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Abstract: We classify the holomorphic structures of the tangent verti-
cal bundle © of the twistor fibration of a quaternionic manifold (M, Q) of
dimension 4n > 8. In particular, we show that any self-dual quaternionic
connection D of (M, Q) induces an holomorphic structure 9” on ©. We con-
struct a Penrose transform which identifies solutions of the Penrose operator
on (M, Q) defined by D with the space of 9P-holomorphic purely imaginary
sections of ©. As a consequence we show that, when (M, Q) is compact and
admits a compatible quaternionic-Kahler metric of negative scalar curvature,
© admits no global non-trivial holomorphic sections with respect to any of its
holomorphic structures induced by closed quaternionic connections of (M, Q).
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1 Introduction

An almost quaternionic structure on a manifold M of dimension 4n > 8 is
a rank three subbundle @) of End(7T'M) locally generated by three almost
complex structures which satisfy the quaternionic relations. The bundle @)
has a natural Euclidian metric, with respect to which any such system of al-
most complex structures is orthonormal. () is called a quaternionic structure
if it is preserved by a torsion-free linear connection on M, called a quater-
nionic connection. A quaternionic manifold is a manifold together with a
fixed quaternionic structure.



One of the main techniques to study quaternionic manifolds is provided
by twistor theory. The twistor space Z of a quaternionic manifold (M, Q)
is the total space of the unit sphere bundle of @), or the set of complex
structures of tangent spaces of M which belong to (). It has a natural in-
tegrable almost complex structure which makes Z a complex manifold. Of
interest in this paper is the tangent vertical bundle © of the twistor fibra-
tion m : Z — M, which is a hermitian complex line bundle over Z. We
show that any quaternionic connection D on (M, @) defines a hermitian con-
nection V on ©, which is a Chern connection if and only if D is self-dual,
i.e. the curvature of connection on A% (T*M) induced by D is Q-hermitian
(see Proposition 1). When D is a self-dual, the (0, 1)-part 9 of V is a real
holomorphic structure of ©, where by "real” we mean that the space of OP-
holomorphic sections of © is invariant under the canonical anti-holomorphic
involution of Z, defined as the antipodal map along the fibers of = (lifted
to ©). However, the complex line bundle © admits holomorphic structures
which are not necessarily real. Our first main result is Theorem 3 of Section
3, and represents a classification of all holomorphic structures of ©, in terms
of self-dual quaternionic connections on (M, Q) and 1-forms on M with Q-
hermitian exterior derivative. This result is analogous to Theorem 1 of [4],
which classifies the holomorphic structures of the tangent vertical bundle of
the twistor fibration of a conformal self-dual 4-manifold, in terms of self-dual
Weyl connections and Maxwell fields on the conformal 4-manifold. As shown
in [4], the tangent vertical bundle of the twistor fibration of a conformal
self-dual 4-manifold has a canonical class of equivalent holomorphic struc-
tures, defined by the Levi-Civita connections of the metrics in the conformal
class. Corollary 4 of Section 3 represents a similar result in the quaternionic
context. In the last two sections — Section 4 and Section 5 — we turn our
attention to the holomorphic sections of ©, with respect to the holomorphic
structures 0”. More precisely, in Section 4 we construct a Penrose trans-
form, which identifies the d”-holomorphic purely imaginary sections of ©
with the kernel of the Penrose operator PP of (M, Q) defined by a self-dual
quaternionic connection D (see Proposition 5). In Section 5 we prove that
the Penrose operator PP has no global non-trivial solutions when (M, Q) is
compact and admits a compatible quaternionic-Kahler metric g of negative
scalar curvature, and D is related to the Levi-Civita connection of g in a
suitable way (see Theorem 9). This will readily imply that the holomorphic
structures of © induced by closed quaternionic connections on (M, Q) (i.e.
quaternionic connections which induce flat connections on A (T*M)) admit
no global non-trivial holomorphic sections, when (M, Q) is compact and ad-
mits a compatible quaternionic-Kahler metric of negative scalar curvature
(see Corollary 10). Similar results have been developed in [4], in the context
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of conformal self-dual 4-manifolds.
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2 Basic facts on quaternionic manifolds

In this preliminary section we recall some basic facts we shall need about
quaternionic manifolds (quaternionic connections and twistor spaces of quater-
nionic manifolds). We follow the treatment of [2] and [3] (Chapter 14, Section
G). All our quaternionic manifolds will be of dimension 4n > 8. For a man-
ifold M, TM, T*M and QF(M) will denote the real tangent bundle of M,
the real cotangent bundle of M and the space of smooth real-valued k-forms
on M, respectively. For a vector bundle V — M, QF(M, V) will denote the
space of smooth k-forms on M with values in V.

