
Extinction time and the total mass of the continuous
state branching processes with competition

Vi Le Etienne Pardoux

July 7, 2018

VNU University of Science, 334 Nguyen Trai Str., Hanoi, VietNam. Email: levi121286@vnu.edu.vn
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Abstract

Consider a general continuous state branching process (CSBP) with additional
interaction, which destroys the branching property. We give precise conditions on
the interaction term, in order to decide whether the extinction time of the process
remains or not bounded as the initial value tends to infinity, and similarly for the
total mass of the process.

1 Introduction

Consider a continuous state branching process (CSBP), which takes the form

Zx
t = x+ σ

∫ t

0

∫ Zxs

0

W (ds, du) +

∫ t

0

∫ ∞
0

∫ Zxs−

0

zÑ(ds, dz, du),

where W is space–time white noise, and Ñ a compensated Poisson random measure, which
models the evolution of a population. One way to introduce interactions between the
individuals (and then destroy the branching property) in the reproduction mechanism is
to add a nonlinear drift, leading to the SDE

Zx
t = x+

∫ t

0

f(Zx
s )ds+ σ

∫ t

0

∫ Zxs

0

W (ds, du) +

∫ t

0

∫ ∞
0

∫ Zxs−

0

zÑ(ds, dz, du). (1.1)
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Interactions can increase the number of births, or in contrary increase the number of
deaths, in particular in the case of competition for rare resources. The popular logistic
competition has been considered in Le, Pardoux, Wakolbinger [10], while a much more
general type of interaction appears in Ba, Pardoux [2].

We will assume that for large population size the interaction is of the type of a compe-
tition, which limits the size of the population. One may then wonder in which cases the
interaction is strong enough so that the extinction time (or equivalently the height of the
forest of genealogical trees) remains bounded, as the number of ancestors tends to infinity,
or even such that the total mass of the forest of genealogical trees remains bounded, as the
population size tends to infinity.

This question has already been addressed, in the case of processes with continuous
trajectories, in the case of a polynomial interaction in Ba, Pardoux [1], and in more general
cases of competition in Le, Pardoux [9]. Here we want to generalize those results to the case
of processes with discontinuous paths. More precisely, suppose that σ ≥ 0 is a constant,
and (r ∧ r2)m(dr) is a finite measure on (0,∞). Let ψ be a function given by

ψ(λ) =
1

2
σ2λ2 +

∫ ∞
0

(e−λr − 1 + λr)m(dr), λ ≥ 0. (1.2)

Let W (ds, du) be a white noise on (0,∞)2 based on the Lebesgue measure dsdu, let
N(ds, dz, du) be Poisson random measure on (0,∞)3 with intensity dsm(dz)du, and
Ñ(ds, dz, du) = N(ds, dz, du) − dsm(dz)du . We will consider the CSBP with competi-
tion solution of the SDE (1.1), where the branching mechanism is specified by ψ, and the
function f satisfies the following hypothesis.

Hypothesis (H1): f ∈ C(R+,R), f(0) = 0. There exists θ ≥ 0 such that

f(x+ y)− f(x) ≤ θy ∀x, y ≥ 0.

The hypothesis (H1) implies that the function θy − f(y) is increasing. In particular, we
have

f(y) ≤ θy ∀y ≥ 0.

The equation (1.1) has a unique strong solution (see Dawson, Li [4]). This SDE couples
the evolution of the various {Zx

t , t ≥ 0} jointly for all values of x > 0.
For x > 0, define T x the extinction time of the process Zx by

T x = inf{t > 0, Zx
t = 0},

and Sx the total mass of Zx by

Sx =

∫ Tx

0

Zx
t dt.

By the same argument as in Lemma 2.3 in [11], see also Theorem 3.6 in [4], we can and do
choose a version of the random field {Zx

t , t ≥ 0, x > 0} such that x 7→ Zx
t is a.s. increasing
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for all t ≥ 0. Consequently x 7→ T x and x 7→ Sx are a.s. increasing. The goal of this paper
is to study the limits of T x and Sx as x→∞.

This paper is organized as follows. Section 2 studies the extinction time, while section
3 studies the total mass of the CSBP with competition. The main results are Theorem 1,
2, 3 and 4. Section 4 describes some examples to illustrate our results.

2 Extinction time of the CSBP with competition

We now study the extinction time of the process Zx. In the logistic case where f(y) =
ay − by2, b > 0, Lambert [7] has proved the process Zx either remains positive for ever,
or is absorbed at 0 in finite time, depending solely on the branching mechanism, i.e.
according to a criterion that does not involve a and b: extinction occurs with probability
1 if

∫∞
dλ/ψ(λ) < ∞, with probability 0 otherwise. In the case of Feller’s branching

diffusion with competition where ψ(λ) = 2λ2 (the condition
∫∞

dλ/ψ(λ) < ∞ is satisfied
in this case), it is showed in Le and Pardoux [9] that

sup
x>0

T x <∞⇔
∫ ∞ 1

| f(y) |
dy <∞.

Hence we may guess that in the general case if∫ ∞ 1

ψ(λ)
dλ <∞ and

∫ ∞ 1

| f(y) |
dy <∞, (2.1)

we have supx>0 T
x <∞ a.s.. In fact we will prove that condition (2.1) implies that

E[supx>0 T
x] <∞.

We first need the following lemma, which is Lemma 2.3 in [9].

Lemma 2.1. Let f be a function satisfying (H1), a ∈ R be a constant. If there exists
a0 > 0 such that f(y) 6= 0, f(y) + ay 6= 0 for all y ≥ a0, then we have that∫ ∞

a0

1

| f(y) |
dy <∞⇔

∫ ∞
a0

1

| ay + f(y) |
dy <∞,

and when those equivalent conditions are satisfied, we have

lim
y→∞

f(y)

y
= −∞.

