
ON BRODY AND ENTIRE CURVES

JÖRG WINKELMANN

Abstract. We discuss an example of an open subset of a torus
which admits a dense entire curve, but no dense Brody curve.

Résumé. [Sur les courbes Brody et les courbes entières.] On
présente des exemples ou il y a beaucoup de courbes entières, mais
peu de courbes Brody.

1. Introduction

1.1. Brody’s theorem. Let Y be a complex manifold. It is called
“taut” if the family of all holomorphic maps f : ∆ → Y is a normal
family. Let us from now on assume that Y is compact. Then being
“taut” is easily seen to be equivalent with hyperbolicity in the sense of
Kobayashi. The theorem of Brody (see [3]) states that this is further-
more equivalent with the property that every holomorphic map from
C to Y is constant. (Remark: This can be regarded as a special case
of a heuristic philosophy known as “Bloch’s principle” ([12]).)

Now we may raise the question: What about holomorphic maps to
a compact complex manifold fixing some given base points? Given a
compact complex manifold Y and a point y ∈ Y , let us consider the
following two statements:

• Every holomorphic map f : C→ Y with f(0) = y is constant.
• The family of all holomorphic maps f : ∆ → Y with f(0) = y

is a normal family.

Are they equivalent?
Using the notion of the infinitesimal Kobayashi-Royden pseudomet-

ric as introduced in [10] this can be reformulated into the follow-
ing question: “If the infinitesimal Kobayashi-Royden pseudometric on
a compact complex manifold Y degenerates for some point y ∈ Y ,
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does this imply that there exists a holomorphic map f : C → Y with
y ∈ f(C)?”

Thanks to Brody’s theorem it is clear that there exists some non-
constant holomorphic map f : C → Y if the Kobayashi-Royden pseu-
dometric is degenerate at some point y of Y . But it is not clear that
f can be chosen in such a way that y is in the image or at least in the
closure of the image. Of course, at first it looks absurd that degeneracy
of the Kobayashi-Royden pseudometric at one point y should only im-
ply the existence of a non-constant holomorphic map to some part of
Y far away of y and should not imply the existence of a non-constant
map f : C→ Y whose image comes close to y.

Thus one is led to ask

Question 1. Let X be a compact complex manifold, x ∈ X. Assume
that the infinitesimal Kobayashi-Royden pseudometric is degenerate on
TxX.

Does this imply that there exists a non-constant holomorphic map
f : C→ X with f(0) = x?

Since Brody parametrization always yields a holomorphic map f :
C→ X whose derivative is bounded, one might be inclined to even ask

Question 2. Let X be a compact complex manifold, x ∈ X. Assume
that the infinitesimal Kobayashi-Royden pseudometric is degenerate on
TxX.

Does this imply that there exists a non-constant holomorphic map
f : C → X with f(0) = x such that the derivative f ′ : C → TX is
bounded (with respect to the euclidean metric on C and some hermitian
metric on X)?

In this article we give examples which show that the answer to the
second question is negative. The answer to the first question remains
open.

1.2. Reparametrization. The key idea for proving Brody’s theorem
is the following: Let fn : ∆ → Y be a non-normal family. Then
we look for an increasing sequence of disk ∆rn

which exhausts C (i.e.
lim rn = +∞) and a sequence of holomorphic maps αn : ∆rn

→ ∆
such that a subsequence of fn ◦ αn converges (locally uniformly) to a
non-constant holomorphic map from C to Y .

In his proof Brody used combinations of affine-linear maps with au-
tomorphisms of the disk for the αn.

Zalcman ([12]) investigated other reparametrizations where the αn

themselves are affin-linear maps, a concept which has the advantage
that it can also be applied to harmonic maps.
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1.3. Subvarieties of abelian varieties. Let A be a complex abelian
variety (i.e. a compact complex torus which is simultaneously a pro-
jective algebraic variety) and X a subvariety. Let E denote the union
of all translates of complex subtori of A which are contained in X. It is
known that this union is either all of X or a proper algebraic subvariety
([6]).

Since A is a compact complex torus there is a flat hermitian metric on
A induced by the euclidean metric on Cg via A ≃ Cg/Γ. A holomorphic
map f : C → A has bounded derivative with respect to this metric if
and only if it is induced by an affine-linear map from C to Cg.

From this, one can deduce that f(C) ⊂ E for every holomorphic map
f : C→ X with bounded derivative. It is thus natural to conjecture:

Conjecture. For every non-constant holomorphic map f : C → X
the image is contained in E. The Kobayashi-pseudodistance on X is a
distance outside E.

For example, this statement is a consequence of the more general
conjecture VIII.I.4 by S. Lang in [9]. In the context of classification
theory the above statement has also be conjectured by F. Campana
([4],§9.3).

In the spirit of the analogue between diophantine geometry and entire
holomorphic curves as pointed out by Vojta [11], the conjecture above
is also supported by the famous result of Faltings ([5]) with which he
solved the Mordell conjecture. This result states the following: If we
assume that A und X are defined over a number field K, then with
only finitely many exceptions every K-rational point of X is contained
in E.

1.4. The first example. We construct an example of the following
type: There is an abelian surface T with open subsets Ω2 ⊂ Ω1 ⊂ T
such that there exists an entire curve f : Ω1 for which the image is
dense in Ω1, but every non-constant Brody curve f : C → T whose
image is contained in Ω1 the closure of the image is a compact complex
curve inside of Ω2 (and Ω2 is not dense in Ω1).