2.1 Quaternionic connections

Let (M, Q) be a quaternionic manifold and D a quaternionic connection on
(M, Q). Any other quaternionic connection D' is related to D by the formula
D = Dx + 5%, where o € Q'(M) and

3
¢ = a(X)dry +a@X =Y [a(JX) T+ (a0 J) @ JiX], X €TM. (1)

i=1

Here “Idz,,”denotes the identity endomorphism of TM and {Ji, Jo, J3} is
an admissible basis of (), i.e. a system of locally defined almost complex
structures which satisfy the quaternionic relations and generate (). The con-
nections D and D’ are equivalent if « is an exact 1-form. We say that D
is closed (respectively, exact) if it induces a flat connection on A" (T*M)
(respectively, if there is a volume form on M preserved by D). There al-
ways exist exact quaternionic connections on (M, Q): using relation (1), one
can check that Dy vol = Dxvol — 4(n + 1)a(X)vol, where vol is an arbi-
trary volume form on M; if Dxvol = w(X)vol for a 1-form w € QY(M),
then the quaternionic connection D' := D + S% with « := mw is exact,
because vol is D'-parallel). Equally easy can be shown that any two exact
quaternionic connections are equivalent. The family of exact quaternionic



connections forms the canonical class of equivalent quaternionic con-
nections of (M, Q). We shall meet a third class of connections, the so called
self-dual quaternionic connections; a quaternionic connection is self-dual if
the induced connection on the bundle A*(7T*M) has Q-hermitian curvature,
i.e. its curvature is compatible with any complex structure which belongs to
Q.

A quaternionic curvature tensor of (M, Q) is a curvature tensor R of
M (i.e. a section of A>(T*M) ® End(T'M) in the kernel of the Bianchi
map) which takes values in the normalizer of @, i.e. for any XY € TM,
[Rxy,Q] C Q. The space R(N(Q)) of quaternionic curvature tensors decom-
poses into the direct sum YW@ RE! where W, called the space of quaternionic
Weyl curvatures, is the kernel of the Ricci contraction Ricci : R(N(Q)) —
Bil(T'M), defined by Ricci(R)xy := trace{Z — RzxY} and RP! is iso-
morphic to the space Bil(T'M) of bilinear forms on T'M, by means of the
isomorphism which associates to n € Bil(T'M) the quaternionic curvature

Ry =, X) = n(X,Y)Idry —nx @Y +ny @ X

- Z[(U(Y» JiX) = (X, LY )i + (ny o Ji) @ JiX — (nx o Ji) @ J;Y],

where X, Y € TM and nx := n(X,-), ny := n(Y,-). Hence the curvature of
any quaternionic connection D decomposes as RY = W + R", where W €
W, called the quaternionic Weyl tensor, is an invariant of the quaternionic
structure (i.e. is independent of the choice of quaternionic connection) and

satisfies
[WX7y,A]:0, X, YeTM, AecqQ.

With respect to an admissible basis {.J;, Jo, J3} of @,
[RRys Ji] = (X, Y)J; — (X, Y) g, (2)
where (i, 7, k) is a cyclic permutation of (1,2,3) and
(X, Y) = 2((X, JY) — (Y, J X)), X, Y eTM, iec{1,2,3}. (3)
The bilinear form 7 is related to the Ricci tensor Ricci(RP) of D in the
following way (see [2], p. 223)

1

1
s i D \skew ieei(RPYsYym . —
Ricci(R™) —|—4anc(31(R ) (1 2)

Py, (Ricci(R")»™)

T=4m+ 1) ’
(4)



where “sym” and “skew” denote the symmetric, respectively skew-symmetric
parts of a bilinear form and P, is the projection

Py(n) == % (77 + ) (i, Ji'))

=1

of Bil(T'M) onto the space of @-hermitian bilinear forms. We mention that
in general, Ricci(RP) is not symmetric. More precisely, Ricci(RP)%Y is half
of the curvature of the connection induced by D on the canonical bundle
A(T*M) (see [2], p. 222 and p. 224), so that D has symmetric Ricci tensor
(respectively, the skew part of the Ricci tensor of D is Q-hermitian) if and
only if D is a closed (respectively, self-dual) quaternionic connection. Finally,
we remark that if D’ = D+ 5%, then the Ricci tensors of D and D’ are related
by the following formulas (see [2], p. 263)

3
Ricci(RP)™™ = Ricci(RP)™™ + 4n (a ®a — Z(a oJ;)® (o J;) — (Da)sym>

i=1

+ 8P, (oa ®a— Z(a 0J;)® (o J;) — (Da)sym>

i=1

Ricci(RP )Y = Ricci(RP)™Y — 4(n 4 1)da.