We now establish the main results of this section

Theorem 1. Suppose that
∫∞

dλ/ψ(λ) =∞ and that f is a function satisfying (H1) and

lim infy→0+
f(y)
y
> −∞. Then for all x > 0, T x =∞ a.s.
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Proof. Since f is continuous and satisfies both (H1) and lim infy→0+
f(y)
y

> −∞, there
exists a positive constant δ such that for all x > 0 small enough,

−δy ≤ f(y) ≤ θy ∀y ∈ [0, 2x].

Define τ1 := inf{t > 0 : Zx
t ≥ 2x}, then f(Zx

t ) ≥ −δZx
t for all t ∈ [0, τ1). By the

comparison theorem (see Dawson, Li [4]) we have Zx
t ≥ Z1,x

t a.s. for all t ∈ [0, τ1), where
Z1,x
t solves

Z1,x
t = x− δ

∫ t

0

Z1,x
s ds+ σ

∫ t

0

∫ Z1,x
s

0

W (ds, du) +

∫ t

0

∫ ∞
0

∫ Z1,x
s−

0

zÑ(ds, dz, du).

The process Z1,x
t is a CSBP characterised by the branching mechanism ψ1(λ) = ψ(λ) +

δλ. By Lemma 2.1 we have
∫∞

dλ/ψ1(λ) = ∞, so that Z1,x
t remains positive a.s. (see

Kyprianou [6], page 279). Hence Zx
t remains positive a.s. on [0, τ1) and Px(τ1 <∞) = 1.

Since the process Zx
t has only positive jumps, on the event {T x <∞}, Zx

t hits again x
after time τ1. But from the above argument and the strong Markov property, Zx

t cannot hit
0 before 2x. Finally we conclude that P(T x <∞) = 0. This being true for all sufficiently
small x > 0, it is true by comparison for all x > 0.

We have moreover

Theorem 2. Assume that f is a function satisfying (H1) and that there exists a0 > 0 such
that f(y) 6= 0 for all y ≥ a0. If the condition (2.1) is satisfied, we have

sup
x>0

E(T x) <∞.

Proof. From Lemma 2.1 we get

lim
y→∞

f(y)

y
= −∞,

then there is a constant M > a0 such that f(y) < min{−θ,−1}y for all y ≥M . We have

f1(y) :=
1

2
(θy − f(y)) ≤ −f(y)

f(y) ≤ −f1(y) ∀y ≥M.

Note that we can assume that f is decreasing on [M,∞] because without it, we can use
the comparison theorem and prove the Theorem with a function h instead of f , where

h ∈ C(R+,R), h(0) = 0, h(y) = −f1(y) ∀y ≥M and h(y) ≥ f(y) ∀y ≥ 0.

Define for x > M ,
T xM = inf{t > 0, Zx

t ≤M}.
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For x > M , we can rewrite the equation (1.1) as

Zx
t = x+

∫ t

0

f(Zx
s−)ds+ σ

∫ t

0

∫ Zxs−

0

W (ds, du) +

∫ t

0

∫ ∞
0

∫ Zxs−

0

zÑ(ds, dz, du),

Then we have

dZx
t = f(Zx

t−)dt+ σ

∫ Zxt−

0

W (dt, du) +

∫ ∞
0

∫ Zxt−

0

zÑ(dt, dz, du),

dZx
t

−f(Zx
t−)

= −dt+ σ

∫ Zxt−

0

1

−f(Zx
t−)

W (dt, du) +

∫ ∞
0

∫ Zxt−

0

z

−f(Zx
t−)

Ñ(dt, dz, du).

Hence∫ TxM∧t

0

dZx
s

−f(Zx
s−)

= −(T xM ∧ t) + σ

∫ TxM∧t

0

∫ Zxs−

0

1

−f(Zx
s−)

W (ds, du)

+

∫ TxM∧t

0

∫ ∞
0

∫ Zxs−

0

z

−f(Zx
s−)

Ñ(ds, dz, du). (2.2)

It is easy to show that

E
[

sup
0≤r≤t

|
∫ TxM∧r

0

∫ ∞
1

∫ Zxs−

0

z

−f(Zx
s−)

Ñ(ds, dz, du)|
]
≤ 2E

[ ∫ TxM∧t

0

Zx
s−

−f(Zx
s−)

ds

∫ ∞
1

zm(dz)
]
.

Observe also that

E
[
|
∫ TxM∧t

0

∫ Zxs−

0

1

−f(Zx
s−)

W (ds, du)|2
]

= E
[ ∫ TxM∧t

0

Zx
s−

f(Zx
s−)2

ds
]

E
[
|
∫ TxM∧t

0

∫ 1

0

∫ Zxs−

0

z

−f(Zx
s−)

Ñ(ds, dz, du)|2
]

= E
[ ∫ TxM∧t

0

Zx
s−

f(Zx
s−)2

ds

∫ 1

0

z2m(dz)
]
.

The above expectations are finite, then

t 7→
∫ TxM∧t

0

∫ Zxs−

0

1

−f(Zx
s−)

W (ds, du) +

∫ TxM∧t

0

∫ ∞
0

∫ Zxs−

0

z

−f(Zx
s−)

Ñ(ds, dz, du)

is a martingale. From (2.2) we now deduce

E
[ ∫ TxM∧t

0

dZx
s

−f(Zx
s−)

]
= −E(T xM ∧ t).

Now, let

G(y) :=

∫ y

x

1

−f(u)
du.
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Then G ∈ C1[M,∞) and G
′
(y) = 1

−f(y)
is decreasing on [M,∞). By Itô’s formula we have

G(Zx
TxM∧t

) = G(Zx
0 ) +

∫ TxM∧t

0

G
′
(Zx

s−)dZx
s +

∑
0≤s≤TxM∧t

[G(Zx
s )−G(Zx

s−)−G′(Zx
s−)4Zx

s ]

+
σ2

2

∫ TxM∧t

0

G
′′
(Zx

s )Zx
s ds.

