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Problem
G semisimple, connected,
complex linear algebraic group
[' discrete subgroup Zariski dense,
torsion-free, and not co-compact
U = G/T" complex homogeneous space

Find a G-equivariant compactification
LU — X

into a compact complex GG-manifold

Properties of X

e S5 := X — U is a hypersuface

o 11 c | — K| withsupp T'= S

e X admits no non-constant meromorphic functions
[Huckleberry-Margulis '83]

e X is non-Kahler [Berteloot-Oeljeklaus '88] and & C
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Example: The twistor space associated to one of the

following conformally-flat manifolds V' = (V, g) with
SO(3)-actions give examples of a compactification for
the group G = PSLyC and I' = m1(X).

V=P xCpg>2

2)V =C(r)=r(S'x S?%),r > 1.
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Assume that dim G = 3:
Case 1: G = PSL,C
Case 2: G = SL,C
Recall:
PSL,C = Isom™ H
where H is a 3-dim. hyperbolic space form
[' C PSLyC is called a Kleinian group
H admits a natural compactification by adding

the sphere at oo
H=HUbH, bH=5°= P!

on which G-action naturally extends.
Given I', we have the decomposition:
bH =QUA
(€2 domain of discontinuity, A limit set)
M = H/T is a complete hyperbolic manifold and vice
versa.

Consider the case: ' is cofinite



(< the volume of G/T" is finite)

Theorem 1. If, further, I' is co-finite, there exists

no G-equivariant compactification of U = G/T".
The point: G/I" cannot be compactified in cusp directions.

Speculation: In general G/I" cannot be compactified

in cusp directions whenever I' is arithmetic.

Remark. When G is simple,
arithmetic < cofinite, if dimG > 3.

In general “= " is true.
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Assumption:

(1) I" is geometrically finite

(< fundamental polyhedron is finite-sided.)
(2) purely loxodromic, i.e.,

contains no parabolic elements # 1

Theorem 2. Under the above assumptions there
exists a natural G-equivariant compactification

LU =G/l —= X

with the following properties:

Structure of S
S = ngigk Sz with Sz' = P1 X Ci,

(C;  a compact Riemann surface of genus g; > 2)
G acts on the P'-factor naturally, and
trivially on the Cj-factor.



Anti-canonical bundle and rational curves
o —Kx=2|5], Ng/jx = — K,
Nyx =0(1)®O(1) (Casel)
o —Kx =3|S], Ng/x = —%KS,
Nyx =0@0(1) (Casc?2)
where | = P! x {x},x € C,.

e X is covered by nonsingular rational curves with

normal bundle type as above.

X is a manifold of Class L in the sense of Ma.

Kato in Case 1.



Topology

Let g = Z g;. Then we have:

o m(X)=

obl(X): rank I'/[[", T']

by X)=01(X)+2k—g—1
® b3(X) =29

* X(X) = x(5)

Chern numbers

i = 2x(S) (Case 1), =2 x(S) (Case 2)
c1co = 6x(S)

c3 = x(5)

X(Ox) = 1x(5)



Universal covering space X

e X is a domain in YV with
Y = P? (in Case 1) and
—= (7 (hyperquadric in P*) (in Case 2)
e Its complement E is of the from:
AxPCc?= Pl x PlC P’
Here A(C P! = bH) is the limit set of I';
an infinite set with m(A) = 0.
e X is not Zariski open in Y and

with Hausdorff measure H*(E) = 0.
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Relation between Cases 1 and 2:

[’y a discrete subgroup in Case 2.

[y its (isomorphic) image in PSLyC'.

X; the corresponding equivariant compactifications
for Case 1.

Then we have a natural equivariant double covering

with branch locus S"
u . XQ — X1

Their Betti numbers are the same.



Example

(1)T C PSLyR C PSL,C

a cocompact torsion-free Fuchsian group,

or more generally a quasi-Fuchsian group.
k=2 g1=g2=1p

(Cy = Cy with C; = H?/T if T is Fuchsian)

b(X) = 2p, bo(X) =3, by(X)=4p
X(X) = 4(2 - p)

¢ = 64(2 — p) (Case 1), = 54(2 — p) (Case 2)
cicg = 24(2 — p)

A= RP' C P' (Fuchsian case)

11



12

(2) T" (classical) Schottky group of rank r > 2

(< T is a free group of rank r

without parabolic elements # 1)

k=1 g=r
b1<X>:’I“, bQ(X)Zl, bg(X)IQT
X(X) =4(1—r)

c; = 64(1 — r) (Case 1), = 54(1 —r) (Case 2)
C1Co — 24(1 — 7”)
A totally disconnected, pertect set.
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Non-Zariski dense case

T clementary (€ #A < 2)
In this case
['= Z = (v), with v loxodromic.

