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Abstract. Let ϕ0 be a subharmonic function on an open disc D(x0, r) ⊂ C.

For every positive integer m, we construct a holomorphic function fm on the disc

D(x0, r) such that the integral of |fm|
2 e−2mϕ0 over the disc is finite and has a very

slow and well understood growth in m, while the number of zeroes of fm in the disc

is at most a polynomial of degree 1 in m whose leading coefficient is given explicitly

in terms of the mass of the Laplacian ∆ϕ0 on the disc. As an application to

several complex variables, we obtain a regularization theorem for (1, 1)-currents on

compact, possibly non-Kähler manifolds, while keeping track of the Monge-Ampère

masses of the regularizing currents. This strengthens Demailly’s regularization-

of-currents theorem and has geometric applications to the study of Moishezon

manifolds and big line bundles via singular Morse inequalities.

0.1 Introduction

Let ϕ : Ω → R∪{−∞} be a plurisubharmonic (psh) function on an open
subset Ω ⊂ Cn, and let z = (z1, . . . , zn) be the standard coordinates on Cn.
The Lelong number ν(ϕ, x) of ϕ at an arbitrary point x ∈ Ω is defined as the
mass carried by the positive measure ddcϕ∧ (ddc log |z−x|)n−1 at x (see, for
instance, Demailly’s book [Dem97], chapter III). It is a well-known result of
Skoda ([Sko72]) that the Lelong numbers of ϕ affect the local integrability of
e−2ϕ. Indeed, if ν(ϕ, x) < 1, then e−2ϕ is integrable on some neighbourhood
of x. On the contrary, if ν(ϕ, x) ≥ n, then e−2ϕ is not integrable near x. The
integrability of e−2ϕ is unpredictable when 1 ≤ ν(ϕ, x) < n.

Our first aim is to establish a potential-theoretic result in the case n = 1
when there is no unpredictability interval. Let U ⊂ C be an open set,
ϕ0 : U → R ∪ {−∞} a subharmonic function, and T = ddcϕ0 the associated
closed positive current of bidegree (1, 1). The current T can be identified with
the Laplacian ∆ϕ0 of ϕ0 computed in the sense of distributions. It defines a
positive measure µ = ddcϕ0 on U . In one complex variable, the mass of ddcϕ0

at a point x coincides with the Lelong number ν(ϕ0, x). Let D(x0, r) ⊂⊂ U
be an arbitrary disc of radius 0 < r < 1

2
, and let

γ =

∫

D(x0, r)

ddcϕ0,
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be the mass carried by the measure ddcϕ0 on this disc. Consider the decom-
position :

ϕ0 = N ?∆ϕ0 + h0, on D(x0, r),

where N(z) = 1
2π

log |z| is the Newton kernel in one complex variable, and
h0 = Re g0 is a harmonic function expressed as the real part of a holomorphic
function g0.

In all that follows, we will be considering a method of neutralizing the
−∞-poles of ϕ0 on a fixed disc in order to make the exponential e−2mϕ0

integrable and to control the growth rate of its integral as m→ +∞.

Theorem 0.1.1 Let ϕ0 : U → R ∪ {−∞} be a subharmonic function on an
open set U ⊂ C, and let D(x0, r) ⊂⊂ U be an open disc of radius 0 < r < 1

2
.

Then, for every small enough δ > 0 and every m ∈ N?, there exist fini-
tely many points a1 = a1(m), . . . , aNm

= aNm
(m) ∈ D(x0, r), such that the

positive integers mj defined as :

mj = max{[mν(ϕ0, aj)], 1}, j = 1, . . . , Nm, ([ ] is the integer part),

and the holomorphic function fm(z) = emg0(z)
Nm
∏

j=1

(z−aj)
mj defined on D(x0, r),

have the following properties :

(i)
Nm
∑

j=1

mj ≤ mγ(1 + δ), where γ is the ddcϕ0-mass of D(x0, r) ;

(ii) There exists a constant C = C(r) > 0, independent of m, such that :

|aj − ak| ≥
C

m2
,

for all aj, ak, such that j 6= k and ν(ϕ0, aj), ν(ϕ0, aj) <
1−δ
m
.

(iii)

∫

D(x0, r)

|fm(z)|2e−2mϕ0(z) dλ(z) = o(m), when m→ +∞,

where dλ is the Lebesgue measure in C.

Higher dimensional analogues of this result have yet to be found. However,
the Ohsawa-Takegoshi L2 extension theorem (see [OT87], [Ohs88]) applied on
a complex line enables us to derive geometric applications of Theorem 0.1.1
in several complex variables. The first application is a global regularization
theorem for closed almost positive (1, 1)-currents in the spirit of Demailly
(see [Dem92]), but with an additional control on the Monge-Ampère masses
of the regularizing currents. Here is the set-up.

Let T be a d-closed current of bidegree (1, 1) on a compact complex
manifold X of dimension n. Assume that T ≥ γ for some real continuous
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(1, 1)-form γ (i. e. T is almost positive). The current T can be globally
written as T = α + ddcϕ, with a global C∞ (1, 1)-form α and an almost
psh potential ϕ on X (i.e. ϕ can be locally expressed as the sum of a psh
function and a C∞ function). The notation ddc := i

π
∂∂̄ will be used in all

that follows. A variant of Demailly’s regularization theorem (see [Dem92,
Proposition 3.7]) asserts that T is the weak limit of currents Tm = α+ddcϕm
lying in the ∂∂̄-cohomology class of T and having analytic singularities. These
are, by definition, singularities for which ϕm can be locally written as

c

2
log(|g1|

2 + · · · + |gN |
2) + C∞, (1)

with a constant c > 0, and holomorphic functions g1, . . . , gN . Fix a Hermi-
tian metric ω on X. Then Tm can be chosen such that :

Tm ≥ γ − εm ω, for some sequence εm ↓ 0,

and the Lelong numbers satisfy ν(T, x)−
n

m
≤ ν(Tm, x) ≤ ν(T, x), x ∈ X.

What this theorem does not specify, however, is whether there exist regula-
rizations Tm → T with analytic singularities having the extra property that
the growth in m of the Monge-Ampère masses of the wedge-power currents
T qm is under control. In other words, if Vm = {ϕm = −∞} is the polar set of
Tm, we would like to control the growth rate of the quantities :

∫

X\Vm

(Tm − γ + εm ω)q ∧ ωn−q, q = 1, . . . , n

asm→ +∞. Using Theorem 0.1.1 we can modify Demailly’s original construc-
tion to settle this question in the following form.

Theorem 0.1.2 Let T ≥ γ be a d-closed current of bidegree (1, 1) on a
compact complex manifold X, where γ is a continuous (1, 1)-form such that
dγ = 0. Then, in the ∂∂̄-cohomology class of T , there exist closed (1, 1)-
currents Tm with analytic singularities along an analytic set Vm ⊂ X which
converge to T in the weak topology of currents and satisfy :

(a) Tm ≥ γ −
C

m
ω, m ∈ N ;

(b) ν(T, x) −
n

m
≤ ν(Tm, x) ≤ ν(T, x), x ∈ X, m ∈ N ;

(c)

∫

X\Vm

(Tm − γ +
C

m
ω)q ∧ ωn−q ≤ C (logm)q, q = 1, . . . , n = dimCX,

for some constant C > 0 independent of m.
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This result can be used to prove new characterizations of big line bundles
in terms of curvature currents. Let us briefly review a few basic facts. A ho-
lomorphic line bundle L over a compact complex manifold X of dimension n
is said to be big if dimC H

0(X, Lm) ≥ C mn for some constant C > 0 and for
all large enough m ∈ N. This amounts to the global sections of Lm defining
a bimeromorphic embedding of X into a projective space, for m >> 0. The
compact manifold X is said to be Moishezon if the transcendence degree of
its meromorphic function field equals n := dimCX, or equivalently, if there
exist n global meromorphic functions that are algebraically independent. A
Moishezon manifold becomes projective after finitely many blow-ups with
smooth centres. There is, moreover, a bimeromorphic counterpart to Kodai-
ra’s embedding theorem : a compact complex manifold X is Moishezon if and
only if there exists a big line bundle L → X. The asymptotic growth of the
dimension of H0(X, Lm) as m → +∞ is actually measured by a birational
invariant of L, the volume, defined as :

v(L) := lim sup
m→+∞

n!

mn
h0(X, Lm).

Clearly, L is big if and only if v(L) > 0. Switching now to the analytic
point of view, recall that a singular Hermitian metric h on L is defined in
a local trivialization L|U ' U × Cn as h = e−ϕ for some weight function
ϕ : U → [−∞, +∞) which is only assumed to be locally integrable. In
particular, the singularity set {x ∈ U, ϕ(x) = −∞} is Lebesgue negligible.
The associated curvature current T := iΘh(L) is a closed current of bidegree
(1, 1) on X representing the first Chern class c1(L) of L. It is locally defined
as T = ddcϕ for weight functions ϕ of h.