By Lemma 2.2 below we obtain∫ Zx
Tx
M
∧t

x

du

−f(u)
≤
∫ TxM∧t

0

dZx
s

−f(Zx
s−)

a.s.

Hence

E
[ ∫ Zx

Tx
M
∧t

x

du

−f(u)

]
≤ −E(T xM ∧ t)

E(T xM ∧ t) ≤ E
[ ∫ x

Zx
Tx
M
∧t

du

−f(u)

]
E(T xM ∧ t) ≤

∫ ∞
M

du

−f(u)
.

Taking the limit as x→∞ and t→∞ we have

sup
x>M

E(T xM) <∞,

or E(TM) <∞, where TM := supx>M T xM .
We have just proved that the process Z comes down from infinity. For proving that

supx>0 E(T x) < ∞, it remains to show that the time taken by Z to descend from M to 0
is integrable,which we now establish. By the comparison theorem we have ZM

t ≤ Z2,M
t a.s.

for all t ≥ 0, where Z2,M
t solves

Z2,M
t = M + θ

∫ t

0

Z2,M
s ds+ σ

∫ t

0

∫ Z2,M
s

0

W (ds, du) +

∫ t

0

∫ ∞
0

∫ Z2,M
s−

0

zÑ(ds, dz, du).

The process Z2,M
t is a CSBP characterised by the branching mechanism ψ2(λ) = ψ(λ)−θλ.

By Lemma 2.1 we obtain
∫∞

dλ/ψ2(λ) < ∞, so that Z2,M is absorbed at 0 in finite time
with positive probability (see Kyprianou [6], page 279). Then there is a constant T > 0
such that Z2,M is absorbed at 0 before time T with positive probability. Let p denote
the probability that starting from M at time t = 0, Z hits zero before time T . Clearly
p > 0. Let ζ be a geometric random variable with success probability p, which is defined
as follows. Let Z start from M at time 0. If Z hits zero before time T , then ζ = 1. If not,
we look the position ZT of Z at time T .
If ZT > M , we wait until Z goes back to M . The time needed is stochastically dominated
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by the random variable TM , which is the time needed for Z to descend to M , when starting
from∞. If however ZT ≤M , we start afresh from there, since the probability to reach zero
in less than T is greater than or equal to p, for all starting points in the interval (0,M ].
So either at time T , or at time less than T + TM , we start again from a level which is
less than or equal to M . If zero is reached during the next time interval of length T , then
ζ = 2... Repeating this procedure, we see that supx>0 T

x is stochastically dominated by

ζT +

ζ∑
i=1

ηi,

where the random variables ηi are i.i.d, with the same law as TM , globally independent of
ζ. Therefore

sup
x>0

E(T x) ≤ E(ζT +

ζ∑
i=1

ηi)

=
T

p
+

1

p
E(TM)

<∞.

The result follows.

Lemma 2.2. Suppose that g ∈ C1[M,∞) and g
′

is decreasing on [M,∞). We have

g(a)− g(b)− g′(b)(a− b) ≤ 0 ∀a, b ≥M. (2.3)

Proof. If a > b then there exists c ∈ (b, a) such that g(a)− g(b) = (a− b)g′(c). Hence

g(a)− g(b)− g′(b)(a− b) = (a− b)(g′(c)− g′(b)) ≤ 0.

Similarly, (2.3) is also true in the case a < b. The result follows.

3 Total mass of the CSBP with competition

In this section, we shall assume that
Hypothesis (H2): f is a function satisfying (H1) such that

lim
u→0+

f(u)

u
= α,

for some −∞ < α ≤ θ, and the function f1(u) := f(u)
u
− α satisfies (H1).
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3.1 The Lamperti transform

We will study the total mass Sx of the process Zx. In this subsection we remind the
reader of a celebrated result of Lamperti [8] which relates CSBP and Lévy processes with
no negative jumps. This result will allow us to give a representation of a CSBP with
competition in terms of spectrally positive Lévy processes with drift.

Let X be a real-valued Lévy process with no negative jumps starting from 0. Let T0

be the first hitting time of zero by x+X. Then define

ρt =

∫ T0∧t

0

ds

x+Xs

t > 0,

and (Ct, t > 0) its right-inverse. Lamperti’s result then states that if

Yt = x+X(Ct) t > 0,

then Y is a CSBP with initial value Y0 = x. Moreover,

Ct =

∫ t

0

Ysds t > 0.

Conversely, suppose that Y is a CSBP such that Y0 = x > 0. If C is defined as above,
and ρ is the right-inverse of C, then Y ◦ ρ is a Lévy process with no negative jumps which
starts at x and is killed when it hits 0.

We now time-change the CSBP with competition Zx in Lamperti’s fashion to obtain a
Lévy process with drift. Consider the increasing process

Cx
t =

∫ t

0

Zx
s ds, t ≥ 0,

and its right-inverse ρxt . We define Ux = Zx ◦ ρx. We have

Proposition 3.1. Assume that the function f satisfies (H2). Then Ux is the unique strong
solution of the following SDE

dUx
t =

f(Ux
t )

Ux
t

dt+ dXt, Ux
0 = x. (3.1)

where X is a Lévy process with Laplace exponent ψ.

Proof. The process Zx is a càdlàg homogeneous strong Markov processes (see e.g. [4]).
By standard theory of Markov processes (see e.g. [5]), Ux is then a càdlàg homogeneous
strong Markov process. We denote A (resp. Q,L) the infinitesimal generator of X (resp.
Ux, Zx). Using Itô’s formula one can see that Zx solves the martingale problem associated
with the infinitesimal generator L given, with Dzg(y) := g(y + z)− g(y)− g′(y)z, by

Lg(y) =
1

2
σ2yg

′′
(y) + f(y)g

′
(y) + y

∫ ∞
0

Dzg(y)m(dz)

= yAg(y) + f(y)g
′
(y).
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Furthermore, we deduce Qg(y) = Lg(y)
y

from the fact that for any time t > 0, with r = ρxs ,

E(g(Ux
t )) = E(g(Zx

ρxt
))

= x+ E(

∫ ρxt

0

Lg(Zx
r )dr)

= x+ E(

∫ t

0

Lg(Ux
s )

Ux
s

ds)

= x+ E(

∫ t

0

Qg(Ux
s )ds).

