Classification of Extremal metrics on Geometrically Ruled Surfaces

Luminy, October, 2006

Joint work with

- Vestislav Apostolov
- David Calderbank
- Paul Gauduchon

Christina Tønnesen-Friedman

GEOMETRICALLY RULED SURFACES:

$(M,J) = P(E) \to \Sigma$

- $E \rightarrow \Sigma$: holomorphic rank 2 vector bundle.
- $\bullet~\Sigma$ compact connected Riemann surface of genus ${\bf g}$

Definition: A rank 2 holomorphic vector bundle $E \rightarrow \Sigma$ is **polystable** if it decomposes as a direct sum of stable vector bundles (in the sense of Mumford) so that if the summants are line bundles their degrees are equal.

By Narasimhan-Seshadri this is equivalent to E being projectively flat Hermitian.

So $(M, J) = P(E) \rightarrow \Sigma$ falls into three different cases:

CASE 1: $E \rightarrow \Sigma$ is polystable

CASE 2: $E = \mathcal{O} \oplus \mathcal{L} \to \Sigma$, where \mathcal{L} is some holomorphic line bundle such that $deg(\mathcal{L}) \neq$ 0. (*E* is not polystable)

CASE 3: $E \rightarrow \Sigma$ is indecomposable and not (poly)stable (g > 0).

EXTREMAL KÄHLER METRICS:

For a particular Kähler class Ω , let \mathcal{M}_{Ω} denote the set of all Kähler forms in Ω .

Calabi functional: $\Phi : \mathcal{M}_{\Omega} \to \mathbb{R}$

$$\Phi(\omega) := \int_M Scal^2 d\mu$$

where *Scal* and $d\mu$ is the scalar curvature respectively the volume form of the metric corresponding to the Kähler form $\omega \in \Omega$.

Proposition: (Calabi) $\omega \in \mathcal{M}_{\Omega}$ is an extremal point of Φ iff grad *Scal* is a **holomorphic real vector field**, that is, $\mathcal{L}_{\text{grad } Scal}J = 0.$

In this case we call g, corresponding to ω , an **extremal Kähler metric**. A Kähler metric with constant scalar curvature (CSC) is in particular extremal.

QUESTION: When may a geometrically ruled surface have a CSC Kähler metric?

- If we are in CASE 1, then there is a (local product) CSC Kähler metric in each Kähler class (Narasimhan-Seshadri).
- If we are in CASE 2, then there are no CSC Kähler metrics at all. (For instance, the Futaki invariant of each Kähler class is non-zero (LeBrun-Simanca, ACGT-F, T-F.)

THE QUESTION IS (WAS): Are there any CSC Kähler metrics in CASE 3?

- Burns and deBartolomeis (1988): Not in Kähler classes Ω with $c_1(M) \cdot \Omega = 0$.
- Fujiki (1992): Not when g = 1.
- LeBrun (1995): Not when g > 1 and in Kähler classes Ω with $c_1(M) \cdot \Omega < 0$.
- Apostolov and T-F (2004): If there is one in CASE 3 (and, without loss, g > 1), then E → is simple, i.e, the only endomorphisms of E is the scalar multiplication.

but...

- Fujiki (1992): (paraphrased) If g > 1, *E* → Σ is simple and non-polystable, and *P*(*E*) → Σ has a CSC Kähler metric, then, by a small deformation of *E* (to a sta- ble bundle), we have an obstruction to uniqueness of CSC Kähler metrics in a fixed Kähler class.
- Chen and Tian (2005): Uniqueness does hold...for extremal metrics in fact.

so... no CSC Kähler metrics in CASE 3...

CONCLUSION: CSC Kähler metrics exist in CASE 1 and in CASE 1 only.

NON-CSC EXTREMAL KÄHLER METRICS:

Due to the fact that $Isom_0(M,g)$ contains an S^1 , E must split so such metrics cannot exist in CASE 3 and clearly there are none in CASE 1 (due to the vanishing of the Futaki invariant. So our focus is now on CASE 2:

Calabi (1982): If g = 0 (*M* is a Hirzebruch surface) then each Kähler class has an extremal Kähler metrics.

Hwang (1994): This is also true if g = 1.

T-F (1997): If g > 1, then some Kähler classes do have extremal Kähler metrics - but not all (now that we know uniqueness holds).

NEW TERMINOLOGY: CASE 2 is a (very) special case of a **admissible manifold** (admits Kähler metrics with Hamiltonian 2-forms of order 1).

