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Problem

G semisimple, connected,

complex linear algebraic group

Γ discrete subgroup Zariski dense,

torsion-free, and not co-compact

U := G/Γ complex homogeneous space

Find a G-equivariant compactification

ι : U ↪→ X

into a compact complex G-manifold

Properties of X

• S := X − U is a hypersuface

• ∃T ∈ | −K| with supp T = S

•X admits no non-constant meromorphic functions

[Huckleberry-Margulis ’83]

•X is non-Kähler [Berteloot-Oeljeklaus ’88] and 6∈ C
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Example: The twistor space associated to one of the

following conformally-flat manifolds V = (V, g) with

SO(3)-actions give examples of a compactification for

the group G = PSL2C and Γ = π1(X).

(1) V = P 1 × Cg, g ≥ 2.

(2) V = C(r) = r(S1 × S3), r ≥ 1.
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Assume that dim G = 3:

Case 1: G = PSL2C

Case 2: G = SL2C

Recall:

PSL2C ∼= Isom+H

where H is a 3-dim. hyperbolic space form

Γ ⊆ PSL2C is called a Kleinian group

H admits a natural compactification by adding

the sphere at ∞

H̄ = H ∪ bH, bH = S2 = P 1

on which G-action naturally extends.

Given Γ, we have the decomposition:

bH = Ω ∪ Λ

(Ω domain of discontinuity, Λ limit set)

M := H/Γ is a complete hyperbolic manifold and vice

versa.

Consider the case: Γ is cofinite
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(⇔ the volume of G/Γ is finite)

Theorem 1. If, further, Γ is co-finite, there exists

no G-equivariant compactification of U = G/Γ.

The point: G/Γ cannot be compactified in cusp directions.

Speculation: In general G/Γ cannot be compactified

in cusp directions whenever Γ is arithmetic.

Remark. When G is simple,

arithmetic ⇔ cofinite, if dimG > 3.

In general “⇒ ” is true.
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Assumption:

(1) Γ is geometrically finite

(⇔ fundamental polyhedron is finite-sided.)

(2) purely loxodromic, i.e.,

contains no parabolic elements 6= 1

Theorem 2. Under the above assumptions there

exists a natural G-equivariant compactification

ι : U := G/Γ ↪→ X

with the following properties:

Structure of S

S =
∐

1≤i≤k Si with Si
∼= P 1 × Ci,

(Ci a compact Riemann surface of genus gi ≥ 2)

G acts on the P 1-factor naturally, and

trivially on the Ci-factor.
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Anti-canonical bundle and rational curves

• −KX = 2[S], NS/X = −KS,

Nl/X = O(1)⊕O(1) (Case 1)

• −KX = 3[S], NS/X = −1
2KS,

Nl/X = O ⊕O(1) (Case 2)

where l = P 1 × {∗}, ∗ ∈ Ci.

•X is covered by nonsingular rational curves with

normal bundle type as above.

X is a manifold of Class L in the sense of Ma.

Kato in Case 1.
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Topology

Let g =
∑

gi. Then we have:

• π1(X) ∼= Γ

• b1(X) = rank Γ/[Γ, Γ]

• b2(X) = b1(X) + 2k − g − 1

• b3(X) = 2g

• χ(X) = χ(S)

Chern numbers

c3
1 = 2χ(S) (Case 1), = 27

2 χ(S) (Case 2)

c1c2 = 6χ(S)

c3 = χ(S)

χ(OX) = 1
4χ(S)
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Universal covering space X̃

• X̃ is a domain in Y with

Y = P 3
(in Case 1) and

= Q3 (hyperquadric in P 4) (in Case 2)

• Its complement E is of the from:

Λ× P 1 ⊆ Q2 ∼= P 1 × P 1 ⊆ P 3.

Here Λ(⊆ P 1 ∼= bH) is the limit set of Γ;

an infinite set with m(Λ) = 0.

• X̃ is not Zariski open in Y and

with Hausdorff measure H4(E) = 0.
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Relation between Cases 1 and 2:

Γ2 a discrete subgroup in Case 2.

Γ1 its (isomorphic) image in PSL2C.

Xi the corresponding equivariant compactifications

for Case i.

Then we have a natural equivariant double covering

with branch locus S:

u : X2 → X1

Their Betti numbers are the same.
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Example

(1) Γ ⊆ PSL2R ⊆ PSL2C

a cocompact torsion-free Fuchsian group,

or more generally a quasi-Fuchsian group.

k = 2, g1 = g2 =: p

(C1
∼= C2 with Ci

∼= H2/Γ if Γ is Fuchsian)

b1(X) = 2p, b2(X) = 3, b3(X) = 4p

χ(X) = 4(2− p)

c3
1 = 64(2− p) (Case 1), = 54(2− p) (Case 2)

c1c2 = 24(2− p)

Λ = RP 1 ⊆ P 1 (Fuchsian case)
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(2) Γ (classical) Schottky group of rank r ≥ 2

(⇔ Γ is a free group of rank r

without parabolic elements 6= 1)

k = 1, g = r

b1(X) = r, b2(X) = 1, b3(X) = 2r

χ(X) = 4(1− r)

c3
1 = 64(1− r) (Case 1), = 54(1− r) (Case 2)

c1c2 = 24(1− r)

Λ totally disconnected, perfect set.
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Non-Zariski dense case

⇔ Γ elementary (
def.⇔ #Λ ≤ 2)

In this case

Γ ∼= Z = 〈γ〉, with γ loxodromic.

In Case 1

•X is a principal elliptic bundle over P 1 × P 1.