Hence

Qg(y) = Ag(y) +
f(y)

y
g
′
(y).

This shows that Ux is a solution of the SDE (3.1). It remains to prove uniqueness of the
solution of (3.1). Suppose that U1,x

t and U2,x
t are two solutions of (3.1), we have for all

t ≥ 0,

U1,x
t − U

2,x
t =

∫ t

0

(
f1(U1,x

s )− f1(U2,x
s )
)
ds.

Then by Ito’s formula and Hypothesis (H1) we get

(U1,x
t − U

2,x
t )2 =

∫ t

0

2
(
U1,x
s − U2,x

s

)(
f1(U1,x

s )− f1(U2,x
s )
)
ds

≤
∫ t

0

2θ(U1,x
s − U2,x

s )2ds.

The result follows from Gronwall’s inequality.

Let τx := inf{t > 0, Ux
t = 0}. It is easy to see that ρx(τx) = T x, hence Sx = τx. We

next study the limits of Sx as x→∞. We want to show that under a specific assumption
Sx → ∞ a.s. as x → ∞, and under the complementary assumption supx>0 S

x < ∞ a.s.
Because the mapping x 7→ Sx is a.s. increasing, the result will follow for the same result
proved for any collection of r.v.’s {Sx, x > 0} which has the same monotonicity property,
and has the same marginal laws as the original one. More precisely, we will consider the
Ux’s solutions of (3.1) with the same X for all x > 0.

3.2 About the Lévy process X

In this subsection we establish some preliminary results on Lévy processes which will be
used later. Recall that X is a spectrally positive Lévy process with Laplace exponent ψ
given by (1.2), so that for all λ ≥ 0,

E(e−λXt) = etψ(λ) (3.2)
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Because ψ is continuous and has a continuous derivative, ψ(0) = 0 and ψ is increasing on
R+ so that ψ has a unique inverse φ which is defined and continuous on R+ and satisfies
φ(0) = 0. From (3.2) we get for any t ≥ 0,

E(Xt) = −tψ′(0) = 0.

Let now η be a stopping time which is a.s. positive and integrable. It is not hard to deduce
from Itô’s formula that

e−λXt = 1 + ψ(λ)

∫ t

0

e−λXsds+Mλ
t ,

for for each λ ≥ 0, Mλ
t is a martingale. We then deduce that

Ee−λXt∧η = 1 + ψ(λ)E
∫ t∧η

0

e−λXsds.

Since η is integrable, we can both let t → ∞ in the last identity, and differentiate with
respect to λ, yielding

E(−Xηe
−λXη) = ψ′(λ)E

∫ t∧η

0

e−λXsds− ψ(λ)E
∫ t∧η

0

Xse
−λXsds.

We now choose λ = 0 and deduce
E(Xη) = 0. (3.3)

Furthermore we have (see Theorem 7.2 in [6])

lim sup
t→∞

Xt = − lim inf
t→∞

Xt =∞ a.s.

So that if we define for y > 0,

τ+
y = inf{t > 0, Xt > y}, τ−y = inf{t > 0, Xt < −y},

then τ+
y and τ−y are a.s. positive and finite. We have

Proposition 3.2. τ+
y → ∞ a.s. and τ−y → ∞ a.s. as y → ∞, and for any y > 0, β > 0

we have

E
( 1

(τ−y )β
)
<∞.

Proof. Define for t > 0,

X t = sup
0≤s≤t

Xs and X t = inf
0≤s≤t

Xs.

Then for all β ≥ 0,

E
(
eβXeq

)
=

φ(q)

φ(q) + β
and E

(
e−βXeq

)
=

q

φ(q)

φ(q)− β
q − ψ(β)

, (3.4)
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where eq is an independent and exponentially distributed random variable with parameter
q > 0 (see Kyprianou [6], page 213). Letting β tend to zero in the first expression of (3.4)
we see that

P(Xeq > −∞) = 1.

We have

P(sup
y>0

τ−y < eq) = lim
y→∞

P(τ−y < eq)

= lim
y→∞

P(Xeq < −y)

= 0.

Therefore for all t > 0, q > 0,

P(sup
y>0

τ−y ≤ t) ≤ P(sup
y>0

τ−y < eq) + P(eq ≤ t) = 1− e−qt.

Then taking q to zero we get P(supy>0 τ
−
y ≤ t) = 0 for all t > 0, so that

P(sup
y>0

τ−y =∞) = 1.

Hence τ−y →∞ a.s. as y →∞. Similarly, from the second expression of (3.4) we can prove
τ+
y →∞ a.s. as y →∞.

For proving the last result of the Proposition, it is enough to show that

E
(
(τ−y )−n

)
<∞ for all n ∈ N∗.

Note that (see [6], page 212) the process {τ−y , y ≥ 0} is a subordinator with Laplace
exponent φ, so that

E
(
e−sτ

−
y
)

= e−φ(s)y for all s > 0. (3.5)

It is easy to see that for all s > 0, n ∈ N∗

E
(
(τ−y )−ne−sτ

−
y
)

= Fn(s),

where

F1(s) =

∫ ∞
s

e−φ(u)ydu and Fn+1(s) =

∫ ∞
s

Fn(u)du for all n ≥ 1.

By Lemma 3.3 below we have that for any n ≥ 1, Fn(s) is finite. Hence for all n ≥ 1, s ≥ 0,

E
(
(τ−y )−n

)
≤ E

(
(τ−y )−n1{τ−y ≤1}

)
+ 1

≤ esE
(
(τ−y )−ne−sτ

−
y 1{τ−y ≤1}

)
+ 1

≤ esFn(s) + 1

<∞.