2.2 Twistor theory of quaternionic manifolds

The twistor space of a quaternionic manifold: As mentioned in the In-
troduction, the twistor space Z of (M, Q), defined as the unit sphere bundle
of (), has a natural complex structure. In order to define it, we first consider
a twistor line Z,, i.e the fiber of the natural projection 7 : Z — M corre-
sponding to a point p € M. Let (-,-) be the natural Euclidian metric of the
bundle ). Then T;Z, consists of all J-anti-linear endomorphisms of 1), M
which belong @, or to the orthogonal complement J+ of J in Q,, with re-
spect to the metric (-, -) . Note that Z, is a K&hler manifold: it has a complex
structure J, defined as J(A) := J o A, for any A € T;Z,, and a compatible
Riemannian metric, induced from the metric of @, since T';Z, C @),. Now
we are able to define the complex structure J of Z: chose a quaternionic
connection D of (M, Q). Since it preserves ) and (-, -), it induces a connec-
tion on the twistor bundle 7 : Z — M, i.e. a decomposition of every tangent
space T;Z into the vertical tangent space 17;Z, and horisontal space Hor ;.
On Hor, identified with 7}, M by means of the differential m,, J is equal to
J. On T;Z,, J is defined as above. It can be shown that J so defined is
independent of the choice of quaternionic connection and is integrable. The
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twistor space Z becomes a complex manifold of dimension 2n + 1 and the
twistor lines are complex projective lines of Z with normal bundle C*"®@0O(1).

The tangent vertical bundle ©: The tangent vertical bundle © of the
twistor projection m : Z — M is a complex line bundle over the complex
manifold Z, with complex structure of the fibers defined by the complex
structure of the twistor lines. Moreover, it has a canonical hermitian metric
h(X,Y):=1((X,Y)—-i(JX,Y)), for any X,Y € ©; =T;Z, C Q,. Due to
this, there is an isomorphism between Chern connections of © (i.e. hermitian
connections with J-invariant curvature) and holomorphic structures of ©, i.e.
operators

0:T(0) — Q% (Z,0)
which satisfy the Liebniz rule

d(fs) = fo(s)+0(f)s, feC>=(ZC), scI(0)

and whose natural extension to the complex Q%*(Z, ©) satisfies 9* = 0. The
isomorphism associates to a Chern connection V its (0, 1)-part

- 1
aUS = §(VUS+jVJUS), UeTZ, se€ F(@)

Hence the study of holomorphic structures of © reduces to the study of Chern
connections.

Distinguished sections of ©: Note that any section A € I'(Q) defines
a section A of ©, by the formula:

1
A(J) =T,(A) == S (A+ Jo Ao J) = A= (A, )], JE€Z

where the bundle homomorphism II : 7*¢) — © is the orthogonal projection
onto © C 7*Q with respect to the metric of 7*¢) induced by the natural
Euclidian metric (-, -) of Q. Such sections of © will be called distinguished.
The differential o, : TZ — T'Z of the antipodal map 0 : Z — Z, o(J) = —

induces an involution on the space of smooth sections of ©, which associates
to a section s the section s defined as follows: for any J € Z, 55 := o, (sg( J)) .
If s := A is distinguished, then § = —s. This is why the distinguished sections
are also called purely imaginary. Moreover, Js is real, i.e. Js = Js. The
distinguished sections of © will play a fundamental role in our treatment.



3 Holomorphic structures on ©

In this section, we adapt the arguments used in [4] (Sections 112, 114, II5) to
the quaternionic context. To keep our text short, we refer to [4] whenever
the analogy is straightforward.

Consider a quaternionic connection D on (M,Q). Then 7*D is a con-
nection on the pull-back bundle 7*¢Q) and V := [l o 7*D is a connection on
©. Since D preserves (-, -), the connection V preserves the Euclidian metric
of ©. Like in [4], one shows that V is C-linear, i.e. that VJ = 0, where J
denotes the complex structure of the fibers of ©.

Proposition 1. The connection V is a Chern connection if and only if D
is self-dual.