The extremal Kähler metrics constructed to prove the above existence results all admit a Hamiltonian 2-form of order 1.

THE QUESTION IS (WAS): Is this it? Or are there other types of extremal Kähler metrics in CASE 2?

THEOREM: (ACGT-F)

This IS it; there are no other types of extremal Kähler metrics in CASE 2.

Proof: By uniqueness, obviously the answer is "NO" when $g \le 1$. When g > 1 we connect an ingredient in the construction – namely the **extremal polynomial** with a key ingredient in the uniqueness proof by Chen and Tian – namely the **modified K-energy**.

Modified *K*-energy: (Guan and Simanca)

- G: Maximal compact connected subgroup of $H_0(M, J)$
- \mathcal{M}_{Ω} : Fréchet space of Kähler metrics in Kähler class Ω
- \mathcal{M}_{Ω}^{G} : Subspace of *G*-inv. Kähler metrics
- $\operatorname{pr}_g^{\perp}$: L_2 -projection orthogonal to the space of Killing potentials (defined on G inv. L^2 functions)
- The map $g \mapsto \mathrm{pr}_g^{\perp} Scal_g \mu_g$ is (by integration) a 1-form σ on \mathcal{M}_{Ω}^G
- σ is closed
- $\forall \omega_0 \in \mathcal{M}_{\Omega}, \exists !$ functional $E^G_{\omega_0} : \mathcal{M}^G_{\Omega} \to \mathbb{R}$ with $dE^G_{\omega_0} = -\sigma, E^G_{\omega_0}(\omega_0) = 0.$
- Changing the base point $\omega_0 \in \mathcal{M}_{\Omega}$ would change $E^G_{\omega_0}$ by an additive constant.
- It agrees with the Mabuchi K-energy when G is trivial

- The critical points of $E_{\omega_0}^G$ are exactly the extremal Kähler metrics in \mathcal{M}_{Ω}^G , since $\sigma = 0$ means that $Scal_g$ is a Killing potential.
- Any extremal Kähler metric $g \in \mathcal{M}_{\Omega}$ belongs to \mathcal{M}_{Ω}^{G} with $G = \text{Isom}_{0}(M, g) \cap H_{0}(M)$ (Calabi)

Theorem(Chen-Tian) Extremal Kähler metrics in \mathcal{M}_{Ω} are unique up to automorphism and any extremal Kähler metric in \mathcal{M}_{Ω}^{G} realizes the absolute minimum of $E_{\omega_{0}}^{G}$ (for any $\omega_{0} \in \mathcal{M}_{\Omega}^{G}$). IN PARTICULAR, if \mathcal{M}_{Ω}^{G} contains an extremal Kähler metric, then $E_{\omega_{0}}^{G}$ is bounded from below.

The construction:

- Let Σ be a compact connected Riemann surface with Kähler metric $(g_{\Sigma}, \omega_{\Sigma})$.
- Let M be $P(\mathcal{O} \oplus \mathcal{L}) \to \Sigma$, where $\mathcal{L} \to \Sigma$ is a holomorphic line bundle such that $c_1(\mathcal{L}) = [\omega_{\Sigma}/2\pi]$.
- Let K be the vector field generating the canonical S^1 action on $P(\mathcal{O} \oplus \mathcal{L}) \to \Sigma$.
- Let θ be a connection 1-form $(\theta(K) = 1)$ with $d\theta = \omega_{\Sigma}$.
- Let $z \in [-1, 1]$.

• Let Θ be a smooth function on [-1,1] satisfying

$$\Theta > 0$$
 (1)

on (-1, 1), $\Theta(\pm 1) = 0$, $\Theta'(\pm 1) = \mp 2$. (2)

• Then

$$g = \frac{1+xz}{x}g_{\Sigma} + \frac{dz^2}{\Theta(z)} + \Theta(z)\theta^2,$$

$$\omega = \frac{1+xz}{x}\omega_{\Sigma} + dz \wedge \theta$$
(3)

defines a Kähler structure (ω, g, J) on the total space M^0 of $\mathcal{L} - \{0\} \rightarrow \Sigma$ which extends smoothly to M.

- Note that $K = J \operatorname{grad}_g z$ and $z : M \to [-1, 1]$ should be interpreted as a moment map of K and ω .
- Note that (2) is neccesary for the smooth extention of (3) to *M*.

Definition: If g is as in (3) and g_{Σ} is a fixed Kähler metric of constant scalar curvature $Scal_{\Sigma} = 2s$, then we say that g is **admissible**.

