Compact non-Kähler threefolds associated to real hyperbolic 3-manifolds

Akira FUJIKI

(Osaka Univ.)

Problem

- G semisimple, connected, complex linear algebraic group
- Γ discrete subgroup Zariski dense, torsion-free, and not co-compact
- $U := G/\Gamma$ complex homogeneous space
- Find a G-equivariant compactification

$$\iota: U \hookrightarrow X$$

into a compact complex G-manifold

Properties of X

- S := X U is a hypersuface
- $\exists T \in |-K|$ with supp T = S
- X admits no non-constant meromorphic functions [Huckleberry-Margulis '83]
- X is non-Kähler [Berteloot-Oeljeklaus '88] and $\notin \mathcal{C}$

2

Example: The twistor space associated to one of the following conformally-flat manifolds V = (V, g) with SO(3)-actions give examples of a compactification for the group $G = PSL_2C$ and $\Gamma = \pi_1(X)$.

- (1) $V = \mathbf{P}^1 \times C_g, g \ge 2.$
- $(2) V = C(r) = r(S^1 \times S^3), r \ge 1.$

Assume that dim G = 3:

Case 1: $G = PSL_2C$

Case 2: $G = SL_2C$

Recall:

 $PSL_2C \cong \text{Isom}^+H$

where H is a 3-dim. hyperbolic space form $\Gamma \subseteq PSL_2 \mathbb{C}$ is called a Kleinian group H admits a natural compactification by adding the sphere at ∞

 $\bar{H} = H \cup bH, \quad bH = S^2 = P^1$

on which G-action naturally extends.

Given Γ , we have the decomposition:

 $bH = \Omega \cup \Lambda$

(Ω domain of discontinuity, Λ limit set)

 $M := H/\Gamma$ is a complete hyperbolic manifold and vice versa.

Consider the case: Γ is <u>cofinite</u>

4

(\Leftrightarrow the volume of G/Γ is finite)

Theorem 1. If, further, Γ is co-finite, there exists no *G*-equivariant compactification of $U = G/\Gamma$.

The point: G/Γ cannot be compactified in cusp directions.

Speculation: In general G/Γ cannot be compactified in cusp directions whenever Γ is arithmetic.

Remark. When G is simple, arithmetic \Leftrightarrow cofinite, if dimG > 3. In general " \Rightarrow " is true. Assumption:

(1) Γ is geometrically finite

 $(\Leftrightarrow$ fundamental polyhedron is finite-sided.)

(2) purely loxodromic, i.e.,

contains no parabolic elements $\neq 1$

Theorem 2. Under the above assumptions there exists a natural G-equivariant compactification

 $\iota: U:=G/\Gamma \hookrightarrow X$

with the following properties:

Structure of S $S = \coprod_{1 \le i \le k} S_i$ with $S_i \cong \mathbf{P}^1 \times C_i$, $(C_i \text{ a compact Riemann surface of genus } g_i \ge 2)$ G acts on the \mathbf{P}^1 -factor naturally, and trivially on the C_i -factor. Anti-canonical bundle and rational curves

•
$$-K_X = 2[S], \ N_{S/X} = -K_S,$$

 $N_{l/X} = O(1) \oplus O(1)$ (Case 1)
• $-K_X = 3[S], \ N_{S/X} = -\frac{1}{2}K_S,$
 $N_{l/X} = O \oplus O(1)$ (Case 2)
where $l = \mathbf{P}^1 \times \{*\}, * \in C_i.$

• X is covered by nonsingular rational curves with normal bundle type as above.

X is a manifold of Class L in the sense of Ma. Kato in Case 1.

Topology

8

Let $g = \sum g_i$. Then we have:

- $\pi_1(X) \cong \Gamma$
- $b_1(X) = \operatorname{rank} \, \Gamma / [\Gamma, \Gamma]$
- $b_2(X) = b_1(X) + 2k g 1$
- $b_3(X) = 2g$
- $\bullet \; \chi(X) = \chi(S)$

Chern numbers

$$c_1^3 = 2\chi(S) \text{ (Case 1)}, = \frac{27}{2}\chi(S) \text{ (Case 2)}$$

$$c_1c_2 = 6\chi(S)$$

$$c_3 = \chi(S)$$

$$\chi(O_X) = \frac{1}{4}\chi(S)$$

Universal covering space \tilde{X}

- \tilde{X} is a domain in Y with $Y = \mathbf{P}^3$ (in Case 1) and $= Q^3$ (hyperquadric in \mathbf{P}^4) (in Case 2)
- Its complement E is of the from:

 $\Lambda \times \mathbf{P}^1 \subseteq Q^2 \cong \mathbf{P}^1 \times \mathbf{P}^1 \subseteq \mathbf{P}^3.$

Here $\Lambda \subseteq \mathbf{P}^1 \cong bH$ is the limit set of Γ ; an infinite set with $m(\Lambda) = 0$.