Proof. For any distinguished section A of © and U € T;Z, with m,U = X €
T,M,

VuA = DxA— (J, AP (U). (5)
Here ’UD(U) € T;Z, = O, denotes the vertical part of U with respect to
the connection D induced by D on the twistor bundle 7 : 7 — M. From

relation (5) we obtain, like in [4] (see p. 585 and Appendix A), the following
expression of the curvature RV :

RY 3 A =11 ([RYy, A])
Ry cA=—Q,(B,C)J(A)
RY ;A =0,

where X,Y € T,Z are D-horisontal lifts of X,Y € T,M, B,C € T;Z

D
A€ 0, I0;:Q, — J* is the orthogonal projection and €2, is the Kihler
form of the twistor line Z,, which is obviously J-invariant. Hence V is a
Chern connection if and only if the horisontal part of RY is J-invariant, i.e.
for every J € Z and A € Q with A | J,

1L, ([RJDX/\JY—X/\Y7A]) = 0. (6)

In order to study condition (6), we take an admissible basis {.Ji, Ja, J3}

of Q with J = Ji, so that A = M\yJs + A3J3 for some Ay, A3 € R. Then II;

becomes the projection onto the subspace generated by .J, and J3. Recall

now that RP = W + R", for some n € Bil(T'M) and that the quaternionic

Weyl tensor W commutes with the endomorphisms of ¢). Using relations (2)
and (3), we easily obtain:

Iy, ([RY xhsy—xays Al) = (U (I X, 1Y) — Q(X,Y)) LA
= —4 (L X,Y) + 7YX, LY)) Ji A



From relation (4) we deduce that Ricci(RP)*Y is Q-hermitian. It follows
that D is a self-dual quaternionic connection.
m

Self-dual quaternionic connections exist on any quaternionic manifold. If
D is a self-dual quaternionic connection, then any other self-dual quaternionic
connection is of the form D’ = D + S¢, with da (Q-hermitian. The way the
Chern connections of © determined by two self-dual quaternionic connections
of (M, Q) are related is described in the following proposition.

Proposition 2. Let D, D' = D + 5% be two self-dual quaternionic connec-
tions. Then the Chern connections V and V' induced by D and D' are related
as follows:

V' =V+2J (t°a)® J.

Proof. Fix an arbitrary J € Z and an admissible basis {J;, Jo, J3} of @ with
J = Ji. Any A € Oy is of the form Ay Jy + A3J3, for some Ay, A3 € R. For
every U € T;7 with m,U = X,

(V/ - V)U(A) == HJl [D,/X - DX, A] == 20[<J1X)(—)\2J3 + >\3J2)
= —2@(J1X)J1()\2J2 + )\3J3)
=2(Jrm*a)(U)J, A.

]

Remark: Recall that two holomorphic structures on a complex line bun-
dle V'— N over a complex manifold (N, J) are equivalent, if they are conju-
gated by an element of the gauge group C*°(N, C*). Suppose now that V" has
a hermitian structure. Let 0" and 0% be two holomorphic structures of V' and
V! and V? the Chern connections, with (0, 1)-parts 9! and 9° respectively.
Then 0' and 0? are equivalent if and only if

V2 =V!+ (dlogp — db) @ T, (7)

where p is a positive smooth function, # is a smooth function with values in
St and J is the complex structure of the fibers of V. The connections V!
and V? are equivalent as hermitian connections if d’logp = 0.

The main result of this Section is the following classification theorem:

Theorem 3. Any holomorphic structure of © is equivalent with an holo-
morphic structure PP := 0P + 3, where 9P is the (0,1)-part of the Chern
connection of © induced by a self-dual quaternionic connection D of (M, Q),



B € QM) has Q-hermitian exterior differential and 3 € Q%' (Z, End¢(©))
is defined as follows: for any U € T;Z with m,U = X and s € T'(0),

Bu(s) == (B(X)Ts—B(JX)s).

DN | —

Moreover, two holomorphic structures 0P° and 0% are equivalent if and
only if D and D' are equivalent as quaternionic connections of (M, Q) and
d° == d+iB and d° = d +if3 are equivalent as hermitian connections of
the hermatian trivial line bundle M x C.