In Case 1
e X is a principal elliptic bundle over P! x P

e algebraic dimension a(X) = 2,
e X isnot in C,
e S =P x C, with C a smooth elliptic curve
e (X)=Z
bi(X)=1b6(X)=1, b3(X)=2
e For “real” v

X is a twistor space of a Hopt surface.

A ={0,00} and X is Zariski open in P?.
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Projective and quadric structures

In Case 1: X admits a (holomorphic) projective struc-

ture:

In Case 2: X admits a quadric structure:

Conversely,

Proposition. Our compactifications are character-
ized by the property that it admits a G-invariant pro-

jective (resp. quadric) structures.

Classifications of such structures:

for compact surfaces (Kobayashi-Ochiai "80, '82);

for projective threefolds (Jahnke-Radloff 04,705).
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The construction:

Consider only Case 1 G = PSLyC.

The basic diagram:

G U @* = P’
l | lm
K\G U K\Q? = K\P’®

| | |
H U bH = H.

Here

o K = PSU(2).

e P’ = P(M(C)) is the projectivization of the
space of 2 X 2 matrices.

o )% = P! x P! is the quadric defined by the van-
ishing of the determinant.

e The left-right action of G on GG extends naturally

to one on P? leaving Q? invariant.
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e The left (resp. right) action on (* is trivial on the
first (resp. second) factor and via the natural action
on the second (resp. first) factor.

Recall the decomposition: bH = P! = AU Q and re-

strict the above diagram to the I'-invariant open subset

X = GU(Q x P C P? and take the quotient by I'.

G/ U QxpPhH/r = X
| l Lm
K\G/T U K\(Qx PH/I' = K\X
f f |
H/T' U Q/T =: N

The manifold with boundary Kleinian manifold N =
(H U$2)/T is compact if and only if I" satisfies the as-

sumption of Theorem 2.
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PROBLEM

(1) 3 an equivariant compactification when I' is not
geometrically finite 7
(2) 9 an exotic equivariant compactification when I is

geometrically finite 7

Remark. By blowing up any lines * x P! C S we
get, another equivariant compactification. In this case
some connected component of S has more than one ir-
reducible components and some irreducible components

of S have open orbits.
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G-equivariant deformations

Theorem 3. Let ' C G be a geometrically fi-
nite Kleinian group without nontrivial parabolic ele-
ment and X the associated G-equivariant compactifi-
cation of G/T" as in Theorem 2. Then any small G-
equivariant deformation X’ of X is obtained from a

quasi-conformal deformation I'V of X by the method of

Theorem 2.

e [ is a quasi-conformal deformation of I’ PG
fT' =1 for some quasi-conformal homeomorphism
f of P!,

e [' geometrically finite without parabolic element <
any small “deformation” of I' is obtained by quasi-

conformal deformations [Sullivan '85]
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e The theory of quasi-conformal deformations is equiv-

alent to the deformation theory of the curve Q/I" =
Ci 1. 11 Ck. So we have 3g — 3k dimensional

natural deformation of X.

Infinitesimal description:

H'(Ox(=9)" — H'(Ox(-9))"
| |
0 — (HY(Ox) ® sly)¢ —% HYOx(—logS)¢ — HYO¢) — 0
Hl(@S)G —> Hl @C

where sly = Lie algebra of PSLyC'.
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Higher dimensional examples

Theorem 4 For any positive integer m we can find
complex Schottky groups of arbitrary rank » > 0 and
["in G = PSLy,C such that U := G/I' admits a
G-equivariant compactification ¢ : U — X. The com-
plement S := X — U is an irreducible hypersuface in

X with singularities in codimension 3 (if m > 1). We

have — K = 2m/9].

e A complex Schottky group in general is a subgroup
of PSLsy, sC, which is a free group and is a gen-
eralization of the classical Schottky groups for the
case . = (. [Nori '84, Larusson ‘98, Seade-Verjovsky "01]

[t has a domain of discontinuity € in P**** with

compact quotient 2/T", called a Schottky manifold.
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e We consider a higher dimensional analogue of the
construction for PSLoC above, and observe that
the construction is compatible with that of Schot-
tky manifolds if I' is taken suitably:.

e The examples in Theorem 4 are higher dimensional
analogue of those in 2) of Example 2 for the classical

Schottky groups.
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On the proof

e For any positive integer r consider r pairs (L;, L)
of mutually disjoint linear subspace of dimension n
in P*"*1 For each such pair one associates an ele-
ment ; of PSLo,,oC such that these ; generate
a free group I' (Schottky group) of rank r and that
the limit set A of this action is the closure of the
unions of I' orbit of the union of all the L; and L;.

e With respect to the natural Zariski-open embed-
ding of G = PSL,,,C into P L e comple-
ment is stratified by a (2m — 1) G x G orbits Mj,
the set of 2m X 2m complex matrices of rank m
upto projectivization. We then take the L; and L/
in such a way that they are contained in M,,, the
closure of M,,, and left G-invariant. Since ' acts
from the right, G also leaves invariant the limit set

A. This gives us the desired compactification.