Recall that an almost positive current T can be locally written in coordi-
nates as T =

∑

j, k

Tj, k dzj ∧dz̄k for some complex measures Tj, k. The Lebesgue

decomposition of the coefficients Tj, k into an absolutely continous part and a
singular part with respect to the Lebesgue measure induces a current decom-
position as T = Tac+Tsing. By the Radon-Nicodym theorem, the coefficients
of the absolutely continous part are L1

loc and thus the exterior powers Tmac are
well defined (though not necessarily closed) currents for m = 1, . . . , n.

When applied to curvature currents, the current regularization theorem
0.1.2 with controlled Monge-Ampère masses enables us to characterize the
volume of a line bundle in terms of positive currents in c1(L). This gives
in particular a bigness criterion for line bundles in terms of existence of
singular Hermitian metrics satisfying positivity assumptions (and implicitly
a characterization of Moishezon manifolds).

Theorem 0.1.3 Let L be a holomorphic line bundle over a compact complex
manifold X. Then the volume of L is characterized as :
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v(L) = sup
T∈c1(L), T≥0

∫

X

T nac.

In particular, L is big if and only if there exists a possibly singular Hermitian
metric h on L whose curvature current T := iΘh(L) satisfies the following
positivity conditions :

(i) T ≥ 0 on X ; (ii)

∫

X

T nac > 0.

In the special case when the ambient manifold X is Kähler, this same
result was obtained by Boucksom ([Bou02, Theorem 1.2]). This strengthens
a previous (only sufficient) bigness criterion by Siu ([Siu85]) that solved af-
firmatively the Grauert-Riemenschneider conjecture ([GR70]). Condition (i)
replaces Siu’s stronger assumption that the curvature current T (or the me-
tric h) be C∞. Theorem 0.1.3 falls into the mould of ideas originating in
Demailly’s holomorphic Morse inequalities ([Dem85]). Its proof hinges on
the regularization theorem 0.1.2 above and on Bonavero’s singular version
of Demailly’s Morse inequalities ([Bon98]). It strengthens a bigness criterion
in [Bon98] which required the curvature current T to have analytic singu-
larities. On the other hand, Ji and Shiffman ([JS93]) proved that L being
big is equivalent to L having a singular metric whose curvature current is
strictly positive on X, (i.e. ≥ εω for some small ε > 0). This implies, in
particular, the “only if” part of the above Theorem 0.1.3. The thrust of the
new “if” part of Theorem 0.1.3 is to relax the strict positivity assumption
on the curvature current.

Let us finally stress that the main interest of Theorems 0.1.2 and 0.1.3
lies in X being an arbitrary compact manifold. Related results are known to
exist for Kähler manifolds (e.g. [DP04, Theorem 0.4], [Bou02, Theorem 1.2]).
The approach to the non-Kähler case treated here is quite different. The crux
of the argument is modifying the existing procedure for regularizing (1, 1)-
currents to get an effective control on the Monge-Ampère masses (Theorem
0.1.2). If X is Kähler, the sequence of masses in the usual Demailly regulari-
zation of currents is easily seen to be bounded by applying Stokes’s theorem
and using the closedness of ω (see [Bou02). The situation is radically different
in the non-Kähler case where a new regularization of currents is needed with
a possibly unbounded, though only slowly growing, sequence of masses.

0.2 Preliminaries

Let us now focus on Theorem 0.1.1 and its setting described in the intro-
duction. In this section we will be clearing the way to its proof. Fix m ∈ N?

and δ > 0. It is a trivial fact in one complex dimension that the upperlevel
set for Lelong numbers :

E1−δ(mddcϕ0) := {x ∈ Ω ; ν(mϕ0, x) ≥ 1 − δ}
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associated with a closed positive (1, 1)-current, is analytic of dimension 0. Its
intersection with a relatively compact disc is therefore finite. Let

E1−δ(mddcϕ0) ∩D(x0, r) := {a1, . . . , ap(m)}.

The function :

ψm(z) := mϕ0(z) −
p(m)
∑

j=1

[mν(ϕ0, aj)] log |z − aj|,

is still subharmonic, since

ddcψm = mddcϕ0 −
p(m)
∑

j=1

[mν(ϕ0, aj)] δaj
≥ 0,

in the sense of currents. Moreover :

ν(ψm, aj) = mν(ϕ0, aj) − [mν(ϕ0, aj)], for every j.

Thus, after possibly replacing mϕ0 with ψm, and introducing a factor (z −
aj)

mj for every [mν(ϕ0, aj)] ≥ 1 in the definition of fm which is to be
constructed in Theorem 0.1.1, we may assume in all that follows that :

mν(ϕ0, x) < 1, for allx ∈ D(x0, r). (2)

We have thus brought all point masses of the current mddcϕ0 below 1. Yet,
there may still be some mass diffusely scattered over some regions of the disc
D(x0, r) which could prevent the integral of |fm|

2 e−2mϕ0 having the desired
slow growth in m. The following lemma gives an upper bound for e−2ϕ0 in
terms of the mass of the associated current ddcϕ0. This lemma is akin to
Skoda’s result quoted in the introduction, but gives an estimate on a fixed
disc instead of merely at a point.

Lemma 0.2.1 With the notations in the introduction, if γ :=
∫

D(x0, r)
ddcϕ0,

the following estimate holds :

e−2(ϕ0(z)−h0(z)) ≤
1

∫

D(x0, r)

ddcϕ0

∫

D(x0, r)

1

|ζ − z|2γ
ddcϕ0(ζ),

for all z ∈ D(x0, r).

Proof. Let dµ(ζ) := γ−1 ddcϕ0(ζ) be a probability measure on D(x0, r). For
all z ∈ D(x0, r), we have :

(ϕ0 − h0)(z) =

∫

D(x0, r)

log |ζ − z| ddcϕ0(ζ),
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or, equivalently,

−(ϕ0 − h0)(z) =

∫

D(x0, r)

γ log |ζ − z|−1dµ(ζ), z ∈ D(x0, r).

Now, Jensen’s convexity inequality entails :

e−2(ϕ0−h0)(z) ≤

∫

D(x0, r)

e2γ log |ζ−z|−1

dµ(ζ) = γ−1

∫

D(x0, r)

1

|ζ − z|2γ
ddcϕ0(ζ).

This proves the lemma. �

Lemma 0.2.1, when applied to the function mϕ0, yields the estimate :

e−2m(ϕ0(z)−h0(z)) ≤
1

∫

D(x0, r)

ddcϕ0

∫

D(x0, r)

1

|ζ − z|2mγ
ddcϕ0(ζ),

for all z ∈ D(x0, r).

The right-hand term of this inequality may not be integrable as a function
of z when mγ > 1. To get around this, we will cut the disc D(x0, r) into
pieces, each having a mass strictly less than 1 for the measure mddcϕ0. We
thus see that it is essential for mddcϕ0 not to have point masses larger than
1. The number of pieces must not exceed mγ(1 + δ). We will subsequently
choose a point in each piece, intuitively its “centre”, and will consider a
holomorphic function on D(x0, r) whose only zeroes are these points. This
is the desired function fm of Theorem 0.1.1. The number of its zeroes does
not exceed mγ(1 + δ), by construction. Calculations developed in the next
section 0.3 will show that the L2 growth of fm with weight e−2mϕ0 is at most
of order o(m) as m→ +∞.

Cutting the disc into pieces relies on the following lemma due to Yulmu-
khametov ([Yul85]) and, in a generalized form, to Drasin ([Dra01, Theorem
2.1]). It describes an atomization procedure for arbitrary positive measures
µ in one complex variable. This is the main technical ingredient in the proof
of Theorem 0.1.1.

Lemma 0.2.2 ([Yul85] ; [Dra01].) Let µ be a positive measure supported
in a square R ⊂ R2 with sides parallel to the coordinate axes. Suppose
µ(R) = N > 1, N ∈ Z. Then, there exists a family of closed rectangles
(Rj)1≤j≤N with sides parallel to the coordinate axes, and a family of positive
measures (µj)1≤j≤N , such that :

(a) µ =
N
∑

j=1

µj, µj(R
2) = 1, and Suppµj is a convex subet of Rj ;

(b) R =
N
⋃

j=1

Rj =
N
⋃

j=1

Supp µj ;

7



(c) the interiors of the supports of the µj’s are mutually disjoint ;

(d) the ratio of the sides of each rectangle Rj lies in the interval [ 1
3
, 3] (i.

e. Rj is an “almost square” in the terminology of [Dra01]) ;

(e) each point in R2 belongs to the interior of at most four distinct rectangles
Rj ;

(f) each Suppµj is a rectangle, and the distance between the centres of any
two such distinct rectangles is ≥ C

N2 , where C > 0 is the side of the square
R.

Idea of proof (according to [Dra01]). Yulmukhametov originally proved this
result (see [Yul85]) for absolutely continuous measures µ. The generalization
to the case of arbitrary measures is due to Drasin ([Dra01]). We summarize
here the ideas of Drasin’s proof. Conclusion (f) was not explicitly stated,
but it can be easily inferred from the proof given there. The first idea is to
reduce the problem to the case of a measure µ satisfying µ(p) < 1 at every
point p ∈ R. This is done by subtracting from the original measure µ the
integer part [µ(p)] of each point mass µ(p) > 1. We may also assume, after a
possible rotation of the coordinate system of R

2, that for every line L parallel
to one of the coordinate axes, there exists at most one point p ∈ L such that
µ(p) > 0, while µ(L \ p) = 0.