Proof. The proof follows the same steps as the proof of Theorem 1 of [4]
(note that, our Proposition 1 corresponds to Proposition 2 of [4] and our
Proposition 2 corresponds to Lemma 4 of [4]). Due to this, we content
ourselves to explain why 0 is an holomorphic structure. Since df is Q-
hermitian, the pull-back connection d + i7*( is a Chern connection on the
hermitian trivial line bundle Z x C. Let V be the Chern connection of ©
induced by a self-dual quaternionic connection D, as in Proposition 1. The
tensor product connection V? := V®@(d+ir*3) = V+r*2J on © = Ox¢C
is also a Chern connection on O. It can be readily checked that its (0, 1)-part

is precisely 0”7, In particular, 97 is an holomorphic structure of ©.
]

Recall now that any two exact quaternionic connections are equivalent.
The following Corollary is a consequence of Theorem 3.

Corollary 4. The tangent vertical bundle of the twistor fibration of a quater-
nionic manifold (M, Q) has a canonical class of equivalent holomorphic struc-
tures, determined by the exact quaternionic connections of (M, Q).

4 A Penrose transform

In this section we shall use the £ — H formalism developed in [5]. We begin
with a brief review of some basic facts we shall need about the representation
theory of the group Sp(1). Let H = C? be an abstract 2-dimensional complex
vector space on which Sp(1) = SU(2) acts, leaving invariant a complex
symplectic form w and a compatible quaternionic structure, i.e. a C-anti-

linear map ¢ : H — H, which satisfies ¢*> = —Idg, w(qu,quw) = w(v,w)
and w(v,qv) > 0, for any v,w € H. The 2-form w together with ¢ define
an invariant hermitian positive definite metric (-,-) := w(-,¢-) on H. By

means of the identification H > h — w(h,-) € H between H and its dual
H* S*(H) C H® H =2 H*® H C End(H) acts on H and its real part
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(with respect to the real structure induced by ¢) is isomorphic to the Lie
algebra sp(1) C End(H) of imaginary quaternions. We also need to recall
that H ® S*(H) has two Sp(1)-irreducible components: S*(H), which is the
kernel of the map F': H ® S?(H) — H defined by

F(h, h1h2+h2h1) :w(h, h1>h2+W(h,h2)h1, hhhg,h S H7 (8)

and H, isomorphic to the hermitian orthogonal of S*(H) in H ® S*(H) with
respect to the hermitian metric of H®S?(H) induced by the hermitian metric
(-,+) of H (to simplify notations, we sometimes omit the tensor product signs,
so that hlhg + h2h1 denotes hl & hg + hg X hl)

Coming back to geometry, the quaternionic structure of (M, Q) deter-
mines a G = GL(n, H)Sp(1) structure Fy, i.e. a G-subbundle of the principal
frame bundle of M, consisting of all frames f : T,M — H" which convert the
standard basis of imaginary quaternions, acting by multiplication on H" on
the right, onto an admissible basis of (), acting naturally on 7,,M. Any rep-
resentation of G = G L(n, H) x Sp(1) determines a locally defined bundle over
M , which is globally defined when the representation descends to GG (in which
case the bundle is associated to the principal G-bundle Fj). Real represen-
tations and real vector bundles over M will be automatically complexified.
There are two locally defined complex vector bundles E and H on M, which
are associated to the standard representations of GL(n,H) and Sp(1) on
E =~ C?" and H = C? respectively, extended trivially to GL(n,H) x Sp(1).
The Sp(1)-invariant structures of H induce similar structures on the bundle
H, which will be denoted with the same symbols (e.g. w will denote the sym-
plectic form of H as well as the induced symplectic form on the bundle H;
in particular, we shall identify H with its dual H* by means of the isomor-
phism H 3 h — w(h, ) € H*; similarly, (-,-) will denote the hermitian inner
product of H and the induced hermitian metric on the bundle H). Some of
the natural bundles over M are isomorphic with tensor products and direct
sums of H and E. For example, T'M is isomorphic with E ® H, T* M with
E* ® H, Q with S?*(H) and the product T*M ® @ decomposes as

T"M@Q~2E*9H®S*(H) 2 E* ® S°(H)® E* @ H, (9)

since H @ S*(H) = S3(H) ® H. The Penrose operator PP : T'(Q) —
['(E* ® S*(H)) defined by a quaternionic connection D of (M,Q) is the
composition of D : I'(Q) — I'(T*M ® @) with the projection onto the first
component of the decomposition (9).