The result follows.
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Lemma 3.3. For n ≥ 1, there exist positive constants mn
0 ,m

n
1 , ..,m

n
n which depend upon y

such that
Fn(s) ≤ e−φ(s)y

(
mn

0 +mn
1φ(s) + ...+mn

nφ(s)n
)
, s ≥ 0.

Proof. We will prove this lemma by induction on n. It is easily seen that

ψ
′
(s) ≤ b1s+ b0, s ≥ 0, (3.6)

where

b0 =

∫ ∞
1

rm(dr), b1 = σ2 +

∫ 1

0

r2m(dr).

We have for any s ≥ 0, with u = ψ(r),

F1(s) =

∫ ∞
s

e−φ(u)ydu

=

∫ ∞
φ(s)

e−ryψ
′
(r)dr

≤
∫ ∞
φ(s)

e−ry(b1r + b0)dr.

We deduce that the lemma holds for n = 1 from the fact that for all a > 0,m ≥ 1,∫ ∞
a

e−ryrmdr =
1

y
e−ayam +

m

y

∫ ∞
a

e−ryrm−1dr. (3.7)

Assume that the lemma holds for n = k. Hence for any s ≥ 0, with u = ψ(r),

Fk+1(s) ≤
∫ ∞
s

e−φ(u)y
(
mk

0 +mk
1φ(u) + ...+mk

kφ(u)k
)
du

=

∫ ∞
φ(s)

e−ry(mk
0 +mk

1r + ...+mk
kr
k)ψ

′
(r)dr

≤
∫ ∞
φ(s)

e−ry(mk
0 +mk

1r + ...+mk
kr
k)(b1r + b0)dr,

where we have used (3.6) for the last inequality. From (3.7) we now conclude that the
lemma holds for n = k + 1. The result follows.

Lemma 3.4. For t ≥ 0, define Γt = inf{s ≥ 0, Xs − s < −t}. We have E(Γt) = t.

Proof. Note that Xs−s is a spectrally positive Lévy process with Laplace exponent ψ0(λ) =
ψ(λ) +λ. Denote φ0 the unique inverse of ψ0. It is well known that the process {Γt, t ≥ 0}
is a subordinator with Laplace exponent φ0, hence

E
(
e−sΓt

)
= e−φ0(s)t for all s ≥ 0, t ≥ 0.

Therefore E(Γt) = φ
′
0(0)t. The result follows from the fact that

ψ
′

0(0) = 1 and ψ
′

0(0)φ
′

0(0) = 1.
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Lemma 3.5. Assume that (H) the paths of X are of infinite variation a.s. Then for all
positive constants a, b we have

P(a+ inf
[0,b]

Xt ≤ 0) > 0.

Proof. According to [3] (Corollary VII.5), assumption (H) holds iff

lim
λ→∞

ψ(λ)

λ
=∞. (3.8)

Note that (3.8) happens iff at least one of the following two conditions is satisfied: σ > 0,
or ∫ 1

0

rm(dr) =∞.

If P(a + inf [0,b] Xs ≤ 0) = 0, we have τ−a ≥ b a.s. Hence E
(
e−sτ

−
a
)
≤ e−bs for all s ≥ 0. By

(3.5) we get

e−φ(s)a ≤ e−bs

φ(s)a ≥ bs. (3.9)

Let s = ψ(r) in (3.9) we obtain ar ≥ bψ(r) for all r > 0. This contradicts (3.8), so that

P(a+ inf
[0,b]

Xt ≤ 0) > 0.

3.3 Main results

We now establish the main results of this section

Theorem 3. Suppose that f is a function satisfying (H2) and that there exists a0 > 0
such that f(u) 6= 0 for all u ≥ a0. If

∫∞
a0

u
|f(u)|du =∞, then

Sx →∞ a.s. as x→∞.

Proof. Let γ be a constant such that f2(u) := γu − f1(u) is a positive and increasing
function (we can choose e.g. γ > θ, by Hypothesis (H2)). We can rewrite the SDE (3.1) as

dUx
t =

(
α + γUx

t − f2(Ux
t )
)
dt+ dXt, Ux

0 = x,

Setting V x
t = Ux

t −Xt, then V x
t solves the ODE

dV x
t

dt
= α + γ(V x

t +Xt)− f2(V x
t +Xt), V x

0 = x.
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Let {xn, n ≥ 1} be an increasing sequence of positive real numbers such that xn → ∞ as
n→∞. For any y > 0, there exists ny > 0 such that xn > 2y for all n ≥ ny. Define

Rn
y := inf{t > 0, V xn

t < 2y} for any y > 0, n ≥ ny.

For n ≥ ny, we have on the time interval [0, Rn
y ∧ τ−y ∧

τ+y
2

],

−y ≤ Xt ≤ y

y ≤ V xn
t +Xt ≤ V xn

t + y

dV xn
t

dt
≥ − | α | −f2(V xn

t + y)

−t ≤
∫ t

0

dV xn
s

| α | +f2(V xn
s + y)

t ≥
∫ xn+y

V xnt +y

du

| α | +f2(u)
. (3.10)

Consider now the integral
∫∞ du

|α|+f2(u)
. If

∫∞ du
|α|+f2(u)

<∞, then by Lemma 2.1 we have

lim
u→∞

| α | +f2(u)

u
=∞.

We deduce that there exists a constant a1 > a0 such that

−f(u)

u
≥ α+ | α | +γu for all u ≥ a1.

Therefore

0 <

∫ ∞
a1

−u
2f(u)

du ≤
∫ ∞
a1

du

α+ | α | +γu− f(u)
u

=

∫ ∞
a1

du

| α | +f2(u)
<∞.