1.5. The second example. We show that by blowing up a suitably
chosen curve on a suitably chosen three-dimensional abelian variety,
one can obtain a compact complex manifold X with a hypersurface
Z such that Z contains the image of every non-constant Brody curve,
although X does admit an entire curve with dense image and the in-
finitesimal Kobayashi-Royden pseudometric vanishes identically on X.
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1.6. Why two examples? Although the second example suffices to
show that the answer to the second question is negative (and thus to
show that the behaviour of Brody curves is fundamentally different
from that of arbitrary entire curves), we include a description of the
first example (which was obtained earlier), because we feel that it is of
independent interest. The methods for constructing the two examples
are completely different, and the first example might also be interested
from the point of view of studying entire curves in compact complex
tori.

For example, for very entire curve with values in a compact complex
torus the Zariski closure of the image is a translated subtorus, but our
example shows that the ordinary closure of the image can be far away
from being a translated real subtorus.

2. Some basic facts on Brody curves

We recall some basic facts on Brody curves.
Let X be a complex manifold endowed with some hermitian metric.

Then an entire curve is a non-constant holomorphic map from C to
X and a Brody curve is a non-constant holomorphic map f : C → X
for which the derivative f ′ is bounded (with respect to the euclidean
metric on C and the given hermitian metric on X).

If X is compact, the notion of a “Brody curve” is independent of the
choice of the hermitian metric.

If φ : X → Y is a holomorphic map between compact complex
manifolds and f : C → X is a Brody curve, then φ ◦ f : C → Y is a
Brody curve, too. (But not necessarily conversely.)

If X = Cg/Γ is a compact complex torus (e.g. an abelian variety),
then an entire curve f : C → X is a Brody curve if and only if it lifts
to an affine linear map f̃ : C→ Cg.

3. The first example

3.1. Statement of the first main result. We construct an example
of an open domain in a torus for which the Brody reparametrization
necessarily fundamentally changes the image for certain entire curves.

Theorem 1. There exists a compact complex torus T , equipped with a
flat hermitian metric h and open subsets Ω2 ⊂ Ω1 ⊂ T such that:

(1) Ω2 is not dense in Ω1 and neither is Ω1 in T .
(2) For every point p ∈ Ω1 and every v ∈ TpΩ1 there is a non-

constant holomorphic map f : C→ Ω1 with p = f(0), v = f ′(0)

and Ω̄1 = f(C).
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(3) If f : C→ T is a non-constant holomorphic map with bounded
derivative (with respect to the euclidean metric on C and h on
T ) and f(C) ⊂ Ω̄1, then f(C) ⊂ Ω̄2. Moreover f is affine-linear

and f(C) is a closed analytic subset of T .

We remark that this implies in particular that the infinitesimal Koba-
yashi-Royden pseudometric vanishes identically on Ω1.

Furthermore, it provides examples of holomorphic maps from C into
a compact complex torus with a rather “bad” image: The closure of
the image with respect to the euclidean topology is Ω2 and thus a set
with non-empty interior such that the complement has also non-empty
interior. This is in strong contrast to the Zariski-analytic closure: By
the theorem of Green-Bloch-Ochiai for every holomorphic map f from
C to a compact complex torus T the closure of the image f(C) with
respect to the analytic Zariski topology (i.e. the smallest closed analytic
subset of T containing f(C)) is always a translated subtorus of T .

We will now describe our example.
We precede the construction with some elementary observations about

tori: Let T = C
n/Λ be a torus, equipped with the flat euclidean metric

and the corresponding distance function dT ( , ). Let

ρ =
1

2
min

γ∈Λ\{0}
||γ||.

This is the injectivity radius, in other words ρ is the largest real number
such that the natural projection π : Cn → T induces a homeomorphism
between the ball

Bǫ(C
n; 0) = {v ∈ C

n : ||v|| < ǫ}
and

Bǫ(T ; e) = {x ∈ T : dT (x, e) < ǫ}
for all ǫ < ρ. Evidently, the injectivity radius ρ is a lower bound for
the diameter

ρ ≤ diam = max
x,y∈T

dT (x, y)

If we pass from T to a subtorus S ⊂ T , the injectivity radius can only
increase, while the diameter can only decrease. As a consequence we
obtain:

Lemma 1. Let T be a compact (real or complex) torus with injectivity
radius ρ. Then for every real positive-dimensional subtorus S ⊂ T the
diameter

diam(S) = max
x,y∈S

dT (x, y)

is at least ρ.
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Furthermore, if 0 < ǫ ≤ ρ and x ∈ T , then the ball Bǫ(T ; x) contains
no translate of any positive-dimensional real subtorus of T .

Before giving the details of the construction of our example, let us
try to express its idea in a drawing:

E ′′

E ′W

←

↓

Ω1

Ω2

Σ

Now let us start the precise construction of the example. Let E ′ =
C/Γ′ and E ′′ = C/Γ′′ be elliptic curves and T = E ′ × E ′′. Let π′ :
C → E ′, π′′ : C → E ′′ and π = (π′, π′′) : C2 → T denote the natural
projections. We assume that E ′ is not isogenous to E ′′. (For example,
we might choose E ′ = C/Z[i] and E ′′ = C/Z[

√
2i].) Then E ′×{0} and

{0} × E ′′ are the only non-trivial complex subtori of T .
Now T = C2/Γ with Γ = Γ′ × Γ′′. The compact complex torus T

carries a hermitian metric h induced by the euclidean metric on C2

(i.e. h = dz1 ⊗ dz̄1 + dz2 ⊗ dz̄2). The associated distance function is
called d, the injectivity radius ρ is defined as explained above.

We choose numbers 0 < ρ′ < ρ′′ < ρ and define W = Bρ′(E
′, e).

Furthermore we choose 0 < δ < 1
2
ρ and we choose a holomorphic

map σ : C→ E ′′ such that there exist complex numbers t, t′ ∈ Bρ′(C, 0)
(i.e. |t|, |t′| < ρ′) and

dE′′(σ(t), σ(t′)) > 2δ.

