Compact non-Kähler threefolds associated to real hyperbolic 3-manifolds

Akira FUJIKI
(Osaka Univ.)

Problem

G semisimple, connected, complex linear algebraic group
Γ discrete subgroup Zariski dense, torsion-free, and not co-compact
$U:=G / \Gamma$ complex homogeneous space
Find a G-equivariant compactification

$$
\iota: U \hookrightarrow X
$$

into a compact complex G-manifold
Properties of X

- $S:=X-U$ is a hypersuface
- $\exists T \in|-K|$ with $\operatorname{supp} T=S$
- X admits no non-constant meromorphic functions [Huckleberry-Margulis '83]
- X is non-Kähler [Berteloot-Oeljeklaus '88] and $\notin \mathcal{C}$

Example: The twistor space associated to one of the following conformally-flat manifolds $V=(V, g)$ with $S O(3)$-actions give examples of a compactification for the group $G=P S L_{2} \boldsymbol{C}$ and $\Gamma=\pi_{1}(X)$.
(1) $V=\boldsymbol{P}^{1} \times C_{g}, g \geq 2$.
(2) $V=C(r)=r\left(S^{1} \times S^{3}\right), r \geq 1$.

Assume that $\operatorname{dim} G=3$:

$$
\begin{aligned}
& \text { Case 1: } G=P S L_{2} \boldsymbol{C} \\
& \text { Case 2: } G=S L_{2} \boldsymbol{C}
\end{aligned}
$$

Recall:
$P S L_{2} \boldsymbol{C} \cong \operatorname{Isom}^{+} H$
where H is a 3 -dim. hyperbolic space form
$\Gamma \subseteq P S L_{2} C$ is called a Kleinian group
H admits a natural compactification by adding the sphere at ∞

$$
\bar{H}=H \cup b H, \quad b H=S^{2}=\boldsymbol{P}^{1}
$$

on which G-action naturally extends.
Given Γ, we have the decomposition:

$$
b H=\Omega \cup \Lambda
$$

(Ω domain of discontinuity, Λ limit set)
$M:=H / \Gamma$ is a complete hyperbolic manifold and vice versa.

Consider the case: Γ is cofinite
(\Leftrightarrow the volume of G / Γ is finite)
Theorem 1. If, further, Γ is co-finite, there exists no G-equivariant compactification of $U=G / \Gamma$.

The point: G / Γ cannot be compactified in cusp directions.
Speculation: In general G / Γ cannot be compactified in cusp directions whenever Γ is arithmetic.

Remark. When G is simple, arithmetic \Leftrightarrow cofinite, if $\operatorname{dim} G>3$. In general " \Rightarrow " is true.

Assumption:
(1) Γ is geometrically finite
(\Leftrightarrow fundamental polyhedron is finite-sided.)
(2) purely loxodromic, i.e.,
contains no parabolic elements $\neq 1$
Theorem 2. Under the above assumptions there exists a natural G-equivariant compactification
$\iota: U:=G / \Gamma \hookrightarrow X$
with the following properties:
Structure of S
$S=\coprod_{1 \leq i \leq k} S_{i}$ with $S_{i} \cong \boldsymbol{P}^{1} \times C_{i}$,
(C_{i} a compact Riemann surface of genus $g_{i} \geq 2$)
G acts on the \boldsymbol{P}^{1}-factor naturally, and
trivially on the C_{i}-factor.

Anti-canonical bundle and rational curves

- $-K_{X}=2[S], \quad N_{S / X}=-K_{S}$,

$$
N_{l / X}=O(1) \oplus O(1) \quad(\text { Case } 1)
$$

- $-K_{X}=3[S], N_{S / X}=-\frac{1}{2} K_{S}$,
$N_{l / X}=O \oplus O(1) \quad$ (Case 2)
where $l=\boldsymbol{P}^{1} \times\{*\}, * \in C_{i}$.
- X is covered by nonsingular rational curves with normal bundle type as above.
X is a manifold of Class L in the sense of Ma. Kato in Case 1.

Topology

Let $g=\sum g_{i}$. Then we have:

- $\pi_{1}(X) \cong \Gamma$
- $b_{1}(X)=\operatorname{rank} \Gamma /[\Gamma, \Gamma]$
- $b_{2}(X)=b_{1}(X)+2 k-g-1$
- $b_{3}(X)=2 g$
- $\chi(X)=\chi(S)$

Chern numbers
$c_{1}^{3}=2 \chi(S)\left(\right.$ Case 1),$=\frac{27}{2} \chi(S)$ (Case 2)
$c_{1} c_{2}=6 \chi(S)$
$c_{3}=\chi(S)$
$\chi\left(O_{X}\right)=\frac{1}{4} \chi(S)$

Universal covering space \tilde{X}

- \tilde{X} is a domain in Y with

$$
\begin{aligned}
Y & =\boldsymbol{P}^{3}(\text { in Case 1) and } \\
& =Q^{3}\left(\text { hyperquadric in } \boldsymbol{P}^{4}\right)(\text { in Case } 2)
\end{aligned}
$$

- Its complement E is of the from:

$$
\Lambda \times \boldsymbol{P}^{1} \subseteq Q^{2} \cong \boldsymbol{P}^{1} \times \boldsymbol{P}^{1} \subseteq \boldsymbol{P}^{3}
$$

Here $\Lambda\left(\subseteq \boldsymbol{P}^{1} \cong b H\right)$ is the limit set of Γ;
an infinite set with $m(\Lambda)=0$.