Proposition 5. Let D be a self-dual quaternionic connection on (M, Q) and
A € T(Q). Then the distinguished section A of © is OP-holomorphic if and
only if A is a solution of the Penrose operator PP.
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Proof. The section A is dP-holomorphic if and only if it satisfies
V(A =JVu(A), YU eT;Z, VJeZ, (10)

where V is the Chern connection of © induced by D. Using relation (5), it
can be seen that (10) is equivalent with

DyxA—(Dyx A, JYJ — JDxA— (Dx A, dpa =0, VX € TM, VJé€ Z.
For every unit j € sp(1) C End(E ® H) (acting trivially on E), define
T, E*®@ H*®S*(H) — E*® H* ® S*(H)
in the following way: for any v € E* @ H* ® S*>(H) and v € E® H,
Ti(v) () == ~(Gv) = (v(G), 7)7 = 5 o y(v) = (y(v), Hldsen-

Here (-,-) denotes the hermitian inner product of H ® H induced by the
Sp(1)-invariant hermitian inner product (-, -) of H, i.e.

1
(hiha, hshy) = §<h17h3><h2, hs), Yh; € H,

so that the restriction of (-, ) to sp(1) C S*(H) induces the natural Euclidian
metric of the bundle @; recall that () is associated to the adjoint represen-

tation of Sp(1) on its Lie algebra sp(1), extended trivially to G. The group
Sp(1) acts naturally on H* @ S*(H) C H* ® End(H), by

(A-a)(h)=Aoa(A'h)o A', A€ Sp(l), ac H*®S*H), heH.

We can extend this action to an action of G on E* ® H* ® S*(H), with
GL(n,H) acting naturally on E*. This extended action preserves the C-
linear condition

Ti(y) =0, Vjesp(l), j°=-Idu (11)
on E* @ H* @ S*(H), since
Ti(A-7(w)=AoTy(y) (AT ) o AT, ve E®H,

where j' := A7' o jo A. Since F* ® H and E* ® S3(H) are irreducible
components of E* ® H ® S*(H) and there are distinguished sections of ©
which are not 9P-holomorphic, from Shur’s lemma it is enough to check that
any element of E* ® H satisfies (11). This can be done in the following
way: let e*h € E* ® H be decomposable. Without loss of generality, we
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can take (h,h) = 1. Define h := q(h). Then the basis {h,h} is unitary
with respect (-,-) and w(h,h) = 1. As an element of E* @ H @ S?*(H) C
E*® H® End(F ® H), e*h has the following form

V(v) = (2(e*z3)<u)hh — (e*h)(v)(hh + hﬁ)) Idp, veE@H  (12)

The identity endomorphism of H is Idy = hh — hh and a basis of unit
imaginary quaternions can be chosen to be

j1 := —i(hh + hh)ldp
jo := —(hh + hh)Idg
js == i(hh — hh)Idp.

Consider now j = aij; + asjs + asjz € sp(1) an arbitrary unit imaginary
quaternion (so that the a;’s are real and a? 4 a3 + a3 = 1). Then, for every
ve F® H,

+(jv) = 2hh (ali(e*ﬁ)@) + (as + mg)(e*h)@)) Idp
+ (hh + hh) (alz( “h)(v) + (a2—m3)(e*;})(v)) Idp:
(1(50),3) = (—az + iag) (ari(e" ) (v) + (a3 + rias) (R ))
+a1< ar(e*h)(v) + (a3 + iay)(e )
joy(v) = (e*h)(v) ((a2+za3)hh+( as + iaz)hh + iay (R — hh)) Idg
+2(e*h) (v) (mlhh + (ag — ia3)hﬁ> Idp:
(v(v),j) = (e"h)(v)(—az + ias) — (e*h)(v)ia.

From these relations it is straightforward to check that 7(y) = 0.

5 A vanishing theorem

In this section we consider a quaternionic manifold (M, Q) which admits a
compatible quaternionic-Kahler metric g, i.e. the Levi-Civita connection DY
of ¢ is a quaternionic connection of (M, Q) and the endomorphisms of ) are
skew-symmetric with respect to g. Let ¢* : T*M — T'M be the isomorphism
defined by g.
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Borrowing the terminology of [6], we define a conformal weight operator
B:T"M®Q —T"M®Q
by the following formula:
Bla® A)(X) =[S}, A], XeTM, acT*M, AcqQ, (13)

where S was defined in (1). (A conformal weight operator has been defined
in [4], for vector bundles on conformal manifolds, associated to the principal
bundle of conformal frames, and in [6] for vector bundles associated to the
reduced frame bundle of a Riemannian manifold with special holonomy). The
following lemma is a straightforward calculation:

Lemma 6. Let {Jy, Js, J3} be an admissible basis of Q). Then for every
XeTM,aeT*M and A € Q,

Bla® A)(X) = a([J1, A(X)) 1 + a ([J2, A|(X)) Jo + a ([J5, A](X)) Js.