This contradicts our standing assumption. Consequently
∫∞ du

|α|+f2(u)
= ∞. Now (3.10)

implies that

inf
0≤s≤t∧Rny∧τ

−
y ∧

τ+y
2

V xn
s ≥ Φ(xn, t), where

Φ(xn, t) = inf

{
a > 0,

∫ xn+y

a+y

du

|α|+ f2(u)
≤ t

}
→∞, as n→∞.

Consequently

lim
n→∞

inf
0≤s≤t

V xn
s =∞ a.s. for all t ∈

[
0, Rn

y ∧ τ−y ∧
τ+
y

2

]
.
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Hence

lim
n→∞

Rn
y ≥ τ−y ∧

τ+
y

2
a.s.

Moreover, because Uxn
t = V xn

t +Xt > 0 a.s. for all t ∈ [0, Rn
y ∧ τ−y ∧

τ+y
2

], then

Sxn = τxn ≥ Rn
y ∧ τ−y ∧

τ+
y

2
a.s.

lim
n→∞

Sxn = lim
n→∞

τxn ≥ lim
n→∞

Rn
y ∧ τ−y ∧

τ+
y

2
a.s.

≥ τ−y ∧
τ+
y

2
a.s.

Letting y tend to infinity, the result follows from Proposition 3.2.

We next consider the case
∫∞
a0

u
|f(u)|du <∞. We will see that in this case supx>0 S

x <∞
a.s. Indeed, we can prove that it has some finite moments.

It is easy to see that in this case f(u)
u
→ −∞ as u→∞, so that there exists a constant

a2 > a0 such that f(u)
u
≤ −2 | α | for all u ≥ a2. Hence∫ ∞

a2

1

| f1(u) |
du =

∫ ∞
a2

1

α− f(u)
u

du ≤
∫ ∞
a2

2u

−f(u)
du <∞.

By Lemma 2.1 we have ∫ ∞
a2

1

f2(u)
du =

∫ ∞
a2

1

γu− f1(u)
du <∞. (3.11)

Let g(y) :=
∫∞
y

1
f2(u)

du for y ≥ a0. Then g is decreasing and g(y) → 0 as y → ∞. We
suppose that the following hypothesis holds:

Hypothesis (H3): The function f2 is C1 on (a0,∞) and there exist some constants
d > 0, c > a0 such that

g(y)f
′

2(y) ≥ 1 + d for all y ≥ c.

Remark 3.6. Consider the particular case where f(u) = −αuk, with α, k > 0. The main
assumption of the next Theorem 4 will require in this case that k > 2, which we assume
from now on. Now choose δ ∈ (0, (k− 2)−1). Let cδ be such that α

αyk−1 + γ
αyk−2 ≤ δ for any

y ≥ cδ. We have that g(y) > 1
α(k−2)(1+δ)

y−k+2 for y ≥ cδ. Since f ′2(y) = γ + α(k − 1)yk−2,
we deduce that

g(y)f ′2(y) >
γ

α(k − 2)(1 + δ)
y−k+2 +

k − 1

(k − 2)(1 + δ)
.

Is is plain that Hypothesis (H3) is satisfied with c = cδ and d = k−1
(k−2)(1+δ)

− 1. In this
particular case, this new assumption is satisfied as soon as the other main assumption of
the next Theorem 4 is satisfied.



3 TOTAL MASS OF THE CSBP WITH COMPETITION 16

Define the function h ∈ C(R+,R+) as follows.

h(y) =

{
1

g(c)d
, 0 ≤ y ≤ c

1
g(y)d

, y > c.

Then h is increasing and is C2 on (c,∞), h(y)→∞ as y →∞, and

h
′′
(y) =

−d[g(y)f
′
2(y)− d− 1]

f2(y)2g(y)d+2
≤ 0 for all y > c.

Therefore h
′
(y) is decreasing on (c,∞). From the fact that for y > 2c, there exists ξ ∈

(2c, y) such that

h(y)− h(2c) = h
′
(ξ)(y − 2c) ≤ h

′
(2c)(y − 2c) ≤ h

′
(2c)y,

we easily deduce that

h(y) ≤ h(2c) + h
′
(2c)y for all y ≥ 0. (3.12)

We have

Lemma 3.7. There exists a positive constant c1 such that

h(a+ b) ≤ h(a) + h(b) + c1 for all a, b ≥ 0.

Proof. For all 0 ≤ a, b ≤ 2c we have h(a + b) ≤ h(4c). Define the function h1 ∈
C((c,∞),R+) by

h1(y) = h(y + b)− h(y).

We have h
′
1(y) = h

′
(y + b)− h′(y) ≤ 0 for all y > c. Then for a ≥ 2c,

h(a+ b)− h(a) = h1(a) ≤ h1(2c) = h(2c+ b)− h(2c) ≤ h(2c+ b)

h(a+ b)− h(a)− h(b) ≤ h(2c+ b)− h(b).

But h(2c + b) ≤ h(4c) for 0 ≤ b < 2c, and h(2c + b) − h(b) ≤ h(4c) − h(2c) for b ≥ 2c,
again since h′ is decreasing. The result follows by choosing c1 = h(4c).

Theorem 4. Suppose that there exists a0 > 0 such that f(u) 6= 0 for all u ≥ a0 and that
(H2), (H3) hold. If ∫ ∞

a0

u

| f(u) |
du <∞ and lim

λ→∞

ψ(λ)

λ
=∞,

then
E
(
h(sup

x>0
Sx)
)
<∞.
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Proof. From (3.11) and Lemma 2.1 we deduce that

lim
u→∞

f2(u)

u
=∞.

Therefore there exists a constant M > a0 such that f2(u) ≥ 2γu + 2α for all u ≥ M .
Let {xn, n ≥ 1} be an increasing sequence of positive real numbers such that xn → ∞ as
n→∞. There exists n0 > 0 such that xn > 2M for all n ≥ n0. Hence

Rn
M = inf{t > 0, V xn

t < 2M} > 0 a.s. for any n ≥ n0.