- \tilde{X} is not Zariski open in Y and with Hausdorff measure $\mathcal{H}^{4}(E)=0$.

Relation between Cases 1 and 2:

Γ_{2} a discrete subgroup in Case 2.
Γ_{1} its (isomorphic) image in $P S L_{2} \boldsymbol{C}$.
X_{i} the corresponding equivariant compactifications for Case i.

Then we have a natural equivariant double covering with branch locus S :

$$
u: X_{2} \rightarrow X_{1}
$$

Their Betti numbers are the same.

Example

(1) $\Gamma \subseteq P S L_{2} \boldsymbol{R} \subseteq P S L_{2} \boldsymbol{C}$

a cocompact torsion-free Fuchsian group, or more generally a quasi-Fuchsian group.
$k=2, g_{1}=g_{2}=: p$
($C_{1} \cong C_{2}$ with $C_{i} \cong H^{2} / \Gamma$ if Γ is Fuchsian)
$b_{1}(X)=2 p, \quad b_{2}(X)=3, \quad b_{3}(X)=4 p$
$\chi(X)=4(2-p)$
$c_{1}^{3}=64(2-p)($ Case 1$), \quad=54(2-p)($ Case 2$)$
$c_{1} c_{2}=24(2-p)$
$\Lambda=\boldsymbol{R} \boldsymbol{P}^{1} \subseteq \boldsymbol{P}^{1} \quad$ (Fuchsian case)
(2) Γ (classical) Schottky group of rank $r \geq 2$
($\Leftrightarrow \Gamma$ is a free group of rank r
without parabolic elements $\neq 1$)
$k=1, \quad g=r$
$b_{1}(X)=r, \quad b_{2}(X)=1, \quad b_{3}(X)=2 r$
$\chi(X)=4(1-r)$
$c_{1}^{3}=64(1-r)($ Case 1),$=54(1-r)($ Case 2)
$c_{1} c_{2}=24(1-r)$
Λ totally disconnected, perfect set.

Non-Zariski dense case

$\Leftrightarrow \Gamma$ elementary $(\stackrel{\text { def. }}{\Leftrightarrow} \# \Lambda \leq 2)$
In this case
$\Gamma \cong \boldsymbol{Z}=\langle\gamma\rangle$, with γ loxodromic.

In Case 1

- X is a principal elliptic bundle over $\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$.
- algebraic dimension $a(X)=2$,
- X is not in \mathcal{C},
- $S=\boldsymbol{P}^{1} \times C$, with C a smooth elliptic curve
- $\pi_{1}(X) \cong \boldsymbol{Z}$

$$
b_{1}(X)=1, b_{2}(X)=1, \quad b_{3}(X)=2
$$

- For "real" γ
X is a twistor space of a Hopf surface.
$\Lambda=\{0, \infty\}$ and \tilde{X} is Zariski open in \boldsymbol{P}^{3}.

Projective and quadric structures
In Case 1: X admits a (holomorphic) projective structure:

In Case 2: X admits a quadric structure: Conversely,

Proposition. Our compactifications are characterized by the property that it admits a G-invariant projective (resp. quadric) structures.

Classifications of such structures:
for compact surfaces (Kobayashi-Ochiai '80, '82);
for projective threefolds (Jahnke-Radloff '04,'05).

The construction:
Consider only Case $1 \quad G=P S L_{2} \boldsymbol{C}$.
The basic diagram:

$$
\begin{aligned}
& G \cup Q^{2}=\boldsymbol{P}^{3} \\
& \downarrow \quad \downarrow \quad \downarrow \pi \\
& K \backslash G \cup K \backslash Q^{2}=K \backslash \boldsymbol{P}^{3} \\
& \text { || || \| } \\
& H \cup b H=\bar{H} .
\end{aligned}
$$

Here

- $K=P S U(2)$.
- $\boldsymbol{P}^{3}=\boldsymbol{P}\left(M_{2}(\boldsymbol{C})\right)$ is the projectivization of the space of 2×2 matrices.
- $Q^{2} \cong \boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ is the quadric defined by the vanishing of the determinant.
- The left-right action of G on G extends naturally to one on \boldsymbol{P}^{3} leaving Q^{2} invariant.
- The left (resp. right) action on Q^{2} is trivial on the first (resp. second) factor and via the natural action on the second (resp. first) factor.