Proposition 7. Consider the decomposition (9) of T*M ® Q. The conformal
weight operator B acts as —2 - Idg-ggsm) on E* ® S*(H) and as 4 - Idg-gn
on E* ® H.

Proof. Let e*h € T'(E*®H) be a decomposable local section, with (h, h) = 1.
Define h := q(h). As a section of T*"M ® Q, e*h =a ® A+ a® A, where
A= 2hhldg € T(Q),
A := —(hh + hh)Idg € T(Q)
o= e'h e QM)
& :=eh e Q' (M).

As in the proof of Proposition 5, we chose the admissible basis of Q:

Ji = —i(hh + hh)ldg
Jy := —(hh + hh)Idg
Js == i(hh — hh)Idg.
It is easy to check the equalities:
[J1, Al = —2i[hh + hh, hh]ldg = 4ihhldg
[Jy, A = —2[hh + hh, hh]Idg = 2(hh + hh)Idg
[J3, A] = 2i[hh — hh, hh]Idg = —2i(hh + hh)Idg.
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Using Lemma 6, we get that
Bla® A)(X) = —4(e*h)(X)(hh + hh)Idg + 4(e*h) (X )hhldg, X € TM.

A similar calculation shows that B(a ® A)(X) = 4(e*h)(X)hhldg, which
readily implies that

Bla®A+a®A) =4(a® A+a® A),

i.e. that E* ® H is the eigenspace of B corresponding to the eigenvalue 4. In
order to show that E* ® S?(H) is the eigenspace of B corresponding to the
eigenvalue 2, we notice that E* ® S3(H) C T*M ® @ is locally generated by
sections v¢ (for e* € I'(E*) and i € {1,---4}) defined as follows: for every
X eTM,

7 (X) = ((6*h)(X)(hl3 + hh) + (e*ﬁ)(X)hh> Idg
75 (X) = ((6*3)(X)(hiz + hh) + (e*h)(X)}E}}) Idg
¥§(X) == (e*h)(X)hhldg
Ve (X) == (e*Rh)(X)hhldg

As before, one checks that B(y¢) = —27¢, for every e* € I'(E*) and i €
{1,---,4}. The conclusion follows.
[l

Proposition 8. Let D = D9+S5° be a quaternionic connection on a quaternionic-
Kidhler manifold (M,Q,g), with o € QY (M) a co-closed 1-form. Let A €
['(Q) be a solution of the Penrose operator PP. Then

2 o142 1 9 ol
(trace,(DA), A) = —2|A] (4<n+2)Scal 2la]” ) .

Proof. Tt is straightforward to check that DoB = BoD), where the connection
D (on the right and left hand side of the equality) acts on T*M ® ) and

B :=Idp+«); ® B is an automorphism of T*M ® T*M ® (). Define

tracey(B) : T"M @ T"M ® Q — @

as follows: for any A € Q, a,3 € T*M,
~ 4n ~
traceg(B)(a® B® A) ==Y B(a® B A)(e;,¢;) = B(B® A)(g"a),
=1
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where {e1,- - ,e4,} is an arbitrary g-orthonormal basis of TM. Writing A =
a1J1+asJs+azJs in terms of an admissible basis {J;, Jo, J3} of @, we readily
obtain, from Lemma 6, that

trace, (B)(D2A4) = >~ (g (14 BE . (A)lese) i+ g (12, RE, (Allesse; ) J2)

1<J

+ 3 (15 RE (A)lese;) o

1<j

where R, (A) = [R] , A] is the commutator of the endomorphisms Rl

and A of TM. In partlcular,

(tracey(B)(D Zg < [A, RD (A)les, €j>

1<J

= ZZakapg ( Jis Re, o (I )]ez,e]>

i<j k,p
Using relations (2) and (3) we readily get that, for every k € {1,2,3},
Z <[Jk,Ri (Jk)]el,ej) = —8trace,(n)
1<j
and for every k # p,
>~ (1 R, (nlles 4 U B . (e ) =0
1<J

from where we conclude that
(trace,(B)(D?A), A) = —8| A|*trace,(n). (14)

Recall now that 7 is related to the Ricci curvature Ricci(RP) of D as in
relation (4). According to Section 2, we can express Ricci(RP) in terms of a
and the Ricci tensor of g, so that, taking traces and using the fact that « is
co-closed, we easily obtain the following relation:

P\ ( 2 QA2 Q1412 1 9 ol
(trace,(B)(D*A), A) = —8|A[|*trace,(n) = —8|A] (4(n—|— 2)Scal 2|a

(15)
On the other hand, from Proposition 7 and the very definition of the Penrose
operator,

B(D?A) = D o B(DA) = 4D*A — 6D(PP A).
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In particular, if A € T'(Q) is a solution of the Penrose operator, then PP A = 0

and
(trace,(D*A), A) = i(traceg(f?)(DzA),A> = —2|AJ? ( Scal? — 2|af?