(This is possible since 2δ is smaller than the injectivity radius ρ of T
which in turn is a lower bound for the diameter of E ′′).

We denote by s : C→ C a holomorphic function such that σ = π′′◦s.
Since π′ : C→ E ′ restricts to an isomorphism between Bρ(C, 0) and

Bρ(E
′, e), the holomorphic maps s and σ induce maps from Bρ(E

′, e)
to C resp. E ′′. By abuse of notation these maps will also be denoted
by s resp. σ.
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Now define Ω2 = (E ′ \W )× E ′′ and Ω1 = Ω2 ∪ Σ with

Σ = {(x, y) : x ∈W, y ∈ E ′′, dE′′(y − σ(x)) < δ}
Let us now fix some point p ∈ Ω1 and v = (v1, v2) ∈ Tp(T ) = C

2.
We have to show that there exists a holomorphic map f as stipulated
in (2) of theorem 1.

Let (p1, p2) ∈ C2 be a point mapped on p by π : C2 → T . If p ∈ Σ,
we require |p1| ≤ ρ′ and |s(p1)−p2| < δ and define δ′ = δ−|s(p1)−p2|.
If p 6∈ Σ, we require |p1| > ρ′′ and define δ′ = δ.

As the next step, we will choose a pair of entire functions (Q, H).

Claim 1. There is a pair of entire functions (Q, H) with the following
properties:

(1) Q is a non-constant polynomial,
(2) (Q(0), H(0)) = (p1, p2) and
(3) (Q′(0), H ′(0)) and v are parallel.
(4) If p ∈ Σ, we require furthermore that (Q(z), H(z)+y) ∈ π−1(Σ)

for all z and y with |Q(z)| ≤ ρ′ and |y| ≤ 1
2
δ′.

Let us first discuss the case where p 6∈ Σ.
Then it suffices to choose

Q(z) = z2 + v1z + p1

and
H(z) = v2z + p2.

If p ∈ Σ, we proceed as follows: First, for r, t ∈ C we define

Qt(z) = (z + t)2 + p1 − t2

and
Hr,t(z) = p2 − s(p1) + s(Qt(z)) + rz.

We will set Q = Qt and H = Hr,t for appropriately chosen parame-
ters r, t.

Evidently Qt is a polynomial for any choice of t. Furthermore

(Qt(0), Hr,t(0)) = (p1, p2)

independent of the choice of r, t:

Qt(0) = t2 + p1 − t2 = p1

and
Hr,t(0) = p2 − s(p1) + s(p1) + 0 = p2.

Let Φr,t = (Qt, Hr,t). We have

Φ′
r,t(0) = (Q′

t(0), s′(Qt(0))Q′
t(0) + r) = (2t, 2s′(p1)t + r)
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Observe that

(r, t) 7→ 2t

2s′(p1)t + r

defines a meromorphic function on C2 with a point of indeterminacy
at (0, 0). This is true regardless of the value of s′(p1).

Thus every neighborhood of (0, 0) contains a point (r, t) 6= (0, 0) such
that Φ′

r,t(0) is a non-zero multiple of v.

Next we note that (t, z) 7→ Qt(z) defines a proper map from B1(C, 0)×
C to C. Therefore there is a constant C > 0 such that |z| < C, when-
ever there exists a parameter t such that |t| ≤ 1 and |Qt(z)| ≤ ρ.

It is therefore possible to choose two numbers r, t in such a way that

(1) Φ′
r,t(0) is a non-zero multiple of v,

(2) |t| < 1 and
(3) |2rC| < δ′.

Now assume that z, y ∈ C with |Qt(z)| ≤ ρ′ and |y| < 1
2
δ′. By

the definition of the constant C, this implies |z| < C. Let (w1, w2) =
Φr,t(z) + (0, y). Then

|w2 − s(w1)| = |p2 − s(p1) + rz + y| < |p2 − s(p1)|+ |rC|+
1

2
δ′ <

< (δ − δ′) +
1

2
δ′ +

1

2
δ′ = δ.

Now |w2−s(w1)| < δ in combination with |w1| = |Qt(z)| ≤ ρ′ implies
π(w1, w2) ∈ Σ. Hence Φr,t(z) + (0, y) ∈ π−1(Σ) under this assumption.
Thus the claim is proved. Q.E.D.

Our next step is to construct a closed subset A of C to which we will
apply Arakelyan approximation.

Let A0 be the union of Bρ′′(0) and Bρ′(γ) for all γ ∈ Γ′. If p 6∈ Σ,

then p1 6∈ A0. Hence in this case we can choose η > 0 such that Bη(p1)
is disjoint to A0 and define A1 as the union of A0 with this closed ball
Bη(p1). If p ∈ Σ, we simply take A1 = A0.

Next we choose dense countable subsets S1 ⊂ int(Σ) (where int(Σ)
denotes the interior of Σ) and S2 ⊂ Ω2. We observe that C\A1 projects
surjectively onto E ′\W and that the fibers of this projection are infinite
discrete subsets of C. For this reason we can find sequences an, bn in C

such that

S2 = {π(an, bn) : n ∈ N}
and all the an are distinct elements of C \A1 with limn→∞ |an| = +∞.
It follows that

Θ = {an : n ∈ N}
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is a discrete subset of C which has empty intersection with A1. We
define A2 = A1 ∪Θ.

We fix a bijection ξ : Γ′ \ {0} ∼→ S1 and an enumeration n 7→ γn of
Γ′\{0}. Then we can choose sequences of complex numbers cn, dn such
that the following properties hold for all n ∈ N

(1) π(cn, dn) = ξ(γn),
(2) |cn − γn| < ρ′ and
(3) |dn − s(cn)| < δ.