After these reductions, the key step is to prove that if an almost square
R contains the support of a measure µ satisfying these properties, then there
exist almost squares R0 and R1 and a decomposition µ = µ0 + µ1 such that
Suppµj ⊂ Rj, j = 0, 1, which satisfies conclusions (b) − (d) of the lemma.
The masses µj(Rj) are integers. If µj(Rj) > 1, we repeat this procedure to
obtain almost squares Rj, 0, Rj, 1 and a decomposition µj = µj,0 + µj,1. By
repeatedly applying this procedure we get almost squares RI and measures
µI, indexed over multiindices I = i1, . . . , il made up of digits 0 and 1. The
procedure terminates when all masses µI(RI) = 1. A technical lemma then
yields conclusion (e) and thus clinches the proof of this result. We refer for
details to Drasin ([Dra01, §2, p. 165-171]). �

0.3 Proof of Theorem 0.1.1.

Building on the preliminary developments in the previous section, we
will now complete the proof of Theorem 0.1.1. The notation and set-up are
unchanged. As previously explained, we may assume that mν(ϕ0, x) < 1,
for all x ∈ D(x0, r) (hypothesis (2)). Consider a square R ⊂ C of edge 2r
which contains D(x0, r), and the positive measure µ := ddcϕ0 on R of total
mass γ (or some γ ′ > γ.) Fix 0 < δ < 1 and, for m >> 0, choose an integer
Nm such that
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2

2 − δ
mγ < Nm < mγ (1 + δ). (3)

Such an integer exists as soon as mγ (1 + δ − 2
2−δ ) = mγ δ(1−δ)

2−δ > 1. We

now apply the atomization lemma 0.2.2 to the measure Nm

γ
µ = Nm

γ
ddcϕ0 of

total mass N := Nm. We thus get a covering of D(x0, r) by closed rectangles

(almost squares) Rj = Rj(m), and a decomposition Nm

γ
µ =

Nm
∑

j=1

νm, j such that

νm, j(Rj) = 1, satisfying the conclusions of Lemma 0.2.2. Set µm, j := mγ

Nm
νm, j

and get a decomposition :

mµ = ddc(mϕ0) =
Nm
∑

j=1

µm, j, with µm, j(Rj) = mγ

Nm
∈ (1 − δ, 1 − δ

2
).

For every m, consider the rectangle Pj = Pj(m) = int (Suppµm, j) ⊂ Rj,
and let aj = aj(m) be its centre. We will prove that the integer Nm and the
points aj satisfy the conclusions of Theorem 0.1.1. Hypothesis (2) implies :

mj = max{[mν(ϕ0, aj)], 1} = 1, for j = 1, . . . , Nm,

which further gives :
Nm
∑

j=1

mj = Nm < mγ(1+δ), being precisely the conclusion

(i) of Theorem 0.1.1.

Conclusion (f) of Lemma 0.2.2 and the choice of Nm ensure that the
points aj satisfy the conclusion (ii) of Theorem 0.1.1.

Let us now consider the holomorphic function :

fm(z) := emg0(z)
Nm
∏

j=1

(z − aj), z ∈ D(x0, r),

and let us study the growth in m of
∫

D(x0, r)

|fm|
2 e−2mϕ0 dλ. Since

∫

D(x0, r)

|fm|
2 e−2mϕ0 dλ ≤

Nm
∑

j=1

∫

Pj

|fm|
2 e−2mϕ0 dλ,

the analysis is reduced to finding a convenient upper bound for each integral
on Pj. Fix j ∈ {1, . . . , Nm}. Since Pj ∩ P̄k = ∅, for all j 6= k, we get :

mµ(Pj) = µm, j(Pj) ≤ µm, j(Rj) = mγ

Nm
< 1 − δ

2
.

We may assume, without loss of generality, that Pj is a disc D(aj, rj). Conclu-
sion (e) of Lemma 0.2.2 implies that the sum of the Euclidian areas of the
Pj’s is bounded above by four times the area of the square R of edge 2r. This
means that there is a constant C1(r) > 0, depending only on r, such that

9



(e′)
Nm
∑

j=1

r2
j ≤ C1(r), for all m >> 0.

Lemma 0.2.1, when applied to the function mϕ0 on Pj = D(aj, rj), yields
the following estimate :

|fm(z)|2 e−2mϕ0(z) =
Nm
∏

k=1

|z − ak|
2 e−2m(ϕ0(z)−h0(z))

≤ (2r)2(Nm−1) |z − aj|
2 1
∫

Pj

ddcϕ0

∫

Pj

1

|ζ − z|2
mγ

Nm

ddcϕ0(ζ),

for all z ∈ Pj. We have used the obvious upper bound |z − ak|
2 ≤ (2r)2, for

all k 6= j.

When integrating above with respect to z ∈ Pj, Fubini’s theorem yields :

(0.3.1)

∫

Pj

|fm(z)|2 e−2mϕ0(z)dλ(z) ≤
(2r)2(Nm−1)

∫

Pj

ddcϕ0

∫

Pj

(
∫

Pj

|z − aj|
2

|z − ζ|2
mγ

Nm

dλ(z)

)

ddcϕ0(ζ).

Let us now concentrate on the integral in z on the right-hand side. We get
te following estimate :

(0.3.2)

∫

Pj

|z − aj|
2

|z − ζ|2
mγ
Nm

dλ(z) =

∫

D(aj , rj)

|z − aj|
2

|(z − aj) − (ζ − aj)|
2 mγ

Nm

dλ(z − aj)

≤ 4π(|ζ − aj| + rj)
2(1− mγ

Nm
) ·

(

(|ζ − aj| + rj)
2

2(2 − mγ

Nm
)

+
|ζ − aj|

2

2(1 − mγ

Nm
)

)

, ∀ζ ∈ Pj.

Indeed, if we make the change of variable x = z − aj and set ζ − aj = a, we
are reduced to estimating the integral :

∫

D(0, r)

|x|2

|x− a|τ
dλ(x),

where we have set rj := r and τ := 2mγ
Nm

to simplify the notation. By the
choice (3) of Nm, we get : 0 < τ < 2. The change of variable x − a = y,
followed by a switch to polar coordinates with |y| = ρ, implies :
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∫

D(0, r)

|x|2

|x− a|τ
dλ(x) =

∫

D(−a, r)

|y + a|2

|y|τ
dλ(y) ≤

∫

D(−a, r)

(|y|+ |a|)2

|y|τ
dλ(y)

≤ 2

∫

D(−a, r)

|y|2 + |a|2

|y|τ
dλ(y)

= 2

∫

D(−a, r)

|y|2−τdλ(y) + 2|a|2
∫

D(−a, r)

|y|−τdλ(y)

≤ 2π ·

(

2

∫ |a|+r

0

ρ2−τρ dρ+ 2|a|2
∫ |a|+r

0

ρ−τρ dρ

)

= 4π (|a| + r)2−τ
(

(|a| + r)2

4 − τ
+

|a|2

2 − τ

)

.

For r = rj, this gives the estimate (0.3.2). Relations (0.3.1) and (0.3.2) imply :

∫

Pj

|fm(z)|2 e−2mϕ0(z)dλ(z) ≤

4π
∫

Pj
ddcϕ0

(2r)2(Nm−1)

∫

Pj

(|ζ − aj| + rj)
2(1− mγ

Nm
)

(

(|ζ − aj| + rj)
2

2(2 − mγ

Nm
)

+
|ζ − aj|

2

2(1 − mγ

Nm
)

)

ddcϕ0(ζ).

Let us now shift to polar coordinates with |ζ − aj| = ρ. This implies that
ddcϕ0(ζ) = dn(ρ), where n(ρ) =

∫

D(aj , ρ)
ddcϕ0, for all ρ ≥ 0. Since Pj is

assumed to be D(aj, rj), we get :

∫

Pj

|fm(z)|2 e−2mϕ0(z)dλ(z) ≤

≤ C(r, rj)

∫ rj

0

(ρ + rj)
2(1− mγ

Nm
)

(

(ρ + rj)
2

2(2 − mγ

Nm
)

+
ρ2

2(1 − mγ

Nm
)

)

n′(ρ) dρ,

where C(r, rj) =
8π2

∫

Pj
ddcϕ0

(2r)2(Nm−1). The last expression can be successi-

vely written as :
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C(r, rj)

2(2 − mγ

Nm
)
·

∫ rj

0

(ρ+ rj)
2(2− mγ

Nm
)n′(ρ) dρ+

C(r, rj)

2(1 − mγ

Nm
)
·

∫ rj

0

ρ2(ρ+ rj)
2(1− mγ

Nm
)n′(ρ) dρ

=
C(r, rj)

2(2 − mγ

Nm
)

(

n(rj)(2rj)
2(2− mγ

Nm
) − 2

(

2 −
mγ

Nm

)
∫ rj

0

n(ρ)(ρ+ rj)
3−2 mγ

Nm dρ

)

+

+
C(r, rj)

2(1 − mγ

Nm
)

(

n(rj)r
2
j (2rj)

2(1− mγ

Nm
)−

−

∫ rj

0

n(ρ)

[

2ρ(ρ + rj)
2(1− mγ

Nm
) + 2

(

1 −
mγ

Nm

)

(ρ+ rj)
1−2 mγ

Nm ρ2

]

dρ

)

.

