the eigenvalue 4. In
order to show that E∗ ⊗ S3(H) is the eigenspace of B corresponding to the
eigenvalue 2, we notice that E∗ ⊗ S3(H) ⊂ T ∗M ⊗Q is locally generated by
sections γe∗

i (for e∗ ∈ Γ(E∗) and i ∈ {1, · · · 4}) defined as follows: for every
X ∈ TM ,

γe∗

1 (X) :=
(
(e∗h)(X)(hh̃ + h̃h) + (e∗h̃)(X)hh

)
IdE

γe∗

2 (X) :=
(
(e∗h̃)(X)(hh̃ + h̃h) + (e∗h)(X)h̃h̃

)
IdE

γe∗

3 (X) := (e∗h)(X)hhIdE

γe∗

4 (X) := (e∗h̃)(X)h̃h̃IdE.

As before, one checks that B(γe∗
i ) = −2γe∗

i , for every e∗ ∈ Γ(E∗) and i ∈
{1, · · · , 4}. The conclusion follows.

Proposition 8. Let D = Dg+Sα be a quaternionic connection on a quaternionic-
Kähler manifold (M, Q, g), with α ∈ Ω1(M) a co-closed 1-form. Let A ∈
Γ(Q) be a solution of the Penrose operator PD. Then

〈traceg(D
2A), A〉 = −2|A|2

(
1

4(n + 2)
Scalg − 2|α|2

)
.

Proof. It is straightforward to check that D◦B = B̃◦D, where the connection
D (on the right and left hand side of the equality) acts on T ∗M ⊗ Q and
B̃ := IdT ∗M ⊗B is an automorphism of T ∗M ⊗ T ∗M ⊗Q. Define

traceg(B̃) : T ∗M ⊗ T ∗M ⊗Q → Q

as follows: for any A ∈ Q, α, β ∈ T ∗M ,

traceg(B̃)(α⊗ β ⊗ A) :=
4n∑
i=1

B̃(α⊗ β ⊗ A)(ei, ei) = B(β ⊗ A)(g∗α),
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where {e1, · · · , e4n} is an arbitrary g-orthonormal basis of TM. Writing A =
a1J1 +a2J2 +a3J3 in terms of an admissible basis {J1, J2, J3} of Q, we readily
obtain, from Lemma 6, that

traceg(B̃)(D2A) =
∑
i<j

(
g
(
[J1, R

D
ei,ej

(A)]ei, ej

)
J1 + g

(
[J2, R

D
ei,ej

(A)]ei, ej

)
J2

)
+
∑
i<j

g
(
[J3, R

D
ei,ej

(A)]ei, ej

)
J3,

where RD
ei,ej

(A) = [RD
ei,ej

, A] is the commutator of the endomorphisms RD
e1,ej

and A of TM . In particular,

〈traceg(B̃)(D2A), A〉 =
∑
i<j

g
(
[A, RD

ei,ej
(A)]ei, ej

)
=
∑
i<j

∑
k,p

akapg
(
[Jk, R

D
ei,ej

(Jp)]ei, ej

)
.

Using relations (2) and (3) we readily get that, for every k ∈ {1, 2, 3},∑
i<j

g
(
[Jk, R

D
ei,ej

(Jk)]ei, ej

)
= −8traceg(η)

and for every k 6= p,∑
i<j

g
(
[Jk, R

D
ei,ej

(Jp)]ei + [Jp, R
D
ei,ej

(Jk)]ei, ej

)
= 0

from where we conclude that

〈traceg(B̃)(D2A), A〉 = −8|A|2traceg(η). (14)

Recall now that η is related to the Ricci curvature Ricci(RD) of D as in
relation (4). According to Section 2, we can express Ricci(RD) in terms of α
and the Ricci tensor of g, so that, taking traces and using the fact that α is
co-closed, we easily obtain the following relation:

〈traceg(B̃)(D2A), A〉 = −8|A|2traceg(η) = −8|A|2
(

1

4(n + 2)
Scalg − 2|α|2

)
.

(15)
On the other hand, from Proposition 7 and the very definition of the Penrose
operator,

B̃(D2A) = D ◦B(DA) = 4D2A− 6D(PDA).
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In particular, if A ∈ Γ(Q) is a solution of the Penrose operator, then PDA = 0
and

〈traceg(D
2A), A〉 =

1

4
〈traceg(B̃)(D2A), A〉 = −2|A|2

(
1

4(n + 2)
Scalg − 2|α|2

)
.