We define A = Q−1(A2). Observe that A contains Q−1(S1).

Claim 2. Arakelyan approximation is applicable to A, i.e. {∞}∪ (C \
A) is connected and locally connected.

Observe that C\A1 is an unbounded open connected subset and that
Q : C → C is a ramified covering. Hence the connected components
of Q−1(C \ A1) are also unbounded. Thus P1 \ Q−1(A) is connected.
Furthermore Q is conjugated to z 7→ z2 near ∞, which implies that
P1 \Q−1(A) is locally connected at ∞. Thus the claim is proved.

We will now define a continuous function h on A, which is holomor-
phic in its interior, and which we will then approximate by an entire
function, using Arakelyan’s theorem.

If p 6∈ Σ, we take h(z) = H(z) on Q−1(Bη(p1)) and h = s on

Q−1(Bρ′′(0)).

If p ∈ Σ, we define h on Q−1(Bρ′′(0)) as H(z).
Next, for every n ∈ N, we define h(z) as

h(z) = s(Q(z)− γn) + dn − s(cn)

whenever |Q(z)− γn| ≤ ρ′.
Finally, we define h on Q−1(Θ) by stipulating that h(z) = bn when-

ever Q(z) = an for a number n ∈ N.
By the construction of (Q, H) we know that π(Q(0), h(0)) = p and

that (Q′(0), h′(0)) is a multiple of v. The choice of h implies moreover
that S1 ∪ S2 is contained in the image of z 7→ π(Q(z), h(z)).

Next we define a continuous positive function ǫ : A→ R+ as follows:

• ǫ ≡ 1 on Q−1(Bη(p1)) if p 6∈ Σ.

• ǫ ≡ 1
2
δ′ on Q−1(Bρ′′(0)).

• ǫ(z) = 1
n

if Q(z) = an.

• ǫ(z) = min
{

1
n
, 1

2
(δ − |dn − s(cn)|)

}

whenever |Q(z)− γn| ≤ ρ′.

Using prop. 1, we deduce that there exists an entire function F :
C→ C such that

(1) |F (z)− h(z)| < ǫ(z) for all z ∈ A.
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(2) F (0) = h(0) and F ′(0) = h′(0).

By the second condition we obtain that π(Q(0), F (0)) = p and
that (Q′(0), F ′(0)) is a multiple of v. The first condition ensures that
π(Q(z), F (z)) ∈ Ω for all z ∈ C. It also ensure that the image is dense:
Indeed, let w ∈ Ω2. Then there is a sequence of points in S2 converging
to w. But S2 = {π(an, bn) : n ∈ N} and the construction of F implies
that for every n ∈ N there exists a number zn ∈ C such that Q(zn) = an

and |F (zn) − bn| < 1
n
. It follows that there is a subsequence znk

such
that limk π(Q(znk

), F (znk
)) = w. If w ∈ Σ, we argue similarily, with S1

in the role of S2. Thus the whole set Ω1 is in the closure of the image
of the map z 7→ π(Q(z), F (z)) from C to T .

Finally, let µ be a complex number such that µ(Q′(0), F ′(0)) = v
and define

f(z) = π (Q(µz), F (µz))

Then f : C→ Ω1 is a holomorphic map with the desired properties.
We still have to show assertion (3) of the theorems. Recall that

T ≃ E ′×E ′′ where E ′ and E ′′ are non-isogenous elliptic curves. Recall
furthermore that T , E ′, E ′′ and {e} are the only subtori of T (this
is a consequence of E ′ and E ′′ being non-isogenous). If f : C → T
is a holomorphic map with bounded derivative, Liouville’s theorem
implies that f ′ : C → C2 is constant. Therefore f is induced by
an affine-linear map f̃ : C → C2 and thus f(C) is the orbit of a
one-dimensional complex Lie subgroup H of T . Hence the closure Ω̄1

must contain an orbit of the closure H̄ of H in T if f(C) ⊂ Ω1. We
choose a point w ∈ W and consider the intersection of this H̄-orbit
with F = (π′)−1(w) ≃ E ′′. By construction Ω1 ∩ F is an open disc
embedded into the elliptic curve E ′′. Thus F ∩ Ω̄1 does not contain
any orbit of any positive-dimensional subtorus of E ′′. This leaves two
possibilities: First, f(C)∩F may be empty. Since every non-surjective
holomorphic map from C to an elliptic curve is constant, it follows
that f(C) is a fiber of π′ : T → E ′. As a consequence, f(C) ⊂ Ω2 if
f(C) ⊂ Ω1. Second possibility: f(C)∩F is non-empty, but finite. Then
the Lie group homomorphism from H to E ′ induced by the projection
map π′ has finite kernel. It follows that H = H̄ = E ′. However, by
construction Ω1 does not contain any E ′-orbit. So the second possibility
does not occur.

This completes the proof of theorem 1 and 2 (modulo the approxi-
mation result which we prove in the next section).
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4. Arakelyan Approximation with interpolation

We will need the following slight improvement of Arakelyan’s theo-
rem.

Proposition 1. Let A be a closed subset in C for which P1 \ A is
connected and locally connected at ∞. Let q be a point in the interior
of A and let f : A→ C be a continuous function which is holomorphic
in the interior of A. Furthermore let ǫ : A → R+ be a continuous
function.

Then there exists an entire function F such that F (q) = f(q), F ′(q) =
f ′(q) and |F (z)− f(z)| < ǫ(z) for all z ∈ A.

Proof. By the classical theorem of Arakelyan ([1]) we know that there
is an entire function F with |F (z)− f(z)| < ǫ(z) for all z ∈ A.

We have to show that we can choose F in such a way as to obtain
the additional conditions F (q) = f(q) and F ′(q) = f ′(q).