Since the terms appearing with a “ −” sign are all negative, for 1 − mγ

Nm
> 0

and therefore 2 − mγ

Nm
> 0, they can be ignored. We thus get the following

upper estimate :

∫

Pj

|fm(z)|2 e−2mϕ0(z)dλ(z) ≤

≤ C(r, rj) · n(rj) ·

(

(2rj)
2(2− mγ

Nm
)

2(2 − mγ

Nm
)

+
r2
j (2rj)

2(1− mγ

Nm
)

2(1 − mγ

Nm
)

)

.

Since n(rj) =
∫

Pj
ddcϕ0, the previous upper bound and the formula of C(r, rj)

show that :

(0.3.3)

∫

Pj

|fm(z)|2 e−2mϕ0(z)dλ(z) ≤ C

(

r,
mγ

Nm

)

· r
2(2− mγ

Nm
)

j ,

where the constant C(r, mγ

Nm
) is given by the formula :

C

(

r,
mγ

Nm

)

= 8π2 (2r)2(Nm−1)

(

22(2− mγ
Nm

)

2(2 − mγ

Nm
)

+
22(1− mγ

Nm
)

2(1 − mγ

Nm
)

)

.

Since the estimate (0.3.3) holds for all indices j ∈ {1, . . . , Nm}, we get, after
summing over j, that :

∫

D(x0, r)

|fm(z)|2 e−2mϕ0(z) dλ(z) ≤ C
(

r,
mγ

Nm

)

Nm
∑

j=1

r
2(2− mγ

Nm
)

j .
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The choice of Nm was made in such a way that 1 − δ < 1
1+δ

< mγ

Nm
< 1 − δ

2

(cf. (3)), which implies :

δ

2
< 1 −

mγ

Nm

< δ and 1 +
δ

2
< 2 −

mγ

Nm

< 1 + δ.

Since 0 < 2r < 1, there exists a constant C2(r) > 0 depending only on r,
such that C(r, mγ

Nm
) ≤ C2(r), for all m ∈ N. Since rj ≤ 2r < 1, we have :

r
2(2− mγ

Nm
)

j < r2
j , for 2(2 − mγ

Nm
) > 2.

Thus, the estimate (e′) (inferred above from (e) of lemma 0.2.2) implies :

∫

D(x0, r)

|fm(z)|2 e−2mϕ0(z) dλ(z) ≤ C(r), ∀m >> 0,

where C(r) = C1(r)C2(r) > 0 is a constant depending only on the radius r
of the disc D(x0, r) on which we are working. This yields conclusion (iii) of
Theorem 0.1.1 and completes its proof. �

0.4 Local regularization with mass control

In this section, we will use Theorem 0.1.1, combined with the Ohsawa-
Takegoshi L2 extension theorem (see [OT87], [Ohs88]), to introduce a new
local approximation procedure for psh functions with zero Lelong numbers.
The main new outcome is an additional control of the Monge-Ampère masses.
This can be seen as a local version of Theorem 0.1.2 under the stronger
assumption that all the Lelong numbers vanish.

Let ϕ be a psh function on a bounded pseudoconvex open set Ω ⊂ C
n. A

well-known result by Demailly (cf. [Dem92, Proposition 3.1]) asserts that ϕ
can be approximated pointwise and in L1

loc(Ω) topology by psh functions ϕm
with analytic singularities (see definition (1) in the introduction), constructed
as :

ϕm =
1

2m
log

+∞
∑

j=0

|σm, j|
2, (4)

where (σm, j)j∈N is an arbitrary orthonormal basis of the Hilbert space HΩ(mϕ)
of holomorphic functions f on Ω such that |f |2 e−2mϕ is integrable on Ω. They
even satisfy the estimates :

ϕ(z) −
C1

m
≤ ϕm(z) ≤ sup

|ζ−z|<r
ϕ(ζ) +

1

m
log

C2

rn
, (5)

for every z ∈ Ω and every r < d(z, ∂Ω). In particular, the sequence ddcϕm
converges to ddcϕ in the weak topology of currents, and the corresponding
Lelong numbers satisfy :
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ν(ϕ, x) −
n

m
≤ ν(ϕm, x) ≤ ν(ϕ, x), x ∈ Ω. (6)

For analytic singularities, the Lelong number ν(ϕm, x) at an arbitrary point
x equals 1

m
min
j≥0

ordxσm, j, where ordx is the vanishing order at x. The se-

quence (ϕm)m∈N defined in (4) has come to be referred to as the Demailly
approximation of ϕ.

Let us now suppose that ϕ has zero Lelong numbers everywhere (see
[Dem97, chapter III] for a comprehensive discussion of Lelong numbers). In
other words,

ν(ϕ, x) := lim inf
z→x

ϕ(x)

log |z − x|
= 0, for every x ∈ Ω.

Psh functions ϕ for which there are points x such that ϕ(x) = −∞ and
ν(ϕ, x) = 0 do exist ! For instance, ϕ(z) := −

√

− log |z| has an isolated
singularity with a zero Lelong number at the origin. These singularities, very
different to analytic ones, are usually hard to grasp as the familiar tools at
hand intended to handle singularities, viz. multiplier ideal sheaves and Lelong
numbers, are trivial at such points.

We can alter the Demailly approximation to get the following Monge-
Ampère mass control.

Theorem 0.4.1 Let ϕ be a psh function on a bounded pseudoconvex open
set Ω ⊂ Cn. Suppose, furthermore, that ϕ has a zero Lelong number at every
point x ∈ Ω. Then, there exists a sequence (ψm)m∈N of smooth psh functions
on Ω such that ddcψm converges to ddcϕ in the weak topology of currents as
m → +∞, and such that, for any relatively compact open subset B ⊂⊂ Ω,
we have :

∫

B

(ddcψm)q ∧ βn−q ≤ C (logm)q, q = 1, . . . , n,

where β is the standard Kähler form on Cn, and C > 0 is a constant inde-
pendent of m.

Proof. The idea is to modify Demailly’s original construction of regularizing
functions by taking into account not only the elements σm, j in an ortho-
normal basis of HΩ(mϕ), but also their first order partial derivatives. Set
therefore :

ψm :=
1

2m
log

( +∞
∑

j=0

|σm, j|
2 +

+∞
∑

j=0

∣

∣

∣

∣

∂σm, j
∂z1

∣

∣

∣

∣

2

+ · · · +
+∞
∑

j=0

∣

∣

∣

∣

∂σm, j
∂zn

∣

∣

∣

∣

2)

,

where z = (z1, . . . , zn) is the standard coordinate on Cn. We can easily infer
from Demailly’s estimate (5) combined with Parseval’s formula that :
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ϕ(z) −
C1

m
≤ ψm(z) ≤ sup

|ζ−z|<2r

ϕ(ζ) −
1

m
log r +

1

m
log

C3

rn
, (7)

for every z ∈ Ω and every r < 1
2
d(z, ∂Ω). This means that ψm still converges

to ϕ pointwise and in L1
loc(Ω) topology, and thus ddcψm converges to ddcϕ

in the weak topology of currents. Moreover, as the Lelong numbers of ϕ are
assumed to be zero at every point, and as, thanks to (6),

ν(ψm, x) ≤ ν(ϕm, x) ≤ ν(ϕ, x), x ∈ Ω,

for every m, each ψm has zero Lelong numbers everywhere. This means that
the σm, j’s and their first order derivatives have no common zeroes, and the-
refore ψm is C∞ on Ω.
Our aim is to control the Monge-Ampère masses of the new regularizing
smooth forms ddcψm on a given open set B ⊂⊂ Ω. To this end, we can apply
the Chern-Levine-Nirenberg inequalities (see [CLN69] or [Dem97, chapter
III, page 168]) to get :

∫

B

(ddcψm)q ∧ βn−q ≤ C (sup
B̃

|ψm|)
q, q = 1, . . . , n,

where B̃ ⊂⊂ Ω is an arbitrary relatively compact open subset containing B̄,
and C > 0 is a constant depending only on B and B̃. Note that sup

B̃

|ψm| <

+∞ since ψm is smooth. The proof is then reduced to settling the following.

Claim 0.4.2 There is a constant C > 0 independent of m such that

sup
B̃

|ψm| ≤ C logm, for every m.