(16)

We now restrict to the situation when (M, Q, g) is a compact quaternionic-
Kähler manifold of negative scalar curvature. An important class of such
manifolds can be constructed in the following way [1]: take a non-compact
symmetric quaternionic-Kähler manifold M = G/K, which is dual to a Wolf
space. The non-compact simple Lie group G has a torsion free cocompact dis-
crete subgroup Γ. Then the double quotient M/Γ is a compact quaternionic-
Kähler manifold of negative scalar curvature.

Theorem 9. Let (M, Q, g) be a compact quaternionic-Kähler manifold with
negative scalar curvature. Let D be a quaternionic connection on (M, Q, g),
such that D = Dg + Sα, with α ∈ Ω1(M) a co-closed 1-form. Then the
Penrose operator PD has no non-trivial global solutions.

Proof. Choose an admissible basis {J1, J2, J3} of Q and recall the formula

DXA = Dg
XA + B(α⊗ A)(X) = Dg

XA +
3∑

j=1

α ([Jj, A](X)) Jj, X ∈ TM

(17)
which relates D and Dg when they act on the bundle Q. Using relation (17)
it is straightforward to check that

〈(D2A)X,X , A〉 = 〈(Dg)2(A)X,X , A〉+ α ([A, Dg
XA](X))− 2α(X)〈Dg

XA, A〉

+
3∑

j=1

[X (α([Jj, A](X))) 〈Jj, A〉+ α ([Jj, A](X)) 〈DXJj, A〉]

+ 2
3∑

j=1

α(JjX)〈Dg
JjXA, A〉.

Choosing a g-orthonormal basis {e1, · · · , e4n} of TM and letting X := ei in
the previous relation, we get

〈traceg(D
2A), A〉 = 〈traceg(D

g)2A, A〉+ 4〈Dg
g∗αA, A〉+ 2

4n∑
j=1

α
(
[A, Dg

ej
A]ej

)
−

4n∑
i,j=1

α ([Jj, A]ei)
2 .
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On the other hand, again from relation (17), we deduce that

〈DA, DA〉 :=
4n∑
i=1

〈Dei
A, Dei

A〉 =
4n∑
i=1

(
〈Dg

ei
A, Dg

ei
A〉+ 2α

(
[Dg

ei
A, A]ei

))
+

4n∑
i,j=1

α ([Jj, A]ei)
2

= 〈DgA, DgA〉+ 2
4n∑
i=1

α
(
[Dg

ei
A, A]ei

)
+

4n∑
i,j=1

α ([Jj, A]ei)
2 .

Combining the above relations, we get

〈traceg(D
2A), A〉 =〈traceg(D

g)2(A), A〉+ 4〈Dg
g∗αA, A〉

+ 〈DgA, DgA〉 − 〈DA, DA〉.

Suppose now that PDA = 0. Using Proposition 8, this relation becomes

〈DA, DA〉 − 〈DgA, DgA〉 − 4〈Dg
g∗αA, A〉 − 〈traceg(D

g)2A, A〉

= 2|A|2
(

1

4(n + 2)
Scalg − 2|α|2

)
.

Integrating over M and using
∫

M
〈Dg

g∗αA, A〉volg = 0, the 1-form α being
co-closed, we get∫

M

〈DA, DA〉volg + 4

∫
M

|A|2|α|2volg −
1

2(n + 2)
Scalg

∫
M

|A|2volg = 0.

Since Scalg < 0, A must be necessarily identically zero.

Corollary 10. Let D be a closed quaternionic connection on a compact
quaternionic-Kähler manifold (M, Q, g) of negative scalar curvature. There
is no global non-trivial ∂̄D-holomorphic section of Θ.

Proof. Let us consider an arbitrary ∂̄D-holomorphic section s of Θ. As in [4],
we can prove that s = Ã + J B̃, for two sections A, B ∈ Γ(Q). It can be
checked that s̄ = −Ã + J B̃ is also ∂̄D-holomorphic, from where we deduce
that both Ã and B̃ are ∂̄D-holomorphic. Therefore, to prove our claim it
is enough to show that there are no global non-trivial ∂̄D-holomorphic dis-
tinguished sections of Θ. The Levi-Civita connection Dg is exact, and hence
D = Dg +Sα, for some closed 1-form α ∈ Ω1(M). From Theorem 3, the holo-
morphic structure ∂̄D depends (up to isomorphism) only on the cohomology
class of α. Hence, without loss of generality, we can take α to be harmonic.
We conclude from the Penrose transform developed in Proposition 5 and
from Theorem 9.
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