There is no loss in generality in assuming f(q) = f ′(q) = 0 and
B1(q) ⊂ A.

First we show that we can achieve F (q) = f(q). Let F1 be an entire
function with |F1(z) − f(z)| < ǫ(z)/5 for all z ∈ A. If F1(q) = 0, we
are done. If not, we define g1 = F1 − f and choose an entire function
G1 such that

|G1(z)− g1(z)| < max

{

g1(q)

2
,
ǫ(z)

5

}

∀z ∈ A.

Then we define F2 = F1− F1(q)
G1(q)

G1. By construction we have | F1(q)
G1(q)
| < 2,

|G1(z)| < 2
5
ǫ(z) and therefore |F2(z)− f(z)| < ǫ(z) for all z ∈ A. Thus

it is possible to find such an entire function with the additional property
F (q) = 0 = f(q).

Next we discuss the condition on F ′(q). By the preceding arguments
there is an entire function F2 with F2(q) = f(q) and |F2(z) − f(z)| <
ǫ(z)
5

. Assume F ′
2(q) 6= 0. Then we define g2 = F2 − f and choose an

entire function G2 with G2(q) = g2(q) = 0 and

|G2(z)− g2(z)| < max

{

g′
2(q)

2
,
ǫ(z)

5

}

∀z ∈ A.

Since B1(q) ⊂ A and therefore |G2(z)− g2(z)| < g′
2
(q)

2
for all z ∈ B1(q),

the lemma of Schwarz implies that |G′
2(q)| > 1

2
|g′

2(q)|. Using this fact,
one verifies easily that

F3(z) = F2(z)− F ′
2(q)

G′
2(q)

G2(z)
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is an entire function with the desired properties. �

5. The second main result

We prove the following theorem:

Theorem 2. There exists a projective manifold X with a hypersurface
Z such that for every point x ∈ X there exists an entire curve f : C→
X with f(C) = X and x ∈ f(C), but Z contains the image of every
Brody curve.

5.1. Proof of the Main theorem. The main theorem is a conse-
quence of the more specific theorem below.

Theorem 3. There exists an abelian threefold A with a smooth curve
C such that the smooth projective variety Â obtained by blowing up A
along C has the following properties:

(1) For every point p ∈ Â there exists a non-constant entire curve

γ : C→ Â with p ∈ γ(C) and γ(C) = Â.

(2) For a given point p ∈ Â there exists a non-constant Brody curve

γ : C → Â with p ∈ γ(C) if and only if p is contained in the

exceptional divisor E = π−1(C) of the blow-up π : Â→ A.

The key idea is that the hermitian metric will explode in some di-
rections due to the blow up and that this will create an obstruction
against lifting Brody curves. As a consequence there will be no Brody
curves outside the exceptional divisor. To realize this idea it is neces-
sary to ensure that the center of the blow-up intersects the closure of
the image of each brody curve. To achieve this it will be necessary to
blow up a center of positive dimension. Furthermore, since the center
of a blow-up has real codimension at least four, it is necessary to choose
the abelian variety in such a way that for every Brody curve the closure
is at least real 4-dimensional.

Proof. (1). For every x ∈ A and v ∈ TxA there is an affine-linear curve

γ : C → A with γ(0) = x and γ′(0) = v. Recall that π : Â → A is
an isomorphism outside C and that each point of x ∈ C is replaced by
P(Tx/TxC). Observe further that each entire curve γ : C → A lifts to

Â unless γ(C) ⊂ C. Combined, these facts yield statement (1).
(2). We have π−1(x) ≃ P1 for every x ∈ C. This implies that there

is a Brody curve through every point in E = π−1(C). Conversely, let

f̂ : C → Â be a Brody curve. We will see that f̂(C) ⊂ E = π−1(C) if

we choose A and C according to prop. 7 below. Now f̂ being a Brody
curve implies that f = π ◦ f̂ : C → A is a Brody curve or constant.
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Let us assume that f is not constant. If A = C3/Γ, then f lifts to
an affine-linear map F : C → C3. f(C) is thus the orbit of a complex
one-parameter subgroup P of A. Let H denote the (real) closure of
P in A. Thanks to prop. 7 we may assume that H and C intersect
transversally in some point p. But now we arrive at a contradiction
because according to prop. 3 under these circumstances f : C→ A can
not be induced by a Brody curve f̂ : C→ Â. Thus f = π ◦ f̂ must be
constant. Since f̂ is non-constant and π is an isomorphism outside of
C, it follows that f̂(C) ⊂ E = π−1(C). �

5.2. Local model of blow-up. The idea we use is: If we blow up
something, the hermitian metric will explode somewhere. We will now
make this precise.

Proposition 2. Let A be a three-dimension complex manifold, C a
smooth curve, π : Â → A the corresponding blow-up with center C,
p ∈ C and Ln a sequence of curves converging to a curve L0 such that

(1) L0 intersects C transversally in p.
(2) The intersection Ln ∩ C is empty for all n 6= 0.

Furthermore assume A and Â endowed with hermitian metrics.
Then there exists sequences pn ∈ Ln and vn ∈ Tpn

(Ln) such that
lim pn = p and

lim sup
||π−1(vn)||Â
||vn||A

=∞

(note that Ln ⊂ A \ C and that π is an isomorphism on A \ C.)

Proof. Let p̂ denote the point in π−1(p) which points in the direction
of L (using the isomorphism between π−1(p) and the projectivization
of the normal tangent space TpA/TpC.)