• \tilde{X} is not Zariski open in Y and with Hausdorff measure $\mathcal{H}^4(E) = 0$. <u>Relation between Cases 1 and 2</u>:

 Γ_2 a discrete subgroup in Case 2.

 Γ_1 its (isomorphic) image in PSL_2C .

 X_i the corresponding equivariant compactifications for Case i.

Then we have a natural equivariant double covering with branch locus S:

$$u: X_2 \to X_1$$

Their Betti numbers are the same.

Example

(1) $\Gamma \subseteq PSL_2 \mathbf{R} \subseteq PSL_2 \mathbf{C}$

a cocompact torsion-free Fuchsian group, or more generally a quasi-Fuchsian group. $k = 2, g_1 = g_2 =: p$ $(C_1 \cong C_2 \text{ with } C_i \cong H^2/\Gamma \text{ if } \Gamma \text{ is Fuchsian})$ $b_1(X) = 2p, \quad b_2(X) = 3, \quad b_3(X) = 4p$ $\chi(X) = 4(2-p)$ $c_1^3 = 64(2-p) \text{ (Case 1)}, \quad = 54(2-p) \text{ (Case 2)}$ $c_1c_2 = 24(2-p)$ $\Lambda = \mathbf{RP}^1 \subseteq \mathbf{P}^1 \text{ (Fuchsian case)}$ (2) Γ (classical) Schottky group of rank $r \ge 2$ ($\Leftrightarrow \Gamma$ is a free group of rank r without parabolic elements $\neq 1$) $k = 1, \quad g = r$ $b_1(X) = r, \quad b_2(X) = 1, \quad b_3(X) = 2r$ $\chi(X) = 4(1 - r)$ $c_1^3 = 64(1 - r)$ (Case 1), = 54(1 - r) (Case 2) $c_1c_2 = 24(1 - r)$ Λ totally disconnected, perfect set.

12

Non-Zariski dense case

$$\Leftrightarrow \Gamma \quad \text{elementary} \ (\stackrel{def.}{\Leftrightarrow} \#\Lambda \leq 2)$$

In this case

$$\Gamma \cong \mathbf{Z} = \langle \gamma \rangle$$
, with γ loxodromic.

In Case 1

- X is a principal elliptic bundle over $\mathbf{P}^1 \times \mathbf{P}^1$.
- algebraic dimension a(X) = 2,
- X is not in \mathcal{C} ,
- $S = \mathbf{P}^1 \times C$, with C a smooth elliptic curve
- $\pi_1(X) \cong \mathbf{Z}$

$$b_1(X) = 1, \ b_2(X) = 1, \ b_3(X) = 2$$

 \bullet For "real" γ

X is a twistor space of a Hopf surface.

 $\Lambda = \{0, \infty\}$ and \tilde{X} is Zariski open in \mathbf{P}^3 .

Projective and quadric structures

In Case 1: X admits a (holomorphic) projective structure:

In Case 2: X admits a quadric structure:

Conversely,

Proposition. Our compactifications are characterized by the property that it admits a G-invariant projective (resp. quadric) structures.

Classifications of such structures:

for compact surfaces (Kobayashi-Ochiai '80, '82);

for projective threefolds (Jahnke-Radloff '04,'05).

<u>The construction</u>:

Consider only Case 1 $G = PSL_2C$. The basic diagram:

Here

- $\bullet \ K = PSU(2).$
- $\mathbf{P}^3 = \mathbf{P}(M_2(\mathbf{C}))$ is the projectivization of the space of 2×2 matrices.
- $Q^2 \cong \mathbf{P}^1 \times \mathbf{P}^1$ is the quadric defined by the vanishing of the determinant.
- The left-right action of G on G extends naturally to one on \mathbf{P}^3 leaving Q^2 invariant.