(16)
O

1
4(n +2)

We now restrict to the situation when (M, @, g) is a compact quaternionic-
Kéhler manifold of negative scalar curvature. An important class of such
manifolds can be constructed in the following way [1]: take a non-compact
symmetric quaternionic-Kéhler manifold M = G/K, which is dual to a Wolf
space. The non-compact simple Lie group G has a torsion free cocompact dis-
crete subgroup I'. Then the double quotient M/T" is a compact quaternionic-
Kahler manifold of negative scalar curvature.

Theorem 9. Let (M, Q, g) be a compact quaternionic-Kdahler manifold with
negative scalar curvature. Let D be a quaternionic connection on (M, Q, g),
such that D = D9 + S®, with « € QY(M) a co-closed 1-form. Then the

Penrose operator PP has no non-trivial global solutions.
Proof. Choose an admissible basis {.J1, Jo, J3} of () and recall the formula

DxA=D%A+ Bla® A)(X) D9A+Z ([;, A|(X)) J;, X eTM

(17)
which relates D and D? when they act on the bundle (). Using relation (17)
it is straightforward to check that

(D*A)x.x, A) = ((D*)*(A)x.x, A) + a ([A, DL A|(X)) — 2a(X)(D% A, A)

+ 31X ([, AUX)) (g, A) + o ([, AN (X)) (Dx Jj, A)]

=1

.

3
Z (J;X)(D5, A, A).

Choosing a g—orthonormal basis {e1,- - ,e4n} of TM and letting X :=e; in
the previous relation, we get

(tracey(D*A), A) = (tracey(D?)?A, Ay + 4(D%., A, A) + QZ (A D7 A ej>

—Z ([J;, Ale;)?

2,7=1
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On the other hand, again from relation (17), we deduce that

(DADA) = 3D DAY = 37 ((DLA,D2A) + 20 (1D 4, Ale)

i=1 i=1

+Z ([J;, Ale;)?

7,7=1
4n 4n
= (DA, DIA) +2) a([DLA Ale;) + > a(l;, Ale;)”.
i=1 i,j=1

Combining the above relations, we get
(tracey(D*A), A) =(tracey(D?)*(A), A) + 4(D%. A, A)
+ (DA, DIA)Y — (DA, DA).
Suppose now that PP A = 0. Using Proposition 8, this relation becomes

(DA, DA) — (DA, DY A) — A(D¥. A, A) — (trace,(DY)*A, A)
1
= 2|A|* [ ————Scal? — 2|a|? ).
. <4<n+2>sca 'a'>

Integrating over M and using fM(Dg*aA,AWolg = 0, the 1-form « being
co-closed, we get

1
DA,DAV01+4/ Al lal*vol, — ————
/M< ol +4 [ [APlafol, - 5t

Since Scal? < 0, A must be necessarily identically zero.

Scalg/ | AJ*vol, = 0.
M

]

Corollary 10. Let D be a closed quaternionic connection on a compact
quaternionic-Kdahler manifold (M,Q, g) of negative scalar curvature. There
is no global non-trivial 9P -holomorphic section of ©.

Proof. Let us consider an arbitrary OP-holomorphic section s of ©. As in [4],
we can prove that s = A + JB, for two sections A, B € T(Q). It can be
checked that § = —A + J B is also °-holomorphic, from where we deduce
that both A and B are dP-holomorphic. Therefore, to prove our claim it
is enough to show that there are no global non-trivial 9”-holomorphic dis-
tinguished sections of ©. The Levi-Civita connection DY is exact, and hence
D = D9+ 5%, for some closed 1-form o € Q'(M). From Theorem 3, the holo-
morphic structure 9 depends (up to isomorphism) only on the cohomology
class of a. Hence, without loss of generality, we can take o to be harmonic.
We conclude from the Penrose transform developed in Proposition 5 and
from Theorem 9. [
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