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Abstract

The goal of this paper is to give formulas for the expectation and variance
of the height and length of the ancestral recombinaison graph (ARG). The
first formula is known, see e. g. [6], the others seem to be new. We obtain
in particular (see Theorem 4.1 below) a very simple formula which expresses
the expectation of the length of the ARG as a linear combination of the ex-
pectations of both the length of the coalescent tree, and the height of the
ARG.
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1. Introduction and Preliminaries

Consider a sample of size n from a population of fixed size N . If the
genealogy of the population is described by Canning’s model [1] (which gen-
eralizes the Wright–Fisher model) or by Moran’s model [7], and time is scaled
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by a factor 1/N , then under very mild assumptions on the model, the ge-
nealogy of the above sample, looking backward in time, is described in the
limit N →∞ by Kingman’s n–coalescent [5].

If we forget about the exact genealogy (i. e. about who is the brother,
cousin of whom ?), Kingman’s n–coalescent is a death process {Xt, t ≥ 0},
which is the number of lineages ancestral to the sample which are alive at
time t, starting from X0 = n, and ending at state 1 at the random time
T1 = inf{t > 0, Xt = 1}, when the Most Recent Common Ancestor is found.
Each death happens at a time when two lineages ancestral to the sample
find a common ancestor. The waiting time Sk in state k is exponential with
parameter k(k − 1)/2, the Sk being independent for different k. Clearly
T1 = Sn + Sn−1 + · · ·+ S2.

Let us now account for recombinations. At rate θ/2 along each branch of
Kingman’s coalescent tree, a recombination takes place between an individual
from the sample and an individual from outside the sample. Now Xt is a birth
and death process, since at each recombination, the genome of an individual
splits into two genomes of two different individuals. Kingman’s coalescent
tree is replaced by the Ancestral Recombination Graph, abbreviated ARG.

Births happen at rate θXt/2, while deaths happen at rate Xt(Xt − 1)/2.
Because the death rate is a quadratic function of Xt, while the birth rate is
linear, one easily shows that T1 = inf{t > 0, Xt = 1} is finite a. s. We refer
to [4], [2], [3] and [10] for more complete introductions and descriptions of
Kingman’s coalescent and the ARG.

Now we define the height of the ARG as H = T1 = inf{t,Xt = 0} and

the lenght of the ARG as L =
∫ T1

0
Xtdt.

The aim of this paper is to compute the first two moments of the height
and length of the ARG. While the formula for the expectation of the height
of the ARG is not new (see [10], and [6] where the replacement of Kingman’s
coalescent by a graph models selection rather than recombination), we believe
that our three other formulas are new. We in particular obtain a very simple
formula which expresses the expectation of the length of the ARG as a linear
combination of that of Kingman’s coalescent, and of the expectation of the
height of the ARG.

Let us make precise the fact that we do not specify any model for the
splitting of the ancestral genome during a recombination event. Consequently
we do not restrict the ARG to those branches which effectively contain ge-
netic material ancestral to the sample. In other words, T1 is the time when
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Figure 1: ARG

the so–called Ultimate Ancestor (ancestor of all branches of the ARG) is
found, which may very well differ from the MRCA of all the genetic material
ancestral to the sample.

The fours sections of this paper gives formulas for respectively the expec-
tation and variance of the height of the ARG, the expectation and variance
of the length of the ARG.

We write Hn (resp. Ln) for the height (resp. the length) of the ARG with
n leaves.

2. The expectation of the height of ARG

Let us first recall that (also this result is not new, we provide a proof
which is the model for some other proofs in this paper)

Theorem 2.1. The expectation of the height of the ARG for a sample of n
individuals is given by

Eθ(Hn) = 2

(
1− 1

n

)
+ 2

n−1∑
k=1

1

k(k + 1)

eθ

θk+1

∫ θ

0

tk+1 exp(−t)dt.
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Proof. Define, Un = Eθ(Hn). Let us write a recursion formula for the Un’s.
The mean waiting time of Xt in state n is 2

n(n+θ−1)
, the next state is n + 1

with probability θ
n+θ−1

, n− 1 with probability n−1
n+θ−1

. Consequently

Un =
2

n(n+ θ − 1)
+

θ

n+ θ − 1
Un+1 +

n− 1

n+ θ − 1
Un−1.

If we define Wn = Un − Un−1, we obtain the following relation

Wn = (n− 2)!

(
2
m−1∑
k=0

θk

(n+ k)!
+

θm

(n+m− 2)!
Wn+m

)

=
2(n− 2)!

θn

(
eθ −

n−1∑
k=0

θk

k!

)
+ lim

m→∞

(n− 2)!θm

(n+m− 2)!
Wn+m.

On the other hand, we have

Wn+m = Un+m − Un+m−1 = Eθ(Hn+m)− Eθ(Hn+m−1) := Eθ(Tn+m−1)

where Tn+m−1 is the time take by the Birth and Death process to reach
the value n + m − 1, starting from n + m. Let Rn+m be the number of
recombinations which occur before the process reaches n + m − 1, starting
at state n+m. So for k ≥ 1 we have

Pθ(Rn+m = k) ≤ ak

(
θ

n+m− 1

)k
where ak is the number of distinct sequences of k − 1 recombinations and
k−1 coalescences which respect the constraint that there are always at least
n alive lineages. It is the “Catalan number” (see [9])

ak =
1

k + 1

(
2k

k

)
∼ 4k

k3/2
√
π
.