For n ≥ n0, we have on the time interval [0, Rn
M ∧ τ−M ],

−M ≤ Xt

M ≤ 1

2
V xn
t ≤ V xn

t +Xt

α + γ(V xn
t +Xt)− f2(V xn

t +Xt) ≤ −
1

2
f2(V xn

t +Xt) ≤ −
1

2
f2(

1

2
V xn
t )

dV xn
t

dt
≤ −1

2
f2(

1

2
V xn
t )∫ t

0

dV xn
s

f2(1
2
V xn
s )
≤ −1

2
t∫ 1

2
xn

1
2
V xnt

du

f2(u)
≥ 1

4
t

g(
1

2
V xn
t ) ≥ 1

4
t. (3.13)

Now, for proving E
(
h(supx>0 S

x)
)
<∞ we follow the following five steps:

Step 1. We first show that for all n ≥ n0,

Rn
M ∧ τ−M ≤ 4g(M) a.s.

Indeed, if Rn
M ∧ τ−M > 4g(M) then

V xn
4g(M) > 2M.

So that

g
(1

2
V xn

4g(M)

)
< g(M),

because g is decreasing. This contradicts (3.13).
Step 2. We show that for all n ≥ n0,

E
(
h(V xn

RnM∧τ
−
M

)
)
<∞.
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Note that on the set {Rn
M < τ−M}, V

xn
RnM∧τ

−
M

= 2M . Consequently,

V xn
RnM∧τ

−
M

= 2M1{RnM<τ
−
M}

+ V xn
τ−M

1{RnM≥τ
−
M}
.

Therefore, from Lemma 3.7 and (3.13),

h
(
V xn
RnM∧τ

−
M

)
= h(2M)1{RnM<τ

−
M}

+ h
(
V xn
τ−M

)
1{RnM≥τ

−
M}

≤ h(2M) + 2h
(1

2
V xn
τ−M

)
1{RnM≥τ

−
M}

+ c1

≤ h(2M) +
22d+1

(τ−M)d
+ c1.

Hence

E
(
h(V xn

RnM∧τ
−
M

)
)
≤ h(2M) + c1 + 22d+1E

( 1

(τ−M)d
)
. (3.14)

Step 2 now follows from Proposition 3.2.
Step 3. We show that for all n ≥ n0,

E
(
h(Uxn

RnM∧τ
−
M

)
)
<∞.

From (3.3) and Step 1 we get

E
(
XRnM∧τ

−
M

)
= 0

E
(
XRnM∧τ

−
M

1{X
Rn
M
∧τ−
M
>0} +XRnM∧τ

−
M

1{X
Rn
M
∧τ−
M
≤0}
)

= 0

E
(
XRnM∧τ

−
M

1{X
Rn
M
∧τ−
M
>0} −M

)
≤ 0

E
(
XRnM∧τ

−
M

1{X
Rn
M
∧τ−
M
>0}
)
≤M. (3.15)

We have

h(Uxn
RnM∧τ

−
M

) = h(V xn
RnM∧τ

−
M

+XRnM∧τ
−
M

)

≤ h(V xn
RnM∧τ

−
M

+XRnM∧τ
−
M

1{X
Rn
M
∧τ−
M
>0})

≤ h(V xn
RnM∧τ

−
M

) + h(XRnM∧τ
−
M

1{X
Rn
M
∧τ−
M
>0}) + c1

≤ h(V xn
RnM∧τ

−
M

) + h
′
(2c)XRnM∧τ

−
M

1{X
Rn
M
∧τ−
M
>0} + h(2c) + c1,

where we have used Lemma 3.7 and (3.12) for the last two inequalities. Hence by (3.15)
and Step 2

E
(
h(Uxn

RnM∧τ
−
M

)
)
≤ E

(
h(V xn

RnM∧τ
−
M

)
)

+ h
′
(2c)M + h(2c) + c1 (3.16)

<∞.
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Step 4. We show that for n ≥ n0,

E
(
h(τnM)

)
<∞,

where
τnM := inf{t > 0, Uxn

t ≤M}.

Note that we can choose M large enough such that

f(u)

u
≤ −1 for all u ≥M.

Conseqently, Uxn
RnM∧τ

−
M+r
≤ Yr, for all 0 ≤ r ≤ τnM −Rn

M ∧ τ−M a.s., where Y solves

dYr = −dr + dXn,M
r , Y0 = Uxn

RnM∧τ
−
M

,

where Xn,M
r = XRnM∧τ

−
M+r −XRnM∧τ

−
M

. Let AnM := inf{r > 0, Yr ≤M}. Clearly

τnM ≤ Rn
M ∧ τ−M + AnM ≤ 4g(M) + AnM .

We deduce from Lemma 3.7 that

h(τnM) ≤ h(4g(M)) + h(AnM) + c1, (3.17)

We now prove that E
(
h(AnM)

)
< ∞, from which Step 4 will follow. Indeed, we have for

t > 0 (recall that Γn,Mt = inf{s ≥ 0, Xn,M
s − s < −t})

P(h(AnM) > t) = P(AnM > h−1(t))

= P(Y0 + inf
[0,h−1(t)]

(Xn,M
s − s) > M)

≤ P( inf
[0,h−1(t)]

(Xn,M
s − s) > −Y0)

= P(Γn,MY0 > h−1(t))

= P(h(Γn,MY0 ) > t).