The upper bound for ψm given in (7) is clearly sufficient for our purposes.
The delicate point in estimating |ψm| is finding a finite lower bound (possibly
greatly negative) for ψm. If Bm(1) is the unit ball of HΩ(mϕ), it is easy to
see that :

ψm(z) ≥ sup
Fm∈Bm(1)

1

2m
log

∑

|α|≤1

|DαFm(z)|2, z ∈ Ω, (8)

where Dα stands for the partial derivative with respect to the multi-index
α = (α1, . . . , αn), and |α| is the length of the multi-index.
Fix x ∈ Ω. To find a uniform lower bound for ψm(x), we need produce an
element Fm ∈ Bm(1) for which we can uniformly estimate below one of the
first order partial derivatives at x. The Lelong number of ϕ at x is known
to be equal to the Lelong number at x of the restriction ϕ|L to almost every
complex line L passing through x (see [Siu74]). Choose such a line L and
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coordinates z = (z1, . . . , zn) centred at x such that L = {z2 = · · · = zn}.
Consider, as in the introduction, the decompostion :

ϕ|L = N ?∆ϕ|L + h, on Ω ∩ L,

where N is the one-dimensional Newton kernel, and h = Re g is a harmonic
function equal to the real part of a holomorphic function g. Theorem 0.1.1
gives the existence of a holomorphic function fm on Ω ∩ L such that :

f(z1) = emg(z1)
Nm
∏

j=1

(z1 − am, j), z1 ∈ Ω ∩ L,

with Nm ≤ C0m, for a constant C0 > 0 independent of m, and

Cm :=

∫

Ω∩L

|fm|
2 e−2mϕ dVL = o(m).

where dVL is the volume form on L. As the Lelong numbers of ϕ (and im-
plicitly those of mϕ) are assumed to be zero, the retriction of e−2mϕ to L is
locally integrable on Ω∩ L. Conclusion (ii) of Theorem 0.1.1 shows that the
points am, j can be chosen such that |am, j − am, k| ≥

C1

m2 for some constant
C1 > 0 independent of m and L.

The Ohsawa-Takegoshi L2 extension theorem (cf. [Ohs88, Corollary 2, p.
266]) can now be applied to get a holomorphic extension Fm ∈ HΩ(mϕ) of
fm from the line Ω ∩ L to Ω, satisfying the estimate :

∫

Ω

|Fm|
2 e−2mϕ ≤ C

∫

Ω∩L

|fm|
2 e−2mϕ = C Cm,

for a constant C > 0 depending only on Ω and n. Thus the function Fm√
C Cm

belongs to the unit ball Bm(1) of the Hilbert space HΩ(mϕ). Thanks to (8),
we get the following lower bound for ψm :

ψm(z1) ≥
1
m

log |f ′
m(z1)| −

1
2m

log(C Cm), z1 ∈ B̃ ∩ L.

In particular, for z1 = am, j, we get :

ψm(aj) ≥ h(aj) + 1
m

∑

k 6=j
log |am,k − am, j| −

1
2m

log(C Cm)

≥ h(aj) + Nm−1
m

log C1

m2 −
1

2m
log(C Cm).

Since h is C∞ (for it is harmonic), it is locally bounded (by constants in-
dependent of L). Therefore, there exists a constant C2 > 0 independent of
m and L such that ψm ≥ −C2 logm on B̃ ∩ L for every m. In particular,
ψm(x) ≥ −C2 logm. This proves the claim 0.4.2 and completes the proof of
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Theorem 0.4.1. �

Remark 0.4.3 Theorem 0.4.1 constructs a regularization of currents for
which the Monge-Ampère masses have an at most slow (logarithmic) growth.
It is worth stressing that the sequence of these masses may not bounded
above. To see this, suppose ϕ is C∞ in the complement of an analytic set
V ⊂ Ω. If (ϕm)m∈N is the Demailly approximation of ϕ, it is shown in [DPS01,
p. 701-702] that the sequence (ϕ2m +2−m)m∈N is decreasing using an effective
version of the subadditivity property of multiplier ideal sheaves. The same
proof shows that the corresponding sequence (ψ2m + 2−m)m∈N in the new re-
gularization defined in the previous theorem is also decreasing. Then the C∞

(1, 1)-forms (ddcψ2m)q are well-defined on Ω \ V and converge in the weak
topology of currents to (ddcϕ)q for every q = 1, . . . , n (see [Dem97, chapter
III, Theorem 3.7]). If K ⊂⊂ B \ V and 0 ≤ χ ≤ 1 is a C∞ function with
compact support in B \ V such that χ ≡ 1 on K, then :

∫

B\V
χ(ddcψ2m)q ∧ βn−q ≤

∫

B\V
(ddcψ2m)q ∧ βn−q, m ∈ N,

and taking lim inf
m→+∞

, the weak convergence implies :

∫

B\V
χ(ddcϕ)q ∧ βn−q ≤ lim inf

m→+∞

∫

B\V
(ddcψ2m)q ∧ βn−q, q = 1, . . . , n.

Clearly
∫

K
(ddcϕ)q ∧ βn−q ≤

∫

B\V χ(ddcϕ)q ∧ βn−q, and letting K ⊂⊂ B \ V
increase, we get :

∫

B\V
(ddcϕ)q ∧ βn−q ≤ lim inf

m→+∞

∫

B\V
(ddcψ2m)q ∧ βn−q, q = 1, . . . , n.

Now, there are examples of psh functions ϕ for which the Monge-Ampère
mass in the left-hand side above is infinite for q = n (see Kiselman’s example
in [Kis84, p.141-143] of a ϕ with zero Lelong numbers, or the Shiffman-Taylor
example in [Siu 75, p.451-453]). Thus the last inequality shows that for such
functions the sequence of Monge-Ampère masses associated with the above
regularization is unbounded.

0.5 Global regularization with mass control

In this section we patch together the local regularizations constructed
in the previous section to prove Theorem 0.1.2 under the extra assumption
that the original current T has vanishing Lelong numbers everywhere. For
the sake of simplicity we assume X is compact. The result actually holds for
any manifold X which can be covered by finitely many coordinate patches
on which the local regularization theorem 0.4.1 can be applied.
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Theorem 0.5.1 Let T ≥ γ be a d-closed current of bidegree (1, 1) on a
compact complex manifold X, where γ is a continuous (1, 1)-form such that
dγ = 0. Assume T has a zero Lelong number at every point in X. Then,
there exist C∞ (1, 1)-forms Tm in the same ∂∂̄-cohomology class as T which
converge to T in the weak topology of currents and satisfy :

(a) Tm ≥ γ −
C

m
ω ;

(b)

∫

X

(Tm − γ +
C

m
ω)q ∧ ωn−q ≤ C (logm)q, q = 1, . . . , n = dimCX,

for a fixed Hermitian metric ω on X and some C > 0 independent of m.

Proof. As the patching procedure is essentially well-known (see, for instance,
[Dem92] or [Pop04]), we will only outline the main points and new aspects.

Let T = α + ddcϕ ≥ γ be a closed almost positive current of bidegree
(1, 1) on a compact Hermitian manifold (X, ω). Assume T has a zero Lelong
number at every point in X. The set-up is the one described in the intro-
duction. After possibly replacing T with T − α and γ with γ − α, we can
assume T = ddcϕ ≥ γ. Let us fix δ > 0, and four finite coverings of X by
concentric coordinate balls (B

(3)
j )j, (B′

j)j, (B′′
j )j and (Bj)j of radii δ

2
, δ, 3

2
δ,

and respectively 2δ. Since dγ = 0, γ is locally exact and we can assume that,
for every j, γ = ddchj on Bj for some C∞ function hj. The function :

ψj := ϕ− hj,

is psh on Bj for every j. Theorem 0.4.1 can then be applied to each ψj on
Bj to get approximations with analytic singularities :

ψj,m :=
1

2m
log

( +∞
∑

l=0

|σj,m, l|
2 +

n
∑

r=1

+∞
∑

l=0

∣

∣

∣

∣

∂σj,m, l
∂zr

∣

∣

∣

∣

2)

,

with an arbitrary orthonormal basis (σj,m, l)l∈N of the Hilbert space HBj
(mψj)

(see notation in the previous section). Then ϕj,m := ψj,m + hj converges
pointwise and in L1

loc topology to ϕ as m→ +∞ on Bj, and these local ap-
proximations can be glued together into a global approximation of ϕ defined
as :

ϕm(z) := sup
B′′

j 3z

(

ϕj,m(z) +
C1(δ)

m
(δ2 − |zj|2)

)

,

with a constant C1(δ) > 0 depending only on δ which will be specified below,
and a local holomorphic coordinate system zj centred at the centre of Bj.
The currents Tm := ddcϕm satisfy the conclusions of Theorem 0.5.1 if the
following patching condition holds :
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ϕj,m(z) +
C1(δ)

m
(δ2 − |zj|2) ≤ ϕk,m(z) +

C1(δ)

m
(δ2 − |zk|2), (9)

for z ∈ (B
′′
j \ B

′
j) ∩ B

(3)
k . One can then prove the existence of a constant

C1(δ) > 0 satisfying this patching condition by means of Hörmander’s L2

estimates ([Hor65]). One need only estimate the difference ψj,m − ψk,m on
B′′
j ∩B

′′
k and show that ϕj,m −ϕk,m is uniformly bounded above on B ′′

j ∩B
′′
k

by O( 1
m

) as m → +∞. Now, for every fixed z ∈ Bj, the norms of the linear

maps f 7→ f(z) and f 7→ ∂f

∂zr
(z), r = 1, . . . , n, defined on the Hilbert space

HBj
(mψj), can be expressed in terms of an orthonormal basis, and we get :

1

2m
log sup

f∈Bj, m

(

|f(z)|2 +

n
∑

r=1

∣

∣

∣

∣

∂f

∂zr
(z)

∣

∣

∣

∣

2)

≤ ψj,m(z)

≤ 1
2m

log

(

(n+1) sup
f∈Bj, m

(

|f(z)|2 +
n
∑

r=1

∣

∣

∣

∣

∂f

∂zr
(z)

∣

∣

∣

∣

2))

,

where Bj,m is the unit ball of HBj
(mψj). We also have the analogous rela-

tions for ψk,m on Bk. This means that to compare ψj,m and ψk,m at a fixed
point x0 ∈ B′′

j ∩B
′′
k , it is enough to show that for every holomorphic function

fj on Bj such that
∫

Bj
|fj|

2 e−2mψj = 1, there exists a holomorphic function

fk on Bk having an L2-norm under control and satisfying :

fk(x0) = fj(x0), and
∂fk
∂zr

(x0) =
∂fj
∂zr

(x0), for r = 1, . . . , n.