We fix local holomorphic coordinates on A and Â around p resp. p̂
such that the defining equations for C and L0 become as simply as
possible. Doing this we get local holomorphic coordinates such that

C = {(z1, z2, z3) : z1 = z2 = 0},

L0 = {(z1, z2, z3) : z2 = z3 = 0},
Now the projection:

π(x1, x2, x3) = (x1x2, x2, x3)

Since lim Ln = L0, the curves Ln can be parametrized as

Ln = {γn(t) = (t, αn(t), βn(t)}



14 JÖRG WINKELMANN

where t runs through an appropriate small neighbourhood of 0 and
where αn, βn are sequences of holomorphic functions converging uni-
formly to the constant function zero on this small neighbourhood.

Since all the calculations happen in some small neighbourhood of p
resp. p̂, we may replace the given hermitian metrics by the euclidean
metric with respect to our coordinate systems.

Our next step is to define the auxiliary function

φn(t) = t + αn(t)α′
n(t)

We observe that φn converges to the identity map φ(t) = t. Therefore
the theorem of Rouche allows us to choose a sequence sn with limn sn =
0 and φn(sn) = 0 for all n.

We claim: αn(sn) 6= 0. Indeed, assume αn(sn) = 0. Then

αn(sn)α′
n(sn) = 0

and consequently

0 = φn(sn) = sn + 0 ⇒ sn = 0

and therefore

0 = αn(sn) = αn(0).

But αn(0) = 0 is impossible, because Ln ∩ C is empty. Thus the
assumption αn(sn) = 0 leads to a contradiction, i.e. αn(sn) must be
non-zero.

Hence we may divide by αn(sn) and thereby deduce that φn(sn) = 0

implies α′
n(sn) = −sn/αn(sn). If γ̂(t) denotes the point in Â lying

above γn(t) ∈ A \ C, we obtain

γ̂n(sn) =

(

sn

αn(sn)
, αn(sn), βn(sn)

)

= (−α′
n(sn), αn(sn), βn(sn))

which converges to (0, 0, 0) = p̂ ∈ Â if n goes to infinity.
Now

γ′
n(sn) = (1, α′

n(sn), β ′
n(sn)) ⇒ lim

n
||γ′

n(sn)|| = 1

while

γ̂′
n(sn) =

(

1− α′
n(sn)

(αn(sn))2
, α′

n(sn), β ′
n(sn)

)

⇒ lim
n
||γ̂′

n(sn)|| = +∞

�
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5.3. Brody curves and blow ups.

Proposition 3. Let A be an abelian variety, C a submanifold contain-
ing eA and π : Â→ A the blow-up with center C.

Let γ : C → A be a Brody curve with closure B = γ(C) such that
γ(0) = eA ∈ C. Assume moreover that

(1) v = γ′(0) 6∈ TeC and
(2) TeB 6⊂ TeC ⊕ 〈v〉C

Then there does not exist a Brody curve γ̂ : C→ Â with γ = π ◦ γ̂.

Proof. Let τ : C3 → A be the universal covering. Since γ is a Brody
curve with γ(0) = e, it lifts to a linear map γ̃ : C→ C3.

Recall that B is a real subtorus. Let V be the Lie algebra of B. We
may regard V as the connected component of π−1(B) which contains
0. Since γ(C) is dense in B, we can find a finitely generated subgroup
Λ0 ⊂ π−1(γ(C)) which is dense in V . Define Λ = π(Λ0). Since TpB 6⊂
TpC + 〈γ′(0)〉

C
we can choose a sequence λn ∈ Λ such that lim λn =

e and C does not intersect the translate λn + γ(∆) (where ∆ is a
sufficiently small disk containing 0) in some neighbourhood of p.

Now we can invoke prop. 2 taking X to be some small open neigh-
bourhood of e in A, p = eA, L0 = X ∩γ(∆) and Ln = X ∩ (λn +γ(∆)).

Hence

(1) sup
t∈C

||γ̂′(t)||Â
||γ′(t)||A

= +∞

where γ̂ : C→ Â is the natural lift of γ.
Since γ is induced by an affine-linear map, the norm ||γ′(t)|| is a

positive constant and in particular bounded from below by a number
greater than zero. Together with the above equation 1 this implies that
γ̂ can not be Brody curve. �

5.4. Excluding Real subtori of dimension three. In this section
we deduce the following statement:

Proposition 4. There exists an abelian three-fold A such that every
real subtorus of real dimension three is totally real in A.

We will prove this assertion by showing that every very general
abelian three-fold has this property, i.e. we demonstrate:

Proposition 5. Let U → D be a locally complete family of abelian
varieties of dimension three.

Then there exists a countable family of nowhere dense closed analytic
subsets Zi ⊂ D such that every abelian threefold A corresponding to a
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point outside the union ∪iZi has the property “Every real subtorus of
real dimension three is totally real in A”

Before proving the proposition, we need some lemmata.

Lemma 2. Let A = C3/Γ be an complex abelian 3-fold, S a real
subtorus of dimension three.

Then there is a joint deformation of S ⊂ A over the unit disc such
that At is an abelian variety for all t and St is totally real for all t 6= 0.

Proof. Let Λ ⊂ Γ be the Z-submodule corresponding to S. Since A is
an abelian variety, C3 admits a hermitian form H such that B = ℑH
has integer values on Γ × Γ. Now B is alternating and 3 = rankZ(Λ)
is odd, hence there is an element v ∈ Λ for which B(v, ·) vanishes
identically on Λ. Let ΛR resp. ΛC be the real resp. complex vector
subspace of C3 generated by Λ. We may assume that ΛR is not totally
real. Then dimC(ΛC) = 2 and L = ΛR ∩ iΛR is a complex line. Now we
choose an element w ∈ Γ such that

(1) B(v, w) 6= 0,
(2) B(w, ·) does not vanish identically on L and
(3) w 6∈ ΛC.