We then have $s = \frac{2(1-g)}{\deg(\mathcal{L})}$ by Gauss-Bonnet formula on Σ . So s is a parameter determined by the degree of the line bundle $\mathcal{L} \rightarrow$ Σ , when M is $P(\mathcal{O} \oplus \mathcal{L}) \rightarrow \Sigma$. For given constants s and 0 < x < 1 define the following polynomial:

$$F_x(z) = \frac{(1-z^2)(x^2(2-sx)z^2 + x(6-2x^2)z + (6+sx^3-4x^2))}{2(3-x^2)}$$

Remark: $F_x(\pm 1) = 0$ and $F'_x(\pm 1) = \pm 2(1 \pm x)$, so $\Theta(z) := F_x(z)/(1 + xz)$ satisfies (2) automatically.

Now an admissible metric is extremal exactly when $\Theta(z) = F_x(z)/(1 + xz)$ (Calabi, Guan, Hwang). MEANING OF x:

If (g, ω) is admissible then $\omega = \omega_{\Sigma}/x + \eta$ where $[\eta]$ is up to scale the Poincaré dual of the formal sum of the zero and infinity sections of $P(\mathcal{O} \oplus \mathcal{L}) \to \Sigma$ and ω_{Σ} is viewed as the pullback to M of the corresponding form on Σ .

Conversely on $P(\mathcal{O} \oplus \mathcal{L}) \to \Sigma$ with canonical complex structure J_0 , any Kähler class is of the form $[\omega_{\Sigma}]/x + [\eta]$ where ω_{Σ} is some Kähler form on Σ and (necessarily) 0 < x < 1. One may show that each class has a canonical admissible Kähler metric corresponding to $\Theta_0(z) = 1 - z^2$ whose complex structure is J_0 .

So $x \in (0, 1)$ parametrizes the Kähler cone on (M, J_0) .

Each Kähler class has an **external polyno**mial, $F_x(z)$. **Remark:** If $s \ge 0$ then $F_x(z)/(1 + xz)$ satisfies (1) for all 0 < x < 1 (Calabi, Guan, Hwang, Simanca). So admissible extremal Kähler metrics exhaust the Kähler cone when g < 2.

For s < 0, $\exists 0 < x_s < 1$ such that

- For $0 < x < x_s F_x(z)/(1+xz)$ satisfies (1)
- For $x = x_s$, $F_x(z)/(1 + xz) \ge 0$ for $z \in (-1, 1)$, but (1) fails.
- For $x_s < x < 1$, " $F_x(z)/(1 + xz) \ge 0$ for $z \in (-1, 1)$ " fails.

So even though admissible extremal Kähler metrics do exist, they **do not** exhaust the Kähler cone when g > 1.

MEANING OF $\Theta(z)$:

Now if we vary $\Theta(z)$ in the set of all functions from [-1,1] satisfying (1) and (2) but keep all the other data fixed (for instance from a canonical metric), then the Kähler form is fixed but the complex structure J varies.

[Terminology: If u(z) on (-1, 1) is such that $u''(z) = 1/\Theta(z)$, then u is the symplectic potential.]

However, via a Legendre transformation (to the Kähler potential of (ω, J)), there is a S^1 equivariant (fibre-preserving on M^0) diffeomorphism Ψ such that $\Psi^*J = J_0$ and $\Psi^*\omega \in [\omega]$.

Hence the moduli space $\mathcal{K}_x^{\operatorname{adm}}$ of admissible metrics in Ω determined by x is identified with the space of smooth functions Θ on [-1,1] satisfying (1)-(2) or equivalently with $\{u \in C^0([-1,1]) : u - u_0 \in C^\infty([-1,1]), u(\pm 1) = 0 \text{ and } u'' > 0 \text{ on } (-1,1)\}.$ (for simplicity g > 1)

Remark:

- All admissible metrics are invariant under the same maximal compact connected subgroup G of H₀(M). Namely, G = S¹, where the S¹ action is the natural action on L → Σ, generated by the vector field K.
- If $u_t(z)$ is a path of symplectic potentials in \mathcal{K}_x^{adm} , then there is a corresponding path in \mathcal{M}_{Ω}^G such that $\omega_t = \omega + dJ_0 d(h_t - h_0)$ and $\dot{u} = -\dot{h}$.
- WRT this G, the extremal vector field K_x of any Kähler class (which must be in the center of G) is a constant multiple of K.