This is done using Hörmander’s L2 estimates ([Hor65]). Let θ be a cut-off
function supported in a neighbourhood of x0 such that θ ≡ 1 near x0, and
solve the equation

∂̄g = ∂̄(θfj)

on Bk with a weight containing the term 2(n + 1) log |z − x0| which forces
the solution g to vanish to order at least 2 at x0. Specifically, if hjk is a
holomorphic function on Bj ∪Bk such that hj − hk = Re hjk on Bj ∩Bk, we
can find a solution g to the above equation on Bk satisfying Hörmander’s L2

estimates with the strictly psh weight :

2m(ψk − Re hjk) + 2(n+ 1) log |z − x0| + |z − x0|
2.

Now set fk := θfj − g which is easily seen to satisfy the requirements. The
precise estimate of the solution g gives the uniform upper estimate of ϕj,m−
ϕk,m on B′′

j ∩B
′′
k by O( 1

m
) which implies the existence of a constant C1(δ) > 0

satisfying the patching condition (9). The details are left to the reader.
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The loss of positivity incurred in Tm with respect to the original T can
be seen to be at most C

m
as in [Pop04] thanks to the form γ being closed.

This proves (a). That the approximating currents Tm := ddcϕm constructed
through this patching procedure satisfy the condition (b) on Monge-Ampère
masses follows from the local Theorem 0.4.1 proved in the previous section.
Theorem 0.5.1 is thus proved. �

0.6 Regularization with mass control : the general case

It is now a matter of putting together a few observations and techniques
to derive the general case from the case of zero Lelong numbers. In all that
follows β will denote the standard Kähler form and Ω a bounded pseudo-
convex open subset of Cn. To begin with, we investigate the complementary
situation in which the singularities of the original function are analytic.

Let u = 1
2

log(|g1|
2 + · · · + |gN |

2) be psh with analytic singularities on
Ω, and let V := {g1 = · · · = gN = 0} be its singularity set. Let J =
(g1, . . . , gN) ⊂ OΩ be the ideal sheaf generated by g1, . . . , gN , and let µ : Ω̃ →
Ω be a proper modification such that Ω̃ is a smooth variety and µ?J = O(−D)
for a normal crossing divisor D on Ω̃. After possibly shrinking Ω, we can
find finite coverings of Ω by open balls B ′

l ⊂⊂ Bl, l = 1, . . . , p, such that

the restriction of µ?J to each B̃l := int (µ−1(Bl \ V )) is generated by some
holomorphic function fl. Then

gj ◦ µ = hj fl, on B̃l, j = 1, . . . , N, (10)

for some holomorphic functions h1, . . . , hN with no common zeroes. Let u
(l)
m ,

m ∈ N, be the Demailly approximations (cf. (4) in section 0.4) of the restric-
tion of u to Bl. This means that

u(l)
m =

1

2m
log

+∞
∑

j=0

|σ
(l)
m, j|

2, m ∈ N,

where (σ
(l)
m, j)m∈N is an orthonormal basis of HBl

(mu). In particular, we have :

1 =

∫

Bl

|σ
(l)
m, j|

2

(|g1|2 + · · ·+ |gN |2)m
=

∫

B̃l

|σ
(l)
m, j ◦ µ|

2 |Jµ|
2

|fl|2m (|h1 ◦ µ|2 + · · ·+ |hN ◦ µ|2)m
,

where Jµ denotes the Jacobian of µ. This implies the existence of holomor-

phic functions b
(l)
m, j on B̃l, without common zeroes, such that

Jµ σ
(l)
m, j ◦ µ = fml b

(l)
m, j on B̃l, for every j ∈ N.

Consequently 1
2m

log
+∞
∑

j=0

|b
(l)
m, j|

2, m ∈ N, are the Demailly approximations of

the smooth psh function 1
2

log(|h1|
2 + · · ·+ |hN |

2) on B̃l. In particular, they
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satisfy inequalities (5) of section 0.4 and are thus locally uniformly bounded
with respect to m by the bounds of 1

2
log(|h1|

2 + · · ·+ |hN |
2). Moreover,

µ?(ddcu(l)
m ) = ddc

(

1

2m
log

+∞
∑

j=0

|b
(l)
m, j|

2

)

+ [D] −
1

m
[div Jµ], (11)

since D = div fl on B̃l and the corresponding integration current satisfies
[D] = ddc log |fl|. Let Ũl be an open set such that B̃′

l ⊂⊂ Ũl ⊂⊂ B̃l ⊂⊂ Ω̃.
The supports of the currents D and div Jµ are included in µ−1(V ). This
fact can be combined with the Chern-Levine-Nirenberg inequalities (see e.g.
[Dem97, chapter III,p.168]) to get the following estimates for the Monge-
Ampère masses :

∫

B′

l
\V

(ddcu(l)
m )q ∧ βn−q =

∫

µ−1(B′

l
\V )

µ?(ddcu(l)
m )q ∧ µ?βn−q

=

∫

B̃′

l

(

1

2m
log

+∞
∑

j=0

|b
(l)
m, j|

2

)q

∧ µ?βn−q ≤ Cl

(

sup
Ũl

∣

∣

∣

∣

1

2m
log

+∞
∑

j=0

|b
(l)
m, j|

2

∣

∣

∣

∣

)q

,

with a constant Cl > 0 independent of m (depending only on B̃′
l and Ũl).

As noticed above, the last term is bounded independently of m. Now, the
locally defined psh functions (u

(l)
m )l=1,..., p can be glued together into global

regularizing functions um → u on Ω by the patching procedure described
in the proof of Theorem 0.5.1 (as there are only finitely many local pieces
and the restriction on Lelong numbers imposed there has no bearing on the
patching procedure). The loss of positivity in the Hessian ddcum is no more
than C

m
β. The boundedness of the sequence of Monge-Ampère masses and

the property of the Lelong numbers analogous to (6) of section 0.4 survive
the patching procedure. Moreover, if u = c

2
log(|g1|

2 + · · · + |gN |
2) for some

constant c > 0, we set um := c vm, where vm are the approximations of u/c
we have just constructed. We have thus proved the following.

Lemma 0.6.1 If u = c
2

log(|g1|
2 + · · · + |gN |

2) has analytic singularities on
Ω, there exist almost psh functions with analytic singularities (um)m∈N on
Ω such that um converges to u pointwise and in L1

loc topology as m → +∞,
ddcum ≥ −C

m
β on Ω, ν(u, x)− n

m
≤ ν(um, x) ≤ ν(u, x) at every point x ∈ Ω,

and the Monge-Ampère masses are bounded on any open subset B ⊂⊂ Ω, to
wit :

∫

B\Vm

(ddcum +
C

m
β)q ∧ βn−q ≤ C, q = 1, . . . , n, all m ∈ N,

where Vm := {um = −∞}, and C > 0 is a constant independent of m.

We can now combine these two complementary cases to regularize sums
of a psh function with zero Lelong numbers and a psh function with analytic

21



singularities and have controlled Monge-Ampère masses. The idea is simply
to regularize separately the two terms. Let ϕ = ψ+u, where ψ is psh with zero
Lelong numbers and u = c

2
log(|g1|

2 + · · · + |gN |
2) has analytic singularities

on Ω ⊂⊂ Cn. Theorem 0.4.1 applied to ψ gives smooth psh functions ψm →
ψ, while Lemma 0.6.1 applied to u furnishes psh functions with analytic
singularities um → u.

Lemma 0.6.2 The Monge-Ampère masses in the regularization ddcψm +
ddcum of ddcϕ satisfy the following estimate on any open subset B ⊂⊂ Ω :

∫

B\Vm

(ddcψm + ddcum)q ∧ βn−q ≤ C (logm)q, q = 1, . . . , n,

where Vm := {um = −∞}, and C > 0 is a constant independent of m.