We define R-linear self-maps φt of C3 as follows: First we observe that
C3 is the direct sum of R ·v and K = {x : B(x, w) = 0}. Second we set
φt(v) = v+tw and φt(x) = x for all x ∈ K. It is easy to check that φt is
always bijective and moreover an isometry for B. Hence Γt = φt(Γ) is
a lattice for which the assertion B(Γt, Γt) ⊂ Z holds. Thus At = C3/Γt

is an abelian variety.
Now let us look at φt(ΛR). First we consider the real vector subspace

V = ΛR ⊕ Rw. Let K = {x : B(x, w) = 0}. Then V = (V ∩K)⊕ Rv.
Now φt acts trivially on K and φt(v) = v+ tw ∈ V . Hence φt stabilizes
V . We note that dimR(V ) = 4 and < V >C= C3, because w 6∈ ΛC.
Therefore V contains a unique complex line, which must be L. Since
φt(ΛR) ⊂ V , we may deduce that for each t either φt(ΛR) is totally real
or contains L. Now, by the construction of φt it is clear that

φt(ΛR) ∩ φs(ΛR) = ΛR ∩K

for any s 6= t. Since L 6= ΛR ∩ K due to condition (2) for the choice
of w, we may deduce that L 6⊂ φt(ΛR) for t 6= 0. As a consequence,
φt(ΛR) is totally real for t 6= 0. �

Lemma 3. Let π : U → D be a family of three-dimensional complex
abelian varieties, parametrized by D which we assume to be the unit
ball in some C

N .
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Let S0 be a real three-dimensional subtorus of the abelian variety
U0 = π−1(0)

Then there is natural deformation St of S0 (t ∈ D) such that

Z = {t ∈ D : St is not totally real}
is a closed complex analytic subset of D.

Proof. The family U can be described as a quotient C3 × D by a Z6-
action which is given as

(m1, . . . , m3, n1, . . . , n3) : (v; t) 7→
(

v + (m1, m2, m3) +
∑

i

nifi(t); t

)

where v ∈ C3, t ∈ D and where the fi are holomorphic maps from D
to C3.

We may assume that S0 is the subtorus fro which the corresponding
subgroup of Z-rank 3 is generated by f1(0), f2(0 and f3(0). Then St

corresponds to the subgroup generated by the fi(t) and St is totally real
if and only if this group spans C3 as a complex vector space. Therefore
the set of all t ∈ D for which St fails to be totally real is the zero locus
of det(f1(t), f(t), f3(t)) and thus a closed complex analytic set. �

Now we can prove the proposition

Proof. There are only countably many different real subtori of real
dimension three for a given abelian 3-fold A, each corresponding to a
Z-submodule of rank three of Z6 = H1(A, Z).

Inside the family U → D there are canonical isomorphisms

H1(U0, Z) ≃ H1(Ut, Z)

which we may therefore identify.
Now for each fixed Z-submodule of rank three the set of all t ∈ D for

which the corresponding subtorus St fails to be totally real is a closed
analytic subset (lemma 3) which is not all of D (lemma 2). This proves
the proposition 5 and thereby prop. 4. �

Remark. 1.) Since every subtorus of dimension smaller than three
can be embedded into a subtorus of dimension three, the property “All
real subtori of real dimension three are totally real” is equivalent to the
property “All real subtori of real dimension up to three are totally real”.
2.) An abelian threefold A is a simple abelian variety iff it contains
no elliptic curve. The latter property is equivalent to the statement
“All real subtori of real dimension up to two are totally real”. Hence
the property “All real subtori of real dimension three are totally real”
implies that the abelian 3-fold under discussion is simple.
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5.5. Dealing with real subtori of dimension four. The main goal
of this section is to to verify that we can a choose a curve C in a
3-dimensional abelian variety A such that C intersects the closure of
every translate of every real subtorus of real dimension four.

Lemma 4. Let A be an abelian threefold, x ∈ A and let L be a complex
line in TxA.

Then there exist smooth curves C ⊂ A with x ∈ C such that TxC is
arbitrarily close to L.

Proof. We construct curves by embedding A into a projective space and
taking the intersection of A with linear subspaces of codimension two
containing x. Then the statement follows from Bertini’s theorem. �

Lemma 5. Let A be an abelian threefold with smooth curves C and C ′.
Then there is a dense open subset U ⊂ A such that C ∪ λ∗

tC
′ is

smooth for t ∈ U where λt denotes translation by t.

Proof. C ∪ λ∗
tC

′ is smooth iff C and λ∗
t C

′ are disjoint. Hence U =
A \ {x− y : x ∈ C, y ∈ C ′}. �

Lemma 6. Let V be a complex three-dimensional vector space equipped
with a hermitian inner product H and let W be a real four-dimensional
real subspace. Then there exists a complex line L ⊂ V such that the
angle between W and L is at least π/4. i.e.,

| < v, w > | ≤ cos(π/4)||v|| · ||w||

for all v ∈ L, w ∈W .

Remark. If H( , ) is an hermitian inner product, its real part is
the associated euclidean inner product and thus the angle between two
vectors v and w is the number φ ∈ [0, π/2] for which cos φ = ℜH(v, w).

Proof. We may choose vectors A, B, C such that (A, iA, B, iB, C, iC)
is an orthonormal basis for ℜH and

〈A, iA, B, C + λiB〉 = W

for some λ ∈ R.
Then we choose

• L = 〈C〉
C

if |λ| > 1,
• L = 〈B + iC〉

C
if 0 ≤ λ ≤ 1 and

• L = 〈B − iC〉
C

if −1 ≤ λ < 0.

It is easy to check that in each case the angle is at least π/4. �
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Proposition 6. Let A be an abelian threefold (i.e. an abelian variety
of dimension three). Then there exists a smooth complex curve C ⊂ A
such that for every real 4-dimensional subtorus S ⊂ A and every point
a ∈ A there exists a point p ∈ C where C and S(a) (the S-orbit in A
through a) intersect transversally.