- Actually $K_x = J \operatorname{grad} \operatorname{pr}_g Scal_g$, where $\operatorname{pr}_g Scal_g$ is the $L_2 - \operatorname{projection}$ onto the space of Killing potentials wrt (e.g.) an admissible metric.
- pr_gScal_g must be an affine function of z.

CLAIM:

$$pr_g^{\perp}Scal_g = \frac{F_x''(z) - (\Theta(z)(1+xz))''}{(1+xz)}, \quad (4)$$

Proof: For any admissible metric with CSC g_{Σ} we have $Scal_g = \frac{2sx - (\Theta(z)(1+xz))''}{1+xz}$ and so r.h.s. of (4) is seen to be equal to

$$Scal_g + \frac{6((sx^2 - 2x)z + x^2 - sx - 1)}{3 - x^2}$$

Since this turns out to be orthogonal to the Killing potentials 1 and z, it must be equal to $pr_q^{\perp}Scal_g$.

So for a Kähler class determined by x, we may now consider the modified K-energy restricted to \mathcal{K}_x^{adm} :

$$dE_{\omega_0}^G = \int_M \operatorname{pr}_g^{\perp} Scal_g \dot{u} d\mu$$

= $\int_M \frac{F_x''(z) - (\Theta(z)(1+xz))''}{(1+xz)} \dot{u} d\mu$
= $C \int_{-1}^1 (F_x''(z) - (\Theta(z)(1+xz))'') \dot{u} dz$
= $C \int_{-1}^1 (F_x(z) - (\Theta(z)(1+xz))) \dot{u''} dz$,
where C is a positive constant (depending

where C is a positive constant (depending on s and x) and the last equality is gotten by integrating twice by parts and using (2). So now we have:

Propostion: Let Ω be a Kähler class corresponding to some x on M. Then the K-energy restricted to the space of admissible Kähler metrics is (up to an additive constant) a positive multiple of the functional

$$\begin{aligned} \mathcal{E}_{g_0} &: u(z) &\mapsto \int_{-1}^1 F_x(z) (u''(z) - u''_0(z)) dz \\ &- \int_{-1}^1 (1 + xz) \log \left(\frac{u''(z)}{u''_0(z)} \right) dz, \end{aligned}$$

where u(z) is the symplectic potential.

Corollary: If there is an extremal Kähler metric in Ω corresponding to x, then $F_x \ge 0$ on [-1, 1].

Proof: If there is an extremal Kähler metric in Ω , then by the Chen-Tian theorem, the modified K-energy is bounded from below. We now apply an argument due to Donaldson: take any nonnegative smooth function f(z) with $supp(f) \subset (-1, 1)$ and consider the sequence $u_k(z)$ with $u''_k(z) = u''_0(z) + kf(z)$ of symplectic potentials for admissible Kähler metrics. We therefore get

$$\begin{aligned} \mathcal{E}_{g_0}(u_k) &= -\int_{-1}^{1} (1+xz) \log(1+k \frac{f(z)}{u_c''(z)}) dz \\ &+ k \int_{-1}^{1} F_x(z) f(z) dz. \end{aligned}$$

This will tend to $-\infty$ if $\int_{-1}^{1} F_x(z) f(z) dz < 0$ for some f.

SUMMARY:

So for s < 0 (genus g > 1) we have that in the Kähler classes determined by x such that $x_s < x < 1$, there are no extremal Kähler metrics.

By uniqueness, the openness-of-the-extremalcone result of LeBrun and Simanca, and the fact that a convergent sequence of (up to automorphism) admissible metrics converges to an admissible (up to automorphism) metric, there are no extremal metrics in the class corresponding to x_s either.

Thus, for CASE 2, the only extremal Kähler metrics are indeed the admissible ones. This finishes the proof of our theorem. The notion of K-stability first introduced by G. Tian has now been considered by several people using similar definitions. The overarching principle (following a conjecture by Yau) is in it's full generality that existence of extremal Kähler metrics should be equivalent to K-stability in some appropriate form.

G. Székelyhidi has developed a notion of relative K-polystability of a polarized variety, which he conjectures is equivalent to the existence of extremal Kähler metrics. He considered the stability for CASE 2 surfaces and observed that non stability happens if the polarization (equivalent to a choice of Hodge Kähler class) does not admit an extremal Kähler metric (with hamilitonian 2-form of order 1).

David Calderbank will be discussing generalizations of this tomorrow morning.