Proof. The set-up is the one described before Lemma 0.6.1 in which the re-
gularization (um)m∈N of u was defined. Relations (10) show that

u ◦ µ = c
2

log(|h1|
2 + · · · + |hN |

2) + c log |fl| on B̃l,

and gluing these local pieces together and taking Hessians, we get :

µ?(ddcu) = ddc(u ◦ µ) = α + c [D] on Ω̃,

with a C∞ (1, 1)-form α, as the integration current [D] = ddc log |fl| locally
on Ω̃. On the other hand, gluing local pieces together and taking Hessians,
the decomposition (11) can be globalized to :

µ?(ddcum) = ddc(um ◦ µ) = αm + [Em] on Ω̃,

for some C∞ (1, 1)-form αm, and the R-divisor Em := cD −
1

m
E, where E

denotes the zero divisor of Jµ. In other words, the modification µ simulta-
neously resolves the singularities of u and um for all m ∈ N

?. Now, if B̃ is
an open set such that B ⊂⊂ B̃ ⊂⊂ Ω, the smoothness of ψm and the above
decompositions combined with the Chern-Levine-Nirenberg inequalities (cf.
[Dem97, chapter III, p.168]) imply :

∫

B\Vm

(ddcψm)p ∧ (ddcum)k−p ∧ βn−k =

=

∫

µ−1(B)\SuppEm

(ddc(ψm ◦ µ))p ∧ µ?(ddcum)k−p ∧ µ?βn−k

=

∫

µ−1(B)

(ddc(ψm ◦ µ))p ∧ αk−pm ∧ µ?βn−k
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≤ CB, B̃, µ

(

sup
µ−1(B̃)

|ψm ◦ µ|

)p ∫

µ−1(B̃)

αk−pm ∧ µ?βn−k+p

= CB, B̃, µ

(

sup
B̃

|ψm|

)p ∫

B̃\Vm

(ddcum)k−p ∧ βn−k+p,

where CB, B̃, µ > 0 is a constant independent of m. Now, by the proof of
Theorem 0.4.1 (Claim 0.4.2), the growth of sup

B̃

|ψm| is no more than O(logm),

and an application of Lemma 0.6.1 completes the proof. �

Lemma 0.6.3 Suppose ϕ =
p
∑

k=1

λk log |gk| for some holomorphic functions

g1, . . . , gp ∈ O(Ω) and constants λ1, . . . , λp > 0 such that
p
∑

k=1

λk div gk is a

normal crossing divisor. Then there exist psh functions with analytic singu-
larities (ϕm)m∈N such that ϕm → ϕ pointwise and in L1

loc topology on Ω as
m → ∞, ν(ϕ, x) − n

m
≤ ν(ϕm, x) ≤ ν(ϕ, x) for every x ∈ Ω, and for any

relatively compact open subset B ⊂⊂ Ω we have :

∫

B\Vm

(ddcϕm)q ∧ βn−q ≤ C (logm)q, q = 1, . . . , n,

where Vm := {ϕm = −∞}, and C > 0 is a constant independent of m.

Proof. The L2 condition defining HΩ(mϕ) reads

∫

Ω

|f |2/

p
∏

k=1

|gk|
2mλk < +∞,

implying that every f ∈ HΩ(mϕ) decomposes as f =
p
∏

k=1

g
[mλk]
k h with

h ∈ HΩ

(

m
p
∑

k=1

{mλk}
m

log |gk|

)

, where [ ] (resp. { }) denotes the integer

(resp. fractional) part. An orthonormal basis (σm, j)j∈N of HΩ(mϕ) can then
be written as

σm, j =

p
∏

k=1

|gk|
[mλk] hm, j, j ∈ N,

where (hm, j)j∈N is an orthonormal basis of HΩ

(

m
p
∑

k=1

{mλk}
m

log |gk|

)

. If

λ1, . . . , λp ∈ N, ϕ has analytic singularities and we can define (ϕm)m∈N as
the Demailly approximations of ϕ (cf. (4)). This case is actually covered by
Lemma 0.6.1 and we obtain a bounded sequence of Monge-Ampère masses.

If the coefficients λk are not integers, we set ϕm =
p
∑

k=1

[mλk]
m

log |gk|+ψm, with
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ψm :=
1

2m
log

( +∞
∑

j=0

|hm, j|
2 +

+∞
∑

j=0

∣

∣

∣

∣

∂hm, j
∂z1

∣

∣

∣

∣

2

+ · · ·+
+∞
∑

j=0

∣

∣

∣

∣

∂hm, j
∂zn

∣

∣

∣

∣

2)

,

where z = (z1, . . . , zn) is the standard coordinate on Cn. The local integra-

bility of 1/
p
∏

k=1

|gk|
2{mλk} ensures that hm, j, j ∈ N, have no common zeroes

and thus ψm is smooth. Since ddcϕm = ddcψm outside the singular locus
consisting of the divisors div gk, k = 1, . . . , p, the proof of Theorem 0.4.1 can
be repeated to give the result. �

We can now dispense with the vanishing restriction imposed on the Lelong
numbers in Theorem 0.4.1 to get a general approximation result with control-
led Monge-Ampère masses. It should be noted, however, that the proof given
below reduces the general case to the case of zero Lelong numbers which
thus turns out to be the crucial case. Recall that for every c > 0, the Lelong
number upperlevel set

Ec := {x ∈ X, ν(T, x) ≥ c}

is known to be analytic by a by now classical result of Siu ([Siu74]). Thus
the set

E+(T ) :=
⋃

c>0

Ec(T ) =
⋃

c∈Q?
+

Ec(T )

where T has positive Lelong numbers is always a countable union of analytic
sets. Given an irreducible analytic set A, the Lelong number of T at almost
all points x ∈ A (i.e. outside a countable union of proper analytic subsets of
A) equals the infimum of the Lelong numbers of T on A which is therefore
called the generic Lelong number on A. Thus the set of Lelong numbers of
T on X is at most countable. We shall now momentarily suppose this set to
be finite only to lift this restriction later on. This assumption covers currents
whose local potentials are of the form :

ϕ =
∑

j

log

(

∑

k

∏

l

|fj, k, l|
αj, k, l

)

, αj, k, l > 0,

with holomorphic functions fj, k, l, as well as currents with isolated singulari-
ties.

Theorem 0.6.4 Let ϕ be a psh function on Ω ⊂ Cn. Suppose that the Le-
long numbers of ϕ (or equivalently of ddcϕ) assume finitely many values in
Ω. Then there exist almost psh functions ϕm with analytic singularities on
Ω such that ddcϕm converges to ddcϕ in the weak topology of currents as
m→ +∞, and the following hold :
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(a) ddcϕm ≥ −C
m
βn on Ω, m ∈ N ;

(b) ν(ϕ, x) − n
m

≤ ν(ϕm, x) ≤ ν(ϕ, x), x ∈ Ω, m ∈ N ;

(c) for any relatively compact open subset B ⊂⊂ Ω we have :

∫

B\Vm

(ddcϕm)q ∧ βn−q ≤ C (logm)q, q = 1, . . . , n,

where Vm := {ϕm = −∞}, and C > 0 is a constant independent of m.

Proof. By the finiteness assumption on the set of Lelong numbers, E+(ϕ) is
analytic as a finite union of analytic sets. If E+(ϕ) has irreducible compo-
nents Aj of codimension 1 on which ϕ has positive generic Lelong numbers
λj, then the Siu decomposition formula (see e.g. [Dem97, chapter III, p.207])

gives ddcϕ =
∑

j

λj [Aj]+R, where R is a closed positive (1, 1)-current whose

positive Lelong numbers may only occur in codimension ≥ 2. After regulari-
zing the part

∑

j

λj [Aj] independently using Lemma 0.6.3 and replacing ddcϕ

with R if necessary, we may assume that codimE+(ϕ) ≥ 2. Let IE+(ϕ) ⊂ OΩ

be the coherent ideal sheaf of germs of holomorphic functions vanishing on
E+(ϕ), and let µ : Ω̃ → Ω be a proper modification such that Ω̃ is smooth
and µ?IE+(ϕ) is invertible and associated with a normal crossing divisor. Let
E = µ−1(E+(ϕ)) =

⋃

j

Zj with reduced structure and irreducible components

Zj, all smooth of codimension 1 and meeting transversally. The Siu decom-
position applied to the current µ?(ddcϕ) = ddc(ϕ ◦ µ) gives :

µ?(ddcϕ) =
∑

j

λj [Zj] +R on Ω̃,

with λj ≥ 0, and a closed positive (1, 1)-current R with positive Lelong num-
bers only in codimension ≥ 2. We may assume without loss of generality that
R has vanishing Lelong numbers everywhere. Indeed, if R does have positive
Lelong numbers, by our assumption they appear along finitely many analy-
tic sets which can in turn be blown up to become divisors and isolated by
Siu’s decomposition formula. After finitely many blowups we get a current
R with only zero Lelong numbers. We can now apply Theorem 0.5.1 to R to
get smooth closed (1, 1)-forms Rm on Ω̃ converging weakly to R such that
the associated Monge-Ampère masses have an at most logarithmic growth as
m → +∞. Indeed, the noncompacity of Ω̃ is no obstacle since the modifica-
tion µ is obtained as the composition of finitely many blow-ups with smooth
centres and thus Ω̃ can be covered by finitely many coordinate patches in
which the local approximation theorem 0.4.1 applies. Moreover, the forms
Rm can be chosen in the ∂∂̄-cohomology class of R, i.e. {Rm} = {R}. Taking
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direct images we infer :

µ?(
∑

j

λj [Zj] +Rm) = µ?Rm −→ ddcϕ, weakly on Ω as m→ +∞.

