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GEOMETRICALLY RULED SURFACES:

(M, J) = P (E) → Σ

• E → Σ : holomorphic rank 2 vector bun-

dle.

• Σ compact connected Riemann surface

of genus g

Definition: A rank 2 holomorphic vector bun-

dle E → Σ is polystable if it decomposes as

a direct sum of stable vector bundles (in the

sense of Mumford) so that if the summants

are line bundles their degrees are equal.

By Narasimhan-Seshadri this is equivalent to

E being projectively flat Hermitian.
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So (M, J) = P (E) → Σ falls into three

different cases:

CASE 1: E → Σ is polystable

CASE 2: E = O ⊕ L → Σ, where L is some

holomorphic line bundle such that deg(L) 6=

0. (E is not polystable)

CASE 3: E → Σ is indecomposable and not

(poly)stable (g > 0).
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EXTREMAL KÄHLER METRICS:

For a particular Kähler class Ω, let MΩ de-

note the set of all Kähler forms in Ω.

Calabi functional: Φ : MΩ → R

Φ(ω) :=
∫
M

Scal2dµ

where Scal and dµ is the scalar curvature re-

spectively the volume form of the metric cor-

responding to the Kähler form ω ∈ Ω.

Proposition: (Calabi) ω ∈ MΩ is an ex-

tremal point of Φ iff gradScal is a holomor-

phic real vector field, that is,

LgradScalJ = 0.

In this case we call g, corresponding to ω, an

extremal Kähler metric. A Kähler metric

with constant scalar curvature (CSC) is in

particular extremal.
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QUESTION: When may a geometrically ruled

surface have a CSC Kähler metric?

• If we are in CASE 1, then there is a (lo-

cal product) CSC Kähler metric in each

Kähler class (Narasimhan-Seshadri).

• If we are in CASE 2, then there are no

CSC Kähler metrics at all. (For instance,

the Futaki invariant of each Kähler class

is non-zero (LeBrun-Simanca, ACGT-F,

T-F.)

THE QUESTION IS (WAS): Are there any

CSC Kähler metrics in CASE 3?
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• Burns and deBartolomeis (1988): Not in

Kähler classes Ω with c1(M) · Ω = 0.

• Fujiki (1992): Not when g = 1.

• LeBrun (1995): Not when g > 1 and in

Kähler classes Ω with c1(M) · Ω < 0.

• Apostolov and T-F (2004): If there is

one in CASE 3 (and, without loss, g > 1),

then E → is simple, i.e, the only endo-

morphisms of E is the scalar multiplica-

tion.

but. . .
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• Fujiki (1992): (paraphrased) If g > 1,

E → Σ is simple and non-polystable, and

P (E) → Σ has a CSC Kähler metric, then,

by a small deformation of E (to a sta-

ble bundle), we have an obstruction to

uniqueness of CSC Kähler metrics in a

fixed Kähler class.

• Chen and Tian (2005): Uniqueness does

hold. . . for extremal metrics in fact.

so. . . no CSC Kähler metrics in CASE 3. . .

CONCLUSION: CSC Kähler metrics exist in

CASE 1 and in CASE 1 only.
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NON-CSC EXTREMAL KÄHLER METRICS:

Due to the fact that Isom0(M, g) contains

an S1, E must split so such metrics cannot

exist in CASE 3 and clearly there are none in

CASE 1 (due to the vanishing of the Futaki

invariant. So our focus is now on CASE 2:

Calabi (1982): If g = 0 (M is a Hirzebruch

surface) then each Kähler class has an ex-

tremal Kähler metrics.

Hwang (1994): This is also true if g = 1.

T-F (1997): If g > 1, then some Kähler

classes do have extremal Kähler metrics - but

not all (now that we know uniqueness holds).

NEW TERMINOLOGY: CASE 2 is a (very)

special case of a admissible manifold (ad-

mits Kähler metrics with Hamiltonian 2-forms

of order 1).
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The extremal Kähler metrics constructed to

prove the above existence results all admit a

Hamiltonian 2-form of order 1.

THE QUESTION IS (WAS): Is this it? Or

are there other types of extremal Kähler met-

rics in CASE 2?

THEOREM: (ACGT-F)

This IS it; there are no other types of ex-

tremal Kähler metrics in CASE 2.

Proof: By uniqueness, obviously the answer

is “NO” when g ≤ 1. When g > 1 we connect

an ingredient in the construction - namely the

extremal polynomial with a key ingredient

in the uniqueness proof by Chen and Tian -

namely the modified K-energy.
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Modified K-energy: (Guan and Simanca)

• G: Maximal compact connected subgroup

of H0(M, J)

• MΩ: Fréchet space of Kähler metrics in

Kähler class Ω

• MG
Ω: Subspace of G-inv. Kähler metrics

• pr⊥g : L2-projection orthogonal to the space

of Killing potentials (defined on G inv. L2-

functions)

• The map g 7→ pr⊥g Scalgµg is (by integration)

a 1-form σ on MG
Ω

• σ is closed

• ∀ω0 ∈ MΩ, ∃! functional EG
ω0

:MG
Ω → R with

dEG
ω0

= −σ, EG
ω0

(ω0) = 0.