• algebraic dimension a(X) = 2,

•X is not in C,

• S = P 1 × C, with C a smooth elliptic curve

• π1(X) ∼= Z

b1(X) = 1, b2(X) = 1, b3(X) = 2

• For “real” γ

X is a twistor space of a Hopf surface.

Λ = {0,∞} and X̃ is Zariski open in P 3.
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Projective and quadric structures

In Case 1: X admits a (holomorphic) projective struc-

ture:

In Case 2: X admits a quadric structure:

Conversely,

Proposition. Our compactifications are character-

ized by the property that it admits a G-invariant pro-

jective (resp. quadric) structures.

Classifications of such structures:

for compact surfaces (Kobayashi-Ochiai ’80, ’82);

for projective threefolds (Jahnke-Radloff ’04,’05).
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The construction:

Consider only Case 1 G = PSL2C.

The basic diagram:

G ∪ Q2 = P 3

↓ ↓ ↓ π

K\G ∪ K\Q2 = K\P 3

‖ ‖ ‖

H ∪ bH = H̄.

Here

•K = PSU(2).

• P 3 = P (M2(C)) is the projectivization of the

space of 2× 2 matrices.

• Q2 ∼= P 1 × P 1 is the quadric defined by the van-

ishing of the determinant.

• The left-right action of G on G extends naturally

to one on P 3 leaving Q2 invariant.
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• The left (resp. right) action on Q2 is trivial on the

first (resp. second) factor and via the natural action

on the second (resp. first) factor.

Recall the decomposition: bH = P 1 = Λ ∪ Ω and re-

strict the above diagram to the Γ-invariant open subset

X̃ := G ∪ (Ω×P 1) ⊆ P 3 and take the quotient by Γ.

G/Γ ∪ (Ω× P 1)/Γ =: X

↓ ↓ ↓ π

K\G/Γ ∪ K\(Ω× P 1)/Γ = K\X

‖ ‖ ‖

H/Γ ∪ Ω/Γ =: N

The manifold with boundary Kleinian manifold N =

(H ∪ Ω)/Γ is compact if and only if Γ satisfies the as-

sumption of Theorem 2.
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PROBLEM

(1) ∃ an equivariant compactification when Γ is not

geometrically finite ?

(2) ∃ an exotic equivariant compactification when Γ is

geometrically finite ?

Remark. By blowing up any lines ∗ × P 1 ⊆ S we

get another equivariant compactification. In this case

some connected component of S has more than one ir-

reducible components and some irreducible components

of S have open orbits.
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G-equivariant deformations

Theorem 3. Let Γ ⊆ G be a geometrically fi-

nite Kleinian group without nontrivial parabolic ele-

ment and X the associated G-equivariant compactifi-

cation of G/Γ as in Theorem 2. Then any small G-

equivariant deformation X ′ of X is obtained from a

quasi-conformal deformation Γ′ of X by the method of

Theorem 2.

• Γ′ is a quasi-conformal deformation of Γ
def.⇔ Γ′ =

fΓf−1 for some quasi-conformal homeomorphism

f of P 1.

• Γ geometrically finite without parabolic element⇔

any small “deformation” of Γ is obtained by quasi-

conformal deformations [Sullivan ’85]
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• The theory of quasi-conformal deformations is equiv-

alent to the deformation theory of the curve Ω/Γ =

C1

∐
. . .

∐
Ck. So we have 3g − 3k dimensional

natural deformation of X .

Infinitesimal description:

H1(ΘX(−S))G H1(ΘX(−S))Gy‖
y

0 −−→ (H1(OX)⊗ sl2)
G a−−→ H1(ΘX(− log S))G

b−−→ H1(ΘC) −−→ 0y ∥∥∥
H1(ΘS)G

∼−−→ H1(ΘC)

where sl2 = Lie algebra of PSL2C.
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Higher dimensional examples

Theorem 4 For any positive integer m we can find

complex Schottky groups of arbitrary rank r > 0 and

Γ in G = PSL2mC such that U := G/Γ admits a

G-equivariant compactification ι : U ↪→ X . The com-

plement S := X − U is an irreducible hypersuface in

X with singularities in codimension 3 (if m > 1). We

have −K = 2m[S].

• A complex Schottky group in general is a subgroup

of PSL2n+2C, which is a free group and is a gen-

eralization of the classical Schottky groups for the

case n = 0. [Nori ’84, Larusson ’98, Seade-Verjovsky ’01]

It has a domain of discontinuity Ω in P 2n+1 with

compact quotient Ω/Γ, called a Schottky manifold.
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• We consider a higher dimensional analogue of the

construction for PSL2C above, and observe that

the construction is compatible with that of Schot-

tky manifolds if Γ is taken suitably.

• The examples in Theorem 4 are higher dimensional

analogue of those in 2) of Example 2 for the classical

Schottky groups.
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On the proof

• For any positive integer r consider r pairs (Li, L
′
i)

of mutually disjoint linear subspace of dimension n

in P 2n+1. For each such pair one associates an ele-

ment γi of PSL2n+2C such that these γi generate

a free group Γ (Schottky group) of rank r and that

the limit set Λ of this action is the closure of the

unions of Γ orbit of the union of all the Li and L′
j.

• With respect to the natural Zariski-open embed-

ding of G = PSL2mC into P (2m)2−1 the comple-

ment is stratified by a (2m− 1) G×G orbits Mk,

the set of 2m × 2m complex matrices of rank m

upto projectivization. We then take the Li and L′
i

in such a way that they are contained in Mm, the

closure of Mm, and left G-invariant. Since Γ acts

from the right, G also leaves invariant the limit set

Λ. This gives us the desired compactification.