• The left (resp. right) action on Q^2 is trivial on the first (resp. second) factor and via the natural action on the second (resp. first) factor.

Recall the decomposition: $bH = \mathbf{P}^1 = \Lambda \cup \Omega$ and restrict the above diagram to the Γ -invariant open subset $\tilde{X} := G \cup (\Omega \times \mathbf{P}^1) \subseteq \mathbf{P}^3$ and take the quotient by Γ .

G/Γ	$\cup (\Omega \times \boldsymbol{P}^1) / \Gamma$	=:	X
\downarrow	\downarrow		$\downarrow \pi$
$K \backslash G / \Gamma$	$\cup K \backslash (\Omega \times \boldsymbol{P}^1) / \Gamma$	=	$K \backslash X$
H/Γ	\cup Ω/Γ	=: N	

The manifold with boundary Kleinian manifold $N = (H \cup \Omega)/\Gamma$ is compact if and only if Γ satisfies the assumption of Theorem 2.

PROBLEM

- (1) \exists an equivariant compactification when Γ is not geometrically finite ?
- (2) \exists an exotic equivariant compactification when Γ is geometrically finite ?

<u>Remark</u>. By blowing up any lines $* \times P^1 \subseteq S$ we get another equivariant compactification. In this case some connected component of S has more than one irreducible components and some irreducible components of S have open orbits.

G-equivariant deformations

Theorem 3. Let $\Gamma \subseteq G$ be a geometrically finite Kleinian group without nontrivial parabolic element and X the associated G-equivariant compactification of G/Γ as in Theorem 2. Then any small Gequivariant deformation X' of X is obtained from a quasi-conformal deformation Γ' of X by the method of Theorem 2.

- Γ' is a quasi-conformal deformation of $\Gamma \stackrel{def.}{\Leftrightarrow} \Gamma' = f\Gamma f^{-1}$ for some quasi-conformal homeomorphism f of \mathbf{P}^1 .
- Γ geometrically finite without parabolic element ⇔ any small "deformation" of Γ is obtained by quasiconformal deformations [Sullivan '85]

• The theory of quasi-conformal deformations is equivalent to the deformation theory of the curve $\Omega/\Gamma = C_1 \coprod \ldots \coprod C_k$. So we have 3g - 3k dimensional natural deformation of X.

Infinitesimal description:

where sl_2 = Lie algebra of PSL_2C .

Higher dimensional examples

Theorem 4 For any positive integer m we can find complex Schottky groups of arbitrary rank r > 0 and Γ in $G = PSL_{2m}C$ such that $U := G/\Gamma$ admits a G-equivariant compactification $\iota : U \hookrightarrow X$. The complement S := X - U is an irreducible hypersuface in X with singularities in codimension 3 (if m > 1). We have -K = 2m[S].

• A complex Schottky group in general is a subgroup of $PSL_{2n+2}C$, which is a free group and is a generalization of the classical Schottky groups for the case n = 0. [Nori '84, Larusson '98, Seade-Verjovsky '01]

It has a domain of discontinuity Ω in \mathbf{P}^{2n+1} with compact quotient Ω/Γ , called a Schottky manifold.

20

- We consider a higher dimensional analogue of the construction for PSL_2C above, and observe that the construction is compatible with that of Schot-tky manifolds if Γ is taken suitably.
- The examples in Theorem 4 are higher dimensional analogue of those in 2) of Example 2 for the classical Schottky groups.

On the proof

- For any positive integer r consider r pairs (L_i, L'_i) of mutually disjoint linear subspace of dimension n in P²ⁿ⁺¹. For each such pair one associates an element γ_i of PSL_{2n+2}C such that these γ_i generate a free group Γ (Schottky group) of rank r and that the limit set Λ of this action is the closure of the unions of Γ orbit of the union of all the L_i and L'_j.
- With respect to the natural Zariski-open embedding of G = PSL_{2m}C into P^{(2m)²-1} the complement is stratified by a (2m 1) G × G orbits M_k, the set of 2m × 2m complex matrices of rank m upto projectivization. We then take the L_i and L'_i in such a way that they are contained in M_m, the closure of M_m, and left G-invariant. Since Γ acts from the right, G also leaves invariant the limit set Λ. This gives us the desired compactification.