• Changing the base point ω0 ∈ MΩ would

change EG
ω0

by an additive constant.

• It agrees with the Mabuchi K-energy when

G is trivial
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• The critical points of EG
ω0

are exactly the

extremal Kähler metrics in MG
Ω, since σ = 0

means that Scalg is a Killing potential.

• Any extremal Kähler metric g ∈ MΩ be-

longs to MG
Ω with G = Isom0(M, g) ∩ H0(M)

(Calabi)

Theorem(Chen-Tian) Extremal Kähler met-

rics in MΩ are unique up to automorphism

and any extremal Kähler metric in MG
Ω real-

izes the absolute minimum of EG
ω0

(for any

ω0 ∈ MG
Ω). IN PARTICULAR, if MG

Ω con-

tains an extremal Kähler metric, then EG
ω0

is

bounded from below.
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The construction:

• Let Σ be a compact connected Riemann

surface with Kähler metric (gΣ, ωΣ).

• Let M be P (O ⊕ L) → Σ, where

L → Σ is a holomorphic line bundle such

that c1(L) = [ωΣ/2π].

• Let K be the vector field generating the

canonical S1 action on P (O ⊕ L) → Σ.

• Let θ be a connection 1-form (θ(K) = 1)

with dθ = ωΣ.

• Let z ∈ [−1,1].



12

• Let Θ be a smooth function on [−1,1]

satisfying

Θ > 0 (1)

on (−1,1),

Θ(±1) = 0, Θ′(±1) = ∓2. (2)

• Then

g = 1+xz
x gΣ + dz2

Θ(z)
+ Θ(z)θ2,

ω = 1+xz
x ωΣ + dz ∧ θ

(3)

defines a Kähler structure (ω, g, J) on the

total space M0 of L − {0} → Σ which

extends smoothly to M .

• Note that K = J gradg z and

z : M → [−1,1] should be interpreted as

a moment map of K and ω.

• Note that (2) is neccesary for the smooth

extention of (3) to M .
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Definition: If g is as in (3) and gΣ is a fixed

Kähler metric of constant scalar curvature

ScalΣ = 2s, then we say that g is admissible.

We then have s = 2(1−g)
deg(L)

by Gauss-Bonnet

formula on Σ. So s is a parameter deter-

mined by the degree of the line bundle L →

Σ, when M is P (O ⊕ L) → Σ.
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For given constants s and 0 < x < 1 define

the following polynomial:

Fx(z) = (1−z2)(x2(2−sx)z2+x(6−2x2)z+(6+sx3−4x2))
2(3−x2)

Remark: Fx(±1) = 0 and

F ′
x(±1) = ∓2(1 ± x), so

Θ(z) := Fx(z)/(1 + xz) satisfies (2)

automatically.

Now an admissible metric is extremal exactly

when Θ(z) = Fx(z)/(1 + xz) (Calabi, Guan,

Hwang).



15

MEANING OF x:

If (g, ω) is admissible then ω = ωΣ/x+η where

[η] is up to scale the Poincaré dual of the

formal sum of the zero and infinity sections

of P (O ⊕ L) → Σ and ωΣ is viewed as the

pullback to M of the corresponding form on

Σ.

Conversely on P (O ⊕ L) → Σ with canoni-

cal complex structure J0, any Kähler class

is of the form [ωΣ]/x + [η] where ωΣ is some

Kähler form on Σ and (necessarily) 0 < x < 1.

One may show that each class has a canon-

ical admissible Kähler metric corresponding

to Θ0(z) = 1 − z2 whose complex structure

is J0.

So x ∈ (0,1) parametrizes the Kähler cone

on (M, J0).

Each Kähler class has an extemal polyno-

mial, Fx(z).
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Remark: If s ≥ 0 then Fx(z)/(1 + xz) sat-

isfies (1) for all 0 < x < 1 (Calabi, Guan,

Hwang, Simanca). So admissible extremal

Kähler metrics exhaust the Kähler cone when

g < 2.

For s < 0, ∃0 < xs < 1 such that

• For 0 < x < xs Fx(z)/(1+xz) satisfies (1)

• For x = xs, Fx(z)/(1 + xz) ≥ 0 for z ∈

(−1,1), but (1) fails.

• For xs < x < 1, “Fx(z)/(1 + xz) ≥ 0 for

z ∈ (−1,1)” fails.

So even though admissible extremal Kähler

metrics do exist, they do not exhaust the

Kähler cone when g > 1.
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MEANING OF Θ(z):

Now if we vary Θ(z) in the set of all functions

from [−1,1] satisfying (1) and (2) but keep

all the other data fixed (for instance from a

canonical metric), then the Kähler form is

fixed but the complex structure J varies.

[Terminology: If u(z) on (−1,1) is such that

u′′(z) = 1/Θ(z), then u is the symplectic po-

tential.]