Proof. We have to consider all 4-subtori. Since the set of all such tori
lacks good geometric properties, we instead consider the larger set of all
connected real Lie subgroups of real dimension 4, or, equivalently, the
real Grassmann variety M which parametrizes all real vector subspaces
of dimension 4 of the Lie algebra Lie(A) ≃ C3. This is a real compact
variety.

Now we fix an hermitian inner product on Lie(A) ≃ C
3 (e.g. the

standard one for C3 or the one corresponding to the Riemann condi-
tion). For each element H ∈ M we define a closed neighbourhood BH

as follows: An element H ′ belongs to BH iff for every vector v′ in H ′

there is a vector v ∈ H such that the angle between v and v′ is at most
π/16. Due to compactness of M there is a finite collection of elements
Hi ∈M , i ∈ I such that M = ∪i∈IBHi

.
Next we will choose a smooth complex curve Ci ⊂ A for each i ∈ I.

Fix an index i. Let H = Hi and B = BHi
. Choose a complex line L

in TeA ≃ Lie(A) such that the angle between L and H is at least π
4

(which is possible due to lemma 6). Then we choose a smooth complex
curve S = Si through e such that for each v ∈ TeS there is a vector
v′ ∈ L such that the angle between v and v′ is at most π/16 (lemma 4).
By the definition of B, the angle between TeS and H ′ is at least π

8
for

every H ′ ∈ B.
Now let π : C3 → A denote the universal covering. Let F denote a

fundamental region, i.e. a compact subset of C3 with π(F ) = A. Let
W be an open neighbourhood of e in S which is small enough such that
the embedding of W in A lifts to an embedding into C3, taking e to
0. In addition, we require that W is small enough such that for every
w ∈ W , v ∈ TwS \ {0} and v′ ∈ TeS \ {0} the angle between v and v′

is at most π/16.
For each H ′ ∈ B we define

Z(H ′) = {c + h : c ∈W, h ∈ H ′}.
We claim: There exists a number ρ > 0 such that Z(H ′) contains the
ball with radius ρ and center 0 for every H ′ ∈ B. Indeed, assume the
contrary. Then there are sequences v(k) ∈ C3 and H(k) ∈ B such that:

(1) H(k) converges to an element H ′′ ∈ B (recall that B is compact),
(2) lim v(k) = 0,
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(3) v(k) 6∈ Z(H(k)).

But this would contradict the fact that H ′′ and TeW are transversal.
Thus we can find such a number ρ. Next, using compactness of F , we
choose a finite set Σ ⊂ C3 such that for every x ∈ F there is an element
s ∈ Σ with ||x− s|| < ρ/3.

Using this fact and lemma 5 we can find a map ξ : Σ → C3 such
that:

• ∪s∈Σ(π(ξ(s)) + S) is smooth and
• |ξ(s)| < ρ/3 for all s ∈ Σ

Then we have constructed a smooth curve in A, namely

S ′ = ∪s∈Σ(π(ξ(s)) + S)

with the following property:
(T) For every vector u ∈ C3 with ||u|| < ρ/3 and every real 4-

dimensional subtorus H of A with Lie(H) ∈ B every H-orbit in A
intersects π(u) + S ′ in some point transversally.

We found this curve S ′ after fixing an element i ∈ I. We can do the
same for every element i ∈ I, obtaining a family of curves S ′

i and a
family of positive real numbers ρi.

Then by lemma 5 we can choose vectors ui such that ||ui|| < ρi/3
and such that C = ∪i∈I (π(ui) + S ′

i) is a smooth curve.
By construction this curve has the property that it intersects each

translate of each real 4-dimensional subtorus of A in at least one point
transversally. �

Proposition 7. There exists an abelian threefold A with a complex
curve C such that the following property holds:

For every complex one-parameter subgroup P of A and every point
a in A there is a point p in C where C and the (real) closure of P · a
intersect transversally.

Proof. We may choose A such that every real three-dimensional real
subtorus is totally real (prop. 4). Then evidently real subtori of smaller
dimension are totally real as well. Now let P be a complex one-
parameter subgroup of A. The closure of P is again a subgroup, and
therefore in fact a real subtorus. This subtorus does not need to be
complex, but it can not be totally real, since it contains P . Therefore
for every complex one-parameter subgroup P of A the real dimension of
its closure is at least 4. Now it suffices to choose the curve C according
to thm. 6. �
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6. Brody curves and sets of rational points

Conjecturally entire curves or Brody curves with values in projective
varieties defined over some number field behave somewhat analoguously
to sets of rational points (admitting finite field extensions).

As we have seen, Brody curves and arbitrary entire curves behave
differently. So which are the right analogue for rational point sets? In
our construction at one point we made a “very generic” choice. For
this reason it is not clear whether one can find such an example which
is defined over a number field.

If such an example can be defined over a number field, it would sug-
gest that complex-analytic concept corresponding to infinite rational
point sets are arbitrary entire curves and not Brody curves: For every
abelian variety A defined over a number field k there is a finite field
extension K/k such that A(K) is Zariski dense. Then also X(K) is
Zariski dense in X for every projective manifold X obtained from A by
blowing up something. Thus if our construction can be realized over
a number field, it would yield a projective variety defined over some
number field K such that every Brody curve is degenerate, but there
is a Zariski dense subset of K-rational points.

In any case, dense sets of rational points as well as dense entire
curves behave nicely under birational transformations while our exam-
ple shows that the behaviour of Brody curves may change dramatically.

This suggests that the right complex-analytic analogue to infinite
sets of rational points should be arbitrary entire curves rather than
Brody curves.
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