Hence

E
(
h(AnM)

)
=

∫ ∞
0

P(h(AnM) > t)dt ≤
∫ ∞

0

P(h(Γn,MY0 ) > t) = E(h(Γn,MY0 )). (3.18)

Furthermore, since h is a concave function on (c,∞), we can use Jensen’s inequality and
Lemma 3.4 to get for all t > 0,

E(h(Γt ∨ 2c)) ≤ h(E(Γt ∨ 2c))

≤ h(E(Γt) + 2c)

= h(t+ 2c).
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Therefore, since (Γn,Mt , t ≥ 0) has the same law as (Γt, t ≥ 0) and is independent of Y0,

E(h(Γn,MY0 )) ≤ E(h(Γn,MY0 ∨ 2c))

= E[E(h(Γn,MY0 ∨ 2c)|Y0)]

≤ E(h(Y0 + 2c))

≤ E(h(Y0)) + h(2c) + c1, (3.19)

where we have used Lemma 3.7 for the last inequality. From Step 3, this last right–hand
side is finite. Step 4 now follows from (3.17),(3.18) and (3.19).
Step 5. We will now conclude the proof of the Theorem. From (3.17), (3.18), (3.19),
(3.16) and (3.14) we deduce that for all n ≥ n0,

E
(
h(τnM)

)
≤ h(2M) + h(4g(M)) + 2h(2c) + h

′
(2c)M + 4c1 + 22d+1E

( 1

(τ−M)d
)
.

Hence
E(h(τM)) <∞, where τM := sup

n>n0

τnM .

Let T be a positive constant. Let p denote the probability that starting from M at time
t = 0, U hits zero before time T . There exists a constant K > 0 such that

f(u)

u
≤ K for all u ≥ 0.

We have
p ≥ P(M +KT + inf

[0,T ]
Xt ≤ 0) > 0,

by Lemma 3.5. Using the same argument used in the proof of Theorem 2 we obtain that
supx>0 τ

x is stochastically dominated by

ζT +

ζ∑
i=1

ηi,

where ζ is a geometric random variable with success probability p, the random variables
ηi are i.i.d, with the same law as τM , globally independent of ζ. Therefore

E
(
h(sup

x>0
Sx)
)

= E
(
h(sup

x>0
τx)
)
≤ E

(
h(ζT +

ζ∑
i=1

ηi)
)

≤ E
(
ζh(T ) +

ζ∑
i=1

h(ηi) + (2ζ − 1)c1

)
≤ h(T )

p
+

1

p
E(h(τM)) +

(2

p
− 1
)
c1

<∞,

where we have used Lemma 3.7 for the second inequality. The result follows.
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4 Some examples

In this section we will discuss some special cases to illustrate our results.

Example 4.1. An important example is the case of a logistic interaction where

f(u) := au− bu2, a ∈ R, b > 0.

It is easily seen that f satisfies (H2). There exists a positive constant a0 such that f(u) < 0
for all u ≥ a0, and∫ ∞

a0

1

| f(u) |
du =

∫ ∞
a0

1

bu2 − au
du <∞,

∫ ∞
a0

u

| f(u) |
du =

∫ ∞
a0

u

bu2 − au
du =∞.

Hence in this case, from Theorem 1, 2 and 3 we have{
supx>0 T

x =∞ a.s. if
∫∞

dλ/ψ(λ) =∞
E(supx>0 T

x) <∞ if
∫∞

dλ/ψ(λ) <∞,

and
sup
x>0

Sx =∞ a.s.

Example 4.2. We consider the case of a polynomial interaction where

f(u) := au− buβ, a ∈ R, b > 0, β > 1.

Then f satisfies (H2) and there exists a positive constant a0 such that f(u) < 0 for all
u ≥ a0. Since ∫ ∞

a0

1

| f(u) |
du =

∫ ∞
a0

1

buβ − au
du <∞,

from Theorem 1 and 2 we have{
supx>0 T

x =∞ a.s. if
∫∞

dλ/ψ(λ) =∞
E(supx>0 T

x) <∞ if
∫∞

dλ/ψ(λ) <∞.

Concerning the total mass we note that∫ ∞
a0

u

| f(u) |
du =

∫ ∞
a0

u

buβ − au
du

{
=∞, if β ≤ 2

<∞, if β > 2.

Hence supx>0 S
x =∞ a.s. for β ≤ 2, by Theorem 3. For β > 2, we can choose

f2(u) := buβ−1.

Therefore for all u ≥ a0,

g(u) =

∫ ∞
u

1

f2(r)
dr =

1

b(β − 2)uβ−2
.
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Since for all u ≥ a0,

g(u)f
′

2(u) =
β − 1

β − 2
,

(H3) holds for d = 1
β−2

. So that for u > a0,

h(u) =
1

g(u)d
= (b(β − 2))β−2u.

Hence from Theorem 4, if limλ→∞
ψ(λ)
λ

=∞ we have

E(sup
x>0

Sx) <∞.

Example 4.3. We consider the case where

f(u) := −ueu.

In this case Ux is the solution of the following SDE

dUx
t = −eUxt dt+ dXt, Ux

0 = x, (4.1)

where X is a Lévy process with Laplace exponent ψ. It is easily seen that an explicit
formula for the unique strong solution of (4.1) is

Ux
t = x+Xt − log(1 +

∫ t

0

eXs+xds).

We have for x > 0,

τx := inf{t > 0, Ux
t = 0} = inf{t > 0, eXt = e−x +

∫ t

0

eXsds}.

Therefore

sup
x>0

τx = inf{t > 0, eXt =

∫ t

0

eXsds}.

Now, we can choose the function f1 satisfying (H2) and

f1(u) ≥ −ueu ∀u ≥ 0,

f1(u) = au− buβ ∀u ≥ c for some constant c > 0,

where a ∈ R, b > 0, β > 2. Let Z1,x
t be the solution of the SDE (1.1) with the function f1

instead of f , and let Sx1 be the total mass of Z1,x. By the comparison theorem we have

Zx
t ≤ Z1,x

t a.s. ∀t ≥ 0,

Sx ≤ Sx1 a.s.
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We already know that if ψ satisfies the condition

lim
λ→∞

ψ(λ)

λ
=∞,

then
E(sup

x>0
Sx1 ) <∞.

Hence we deduce in this case

E(sup
x>0

τx) = E(sup
x>0

Sx) <∞.
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