Recall the decomposition: $b H=\boldsymbol{P}^{1}=\Lambda \cup \Omega$ and restrict the above diagram to the Γ-invariant open subset $\tilde{X}:=G \cup\left(\Omega \times \boldsymbol{P}^{1}\right) \subseteq \boldsymbol{P}^{3}$ and take the quotient by Γ.

$$
\begin{array}{ccccc}
G / \Gamma & \cup & \left(\Omega \times \boldsymbol{P}^{1}\right) / \Gamma & = & X \\
\downarrow & \downarrow & & \downarrow \pi \\
K \backslash G / \Gamma & \cup & K \backslash\left(\Omega \times \boldsymbol{P}^{1}\right) / \Gamma & = & K \backslash X \\
\| & \| & & \| \\
H / \Gamma & \cup & \Omega / \Gamma & =: & N
\end{array}
$$

The manifold with boundary Kleinian manifold $N=$ $(H \cup \Omega) / \Gamma$ is compact if and only if Γ satisfies the assumption of Theorem 2.

PROBLEM

(1) \exists an equivariant compactification when Γ is not geometrically finite?
(2) \exists an exotic equivariant compactification when Γ is geometrically finite?

Remark. By blowing up any lines $* \times \boldsymbol{P}^{1} \subseteq S$ we get another equivariant compactification. In this case some connected component of S has more than one irreducible components and some irreducible components of S have open orbits.
$\underline{G \text {-equivariant deformations }}$
Theorem 3. Let $\Gamma \subseteq G$ be a geometrically finite Kleinian group without nontrivial parabolic element and X the associated G-equivariant compactification of G / Γ as in Theorem 2. Then any small G equivariant deformation X^{\prime} of X is obtained from a quasi-conformal deformation Γ^{\prime} of X by the method of Theorem 2.

- Γ^{\prime} is a quasi-conformal deformation of $\Gamma \stackrel{\text { def. }}{\Leftrightarrow} \Gamma^{\prime}=$ $f \Gamma f^{-1}$ for some quasi-conformal homeomorphism f of \boldsymbol{P}^{1}.
- Γ geometrically finite without parabolic element \Leftrightarrow any small "deformation" of Γ is obtained by quasiconformal deformations [Sullivan '85]
- The theory of quasi-conformal deformations is equivalent to the deformation theory of the curve $\Omega / \Gamma=$ $C_{1} \amalg \ldots \amalg C_{k}$. So we have $3 g-3 k$ dimensional natural deformation of X.

Infinitesimal description:

where $s l_{2}=$ Lie algebra of $P S L_{2} \boldsymbol{C}$.

Higher dimensional examples

Theorem 4 For any positive integer m we can find complex Schottky groups of arbitrary rank $r>0$ and Γ in $G=P S L_{2 m} \boldsymbol{C}$ such that $U:=G / \Gamma$ admits a G-equivariant compactification $\iota: U \hookrightarrow X$. The complement $S:=X-U$ is an irreducible hypersuface in X with singularities in codimension 3 (if $m>1$). We have $-K=2 m[S]$.

- A complex Schottky group in general is a subgroup of $P S L_{2 n+2} \boldsymbol{C}$, which is a free group and is a generalization of the classical Schottky groups for the case $n=0$. [Nori ' 84 , Larusson '98, Seade-Verjovsky '01] It has a domain of discontinuity Ω in $\boldsymbol{P}^{2 n+1}$ with compact quotient Ω / Γ, called a Schottky manifold.
- We consider a higher dimensional analogue of the construction for $P S L_{2} \boldsymbol{C}$ above, and observe that the construction is compatible with that of Schottky manifolds if Γ is taken suitably.
- The examples in Theorem 4 are higher dimensional analogue of those in 2) of Example 2 for the classical Schottky groups.

On the proof

- For any positive integer r consider r pairs $\left(L_{i}, L_{i}^{\prime}\right)$ of mutually disjoint linear subspace of dimension n in $\boldsymbol{P}^{2 n+1}$. For each such pair one associates an element γ_{i} of $P S L_{2 n+2} \boldsymbol{C}$ such that these γ_{i} generate a free group Γ (Schottky group) of rank r and that the limit set Λ of this action is the closure of the unions of Γ orbit of the union of all the L_{i} and L_{j}^{\prime}.
- With respect to the natural Zariski-open embedding of $G=P S L_{2 m} \boldsymbol{C}$ into $\boldsymbol{P}^{(2 m)^{2}-1}$ the complement is stratified by a $(2 m-1) G \times G$ orbits M_{k}, the set of $2 m \times 2 m$ complex matrices of rank m upto projectivization. We then take the L_{i} and L_{i}^{\prime} in such a way that they are contained in \bar{M}_{m}, the closure of M_{m}, and left G-invariant. Since Γ acts from the right, G also leaves invariant the limit set Λ. This gives us the desired compactification.