The currents (µ?Rm)m∈N furnish thus an approximation of ddcϕ in the same
(zero) ∂∂̄-cohomology class. In particular, µ?Rm = ddcϕm for some almost
psh function ϕm on Ω. Moreover, these currents satisfy the desired condition
on Monge-Ampère masses on B \ V . To see this, note that

µ?µ?Rm = Rm +
∑

j

rm, j [Zj]

for some nonnegative real numbers rm, j (see [Fuj81, Lemma 2.4, p.743-744]),
and therefore the masses of (ddcϕm)q on B \ V are the same as the masses
of Rq

m on µ−1(B) \ SuppE which have an at most logarithmic growth in m
by construction.

We have yet to prove that the currents µ?Rm have analytic singularities.
To see this, let Zj = div gj and R = ddcψ on some open subset Ũ ⊂ Ω̃
included in some coordinate patch, with gj holomorphic and ψ psh with zero
Lelong numbers. Then

ϕ ◦ µ =
∑

j

λj log |gj| + ψ on Ũ ,

and Rm is obtained by gluing together locally defined smooth forms of the
form ddcψm, with

ψm :=
1

2m
log

( +∞
∑

j=0

|σm, j|
2 +

+∞
∑

j=0

∣

∣

∣

∣

∂σm, j
∂w1

∣

∣

∣

∣

2

+ · · ·+
+∞
∑

j=0

∣

∣

∣

∣

∂σm, j
∂wn

∣

∣

∣

∣

2)

on Ũ ,

where w = (w1, . . . , wn) is the standard coordinate on Ũ , and (σm, j)j∈N is
an orthonormal basis of HŨ(mψ) (see notation after (4) in section 0.4). On
the other hand

µ?(dd
cψm) = ddc(ψm ◦ µ−1) in the complement of V ,

since Ω̃ \ E and Ω \ V are biholomorphic under µ. The holomorphic func-

tions σm, j ◦ µ
−1 and

∂σm, j

∂wl
◦ µ−1, defined in the complement of the analy-

tic set V of codimension ≥ 2, extend holomorphically across V . Thus the
current ddc(ψm ◦ µ−1) extends to a closed positive current across V which
has analytic singularities along V . Since codimV ≥ 2 and since closed
positive (1, 1)-currents cannot carry mass on analytic sets of codimension
≥ 2 (see e.g. [Dem97, chapter III, corollary 2.11, p. 163]), it follows that
µ?(dd

cψm) = ddc(ψm ◦ µ−1) everywhere. This proves that µ?Rm has (if any)
analytic singularities along V for every m. The proof is complete. �

Theorem 0.6.4 we have just proved is a special case of Theorem 0.1.2

26



stated in the introduction for X = Ω ⊂⊂ Cn and γ = 0. It is then enough to
apply once more the patching procedure described in the proof of Theorem
0.5.1 to complete the proof of Theorem 0.1.2.

0.7 Singular hermitian metrics and big line bundles

We are now in a position to prove the analytic characterization of the
volume of a line bundle spelt out in Theorem 0.1.3 as a geometric application
of our current regularization Theorem 0.1.2 with controlled Monge-Ampère
masses. The use of singular Morse inequalities to tackle such questions was
outlined by Bonavero in his thesis ([Bon95], p. 41-43). It was subsequently
implemented by Boucksom in [Bou02] under the extra assumption that the
ambient manifold X be Kähler. It relies on regularizations of currents with
controlled Monge-Ampère masses which are comparatively easily obtained in
the Kähler case. We derive here the non-Kähler counterpart as an application
of our Monge-Ampère mass control in the general case.

First, we briefly review the set-up. For more details on multiplier ideal
sheaves associated with singular metrics and psh functions, the reader is re-
ferred to [Dem01]. Let (L, h) be a holomorphic line bundle over a compact
Hermitian manifold (X, ω) equipped with a possibly singular Hermitian me-
tric h. Let T := iΘh(L) be the curvature current associated with h. No
positivity assumption is made on T . There is a global representation of T as
T = α+ ddcϕ with a global C∞ (1, 1)-form α on X. For every q = 1, . . . , n,
define the q-index set of T as the open subset X(q, T ) ofX consisting of those
points x such that Tac(x) has precisely q negative and n− q positive eigenva-
lues. Let X(≤ q, T ) := X(0, T ) ∪ · · · ∪X(q, T ). For every m ∈ N?, consider
the singular metric hm on Lm induced by h. This means that if h = e−ϕ on
an open subset U ⊂ X on which L is trivial, hm is defined as hm = e−mϕ

on U . If T := iΘh(L) ≥ −C ω for some constant C > 0 (i.e. T is almost
positive and ϕ is almost psh), the associated multiplier ideal sheaf I(hm) is
the coherent subsheaf of OX defined locally as I(hm)|U = I(mϕ), where the
multiplier ideal sheaf I(mϕ) ⊂ OU is in turn defined at every point x ∈ U as :

I(mϕ)x := {f ∈ OU, x, |f |
2 e−2mϕ is Lebesgue-integrable near x}.

Demailly’s holomorphic Morse inequalities (see [Dem85]) for smooth metrics
h were generalized by Bonavero ([Bon98]) to the case of singular metrics
h with analytic singularities in the form of the following asymptotical esti-
mates for the cohomology group dimensions of the twisted coherent sheaves
OX(Lm) ⊗ I(hm) :

q
∑

j=0

(−1)q−j hj(X, OX(Lm) ⊗ I(hm)) ≤
mn

n!

∫

X(≤q, T )

(−1)q T nac + o(mn),
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as m→ ∞, for all q = 1, . . . , n. For q = 1, we get :

h0(X, OX(Lm)⊗I(hm))−h1(X, OX(Lm)⊗I(hm)) ≥
mn

n!

∫

X(≤1, T )

T nac+o(mn).

As h0(X, OX(Lm)) ≥ h0(X, OX(Lm) ⊗ I(hm))

≥ h0(X, OX(Lm) ⊗ I(hm)) − h1(X, OX(Lm) ⊗ I(hm)),

we infer the following lower bound for the volume of L :

v(L) ≥

∫

X(≤1, T )

T nac, (12)

for every closed current T ≥ 0 with only analytic singularities (if any) in
c1(L).

Proof of theorem 0.1.3. It is clearly enough to prove the equality characteri-
zing the volume as the bigness criterion is an immediate consequence of it.
The inequality “≤” bounding the volume above can be proved as in [Bou02]
since X is Moishezon when v(L) > 0 and can be modified into a projective
manifold. If v(L) = 0, the inequality “≤” is obvious.

Thus proving Theorem 0.1.3 boils down to obtaining the lower bound for
the volume of L in terms of curvature currents. In the light of the above
explanations, this can be seen as singular Morse inequalities for arbitrary
singularities. Let T := iΘh(L) ≥ 0 be the curvature current associated with
a singular Hermitian metric h with arbitrary singularities on L. If no positive
current exists in c1(L), there is nothing to prove. Apply Theorem 0.1.2 to get
regularizing currents with analytic singularities Tm → T in c1(L) such that
Tm ≥ −C

m
ω for some constant C > 0 independent of m. Furthermore, Theo-

rem 2.4 in [Bou02, p. 1050] asserts that a regularizing sequence of currents
with analytic singularities can be combined with a regularizing sequence of
smooth forms constructed in [Dem82] to produce yet another regularizing
sequence of currents retaining all its previous properties and getting an ad-
ditional grip on the absolutely continuous part of T . In other words, after
modifying our sequence (Tm)m∈N by means of Theorem 2.4 in [Bou02, p.
1050], we may assume that besides all its properties, it also satisfies :

Tm(x) → Tac(x) as m→ +∞, for almost every x ∈ X. (13)

As explained above, by the Morse inequalities applied to L with Tm ∈ c1(L)
as curvature current with analytic singularities, we get (cf. (12)) :

v(L) ≥

∫

X(≤1, Tm)

T nm, ac =

∫

X(0, Tm)

T nm, ac +

∫

X(1, Tm)

T nm, ac, for every m ∈ N.
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On the other hand, the proof of Proposition 3.1. in [Bou02, p. 1052-53] uses
the Fatou lemma to derive the following inequality from property (13) :

lim inf
m→+∞

∫

X(0, Tm)

T nm, ac ≥

∫

X(T, 0)

T nac =

∫

X

T nac.

Thus, to prove the Morse-type inequality “≥” it is enough to show that
lim

m→+∞

∫

X(1, Tm)

T nm, ac = 0. Note that on the open set X(1, Tm) we have :

0 ≤ −T nm, ac ≤ n
C

m
(Tm, ac +

C

m
ω)n−1 ∧ ω.

It is thus enough to show that

lim
m→+∞

C

m

∫

X

(Tm, ac +
C

m
ω)n−1 ∧ ω = 0.

Since
∫

X

(Tm, ac + C
m
ω)n−1 ∧ ω =

∫

X\Vm

(Tm + C
m
ω)n−1 ∧ ω, this is immediate

from the control of the Monge-Ampère masses obtained in Theorem 0.1.2
(cf. conclusion (c)). The proof is thus the same as in the Kähler case settled
in [Bou02] once we have obtained Theorem 0.1.2 which is new in the non-
Kähler context. �
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(1970), 263-292.
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