However, via a Legendre transformation (to

the Kähler potential of (ω, J)), there is a S1-

equivariant (fibre-preserving on M0) diffeo-

morphism Ψ such that Ψ∗J = J0 and

Ψ∗ω ∈ [ω].

Hence the moduli space Kadm
x of admissible

metrics in Ω determined by x is identified

with the space of smooth functions Θ on

[−1,1] satisfying (1)–(2) or equivalently with

{u ∈ C0([−1,1]) : u − u0 ∈ C∞([−1,1]),
u(±1) = 0 and u′′ > 0 on (−1,1)}.
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(for simplicity g > 1)

Remark:

• All admissible metrics are invariant under

the same maximal compact connected sub-

group G of H0(M). Namely, G = S1,

where the S1 action is the natural action

on L → Σ, generated by the vector field

K.

• If ut(z) is a path of symplectic potentials

in Kadm
x , then there is a corresponding

path in MG
Ω such that

ωt = ω + dJ0d(ht − h0) and u̇ = −ḣ.

• WRT this G, the extremal vector field Kx

of any Kähler class (which must be in the

center of G) is a constant multiple of K.
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• Actually Kx = J gradprgScalg, where prgScalg

is the L2 − projection onto the space of

Killing potentials wrt (e.g.) an admissible

metric.

• prgScalg must be an affine function of z.

CLAIM:

pr⊥g Scalg =
F ′′

x (z) − (Θ(z)(1 + xz))′′

(1 + xz)
, (4)

Proof: For any admissible metric with CSC

gΣ we have Scalg = 2sx−(Θ(z)(1+xz))′′

1+xz and so

r.h.s. of (4) is seen to be equal to

Scalg +
6((sx2 − 2x)z + x2 − sx − 1)

3 − x2
.

Since this turns out to be orthogonal to the

Killing potentials 1 and z, it must be equal

to pr⊥g Scalg.
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So for a Kähler class determined by x, we

may now consider the modified K-energy re-

stricted to Kadm
x :

dEG
ω0

=
∫
M pr⊥g Scalgu̇dµ

=
∫
M

F ′′
x (z)−(Θ(z)(1+xz))′′

(1+xz)
u̇dµ

= C
∫ 1
−1(F

′′
x (z) − (Θ(z)(1 + xz))′′)u̇dz

= C
∫ 1
−1(Fx(z) − (Θ(z)(1 + xz)))u̇′′dz,

where C is a positive constant (depending

on s and x) and the last equality is gotten by

integrating twice by parts and using (2).
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So now we have:

Propostion: Let Ω be a Kähler class corre-

sponding to some x on M. Then the K-energy

restricted to the space of admissible Kähler

metrics is (up to an additive constant) a pos-

itive multiple of the functional

Eg0 : u(z) 7→
∫ 1
−1 Fx(z)(u′′(z) − u′′

0(z))dz

−
∫ 1
−1(1 + xz) log (

u′′(z)
u′′
0(z)

)dz,

where u(z) is the symplectic potential.
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Corollary: If there is an extremal Kähler

metric in Ω corresponding to x, then Fx ≥ 0

on [−1,1].

Proof: If there is an extremal Kähler metric

in Ω, then by the Chen-Tian theorem, the

modified K-energy is bounded from below.

We now apply an argument due to Donald-

son: take any nonnegative smooth function

f(z) with supp(f) ⊂ (−1,1) and consider the

sequence uk(z) with u′′
k(z) = u′′

0(z) + kf(z)

of symplectic potentials for admissible Kähler

metrics. We therefore get

Eg0(uk) = −
∫ 1
−1(1 + xz) log(1 + k f(z)

u′′
c(z)

)dz

+ k
∫ 1
−1 Fx(z)f(z)dz.

This will tend to −∞ if
∫ 1
−1 Fx(z)f(z)dz < 0

for some f .
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SUMMARY:

So for s < 0 (genus g > 1) we have that in

the Kähler classes determined by x such that

xs < x < 1, there are no extremal Kähler

metrics.

By uniqueness, the openness-of-the-extremal-

cone result of LeBrun and Simanca, and the

fact that a convergent sequence of (up to

automorphism) admissible metrics converges

to an admissible (up to automorphism) met-

ric, there are no extremal metrics in the class

corresponding to xs either.

Thus, for CASE 2, the only extremal Kähler

metrics are indeed the admissible ones. This

finishes the proof of our theorem.
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The notion of K-stability first introduced by

G. Tian has now been considered by several

people using similar definitions. The over-

arching principle (following a conjecture by

Yau) is in it’s full generality that existence of

extremal Kähler metrics should be equivalent

to K-stability in some appropiate form.

G. Székelyhidi has developed a notion of rel-

ative K-polystability of a polarized variety,

which he conjectures is equivalent to the ex-

istence of extremal Kähler metrics. He con-

sidered the stability for CASE 2 surfaces and

observed that non stability happens if the po-

larization (equivalent to a choice of Hodge

Kähler class) does not admit an extremal

Kähler metric (with hamilitonian 2-form of

order 1).

David Calderbank will be discussing general-

izations of this tomorrow morning.