Conditionally upon {Rn+m = k}, k ≥ 0, there are k births and k + 1 deaths
until the process reaches the value n − 1. Bounding the expectation of the
time between two consecutive of those events we obtain

Eθ(Tn+m−1 |Rn+m = k) ≤ 2(2k + 1)

(n+m)(n+m− 1)
.
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Moreover Pθ(Rn = 0) ≤ 1. Finally

Eθ(Tn+m−1) =
∞∑
k=0

Eθ(Tn+m−1 |Rn = k) Pθ(Rn+m = k)

≤ c

(n+m)(n+m− 1)

∞∑
k=0

(
4θ

n+m− 1

)k
≤ c′

(n+m)(n+m− 1)
.

It is now easy to deduce that Un+1−Un = 2 (n−1)!
θn+1

∑∞
j=n+1

θj

j!
and consequently

Un =
n−1∑
k=1

(Uk+1 − Uk) = 2
n−1∑
k=1

(k − 1)!

θk+1

∞∑
j=k+1

θj

j!
.

We finally deduce the following formula for Eθ(Hn) = Un.

Eθ(Hn) = 2
n−1∑
k=1

∞∑
j=0

(k − 1)!

(k + j + 1)!
θj = 2

(
1− 1

n

)
+ 2

n−1∑
k=1

1

k(k + 1)

(k + 1)!

θk+1

∞∑
`=k+2

θ`

`!

and the result finally follows from the following identity, which is easily
checked by successive integrations by parts

eθ
∫ θ

0

tk+1 exp(−t)dt = (k + 1)!

(
eθ −

k+1∑
`=0

θ`

`!

)
.

Corollary 2.2. For small θ > 0

Eθ(Hn) = 2(1− 1

n
) +

(n− 1)(n+ 2)

2n(n+ 1)
θ +

(n− 1)(n2 + 4n+ 6)

9n(n+ 1)(n+ 2)
θ2 +O(θ3).

Corollary 2.3. As n→∞

lim
n→∞

Eθ(Hn) =
2

θ

∫ θ

0

ex − 1

x
dx.

Proof.

lim
n→∞

Eθ(Hn) = 2
∞∑
j=1

∞∑
k=1

θj

k(k + 1) · · · (k + j + 1)
=

2

θ

∞∑
j=1

θj

j · j!
=

2

θ

∫ θ

0

ex − 1

x
dx
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where the second equality follows from

∞∑
k=1

1

k(k + 1) · · · (k + j)
=

1

j · j!
, ∀j ≥ 1. (2.1)

See the Appendix for a proof.

As Kingman’s coalescent, the ARG ”comes down from infinity”, i.e. we
can define an ARG with infinitely many leaves. We hope to discuss some
questions related to that property in another publication.

3. Variance of the height of the ARG

Definition 3.1. For all p, q ∈ N, we define the hypergeometric function Fqp

as a mapping from Rp
+ × Rq

+ × R into R as follows

Fqp ([a1, · · · , ap], [b1, · · · , bq], z) =
∞∑
r=0

(a1)r · · · (ap)r
(b1)r · · · (bq)r

zr

r!
,

where for all a ∈ R and r ∈ N,

(a)r = a(a+ 1) · · · (a+ r − 1).

For more on this subject see [8].

Theorem 3.2. The variance of the height of the ARG is given by

Varθ(Hn) =
n∑
p=2

4
F33 ([1, p, p+ θ − 1], [p+ θ, p+ 1, p+ 1], θ)

(p+ θ − 1)p2(p− 1)

+
n∑
p=2

∞∑
k=1

4(p− 2)!θk

(p+ k − 3)!(p+ k + θ − 2)((p+ k − 1)2 − 1)2(p+ k − 1)2

×
(

2(p+ k − 1) + θ +
(p+ k + θ − 2)eθ

θp+k

∫ θ

0

tp+ke−tdt

)2

.

Proof.
Hn = Sn +Hn−1I{Coalescence} +Hn+1I{Recombination}
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where Sn is the time until the first jump, starting with n individuals. It is
easy to show that Sn is independent of Hn−1I{Coalescence}+Hn+1I{Recombination},
hence

Varθ(Hn) = Varθ(Sn) + Varθ(Hn−1I{Coalescence} +Hn+1I{Recombination})

Since moreover Hn−1 and the event {Coalescence} are independent, as well
as Hn+1 and the event {Recombination},

Varθ(Hn)− Varθ(Hn−1) =
4

(n+ θ − 1)n2(n− 1)
+

θ

n− 1
(Varθ(Hn+1)− Varθ(Hn))

+
θ

n+ θ − 1
(Eθ(Hn+1)− Eθ(Hn−1))

2.

But we have

Eθ(Hn+1)− Eθ(Hn−1) =
∞∑
j=0

2(n− 2)!(2n+ j)

(n+ j + 1)!
θj.

If we now define Yn := Varθ(Hn)− Varθ(Hn−1), we have

Yn =
4

(n+ θ − 1)n2(n− 1)
+

θ

n− 1
Yn+1+

θ

n+ θ − 1

(
∞∑
j=0

2(n− 2)!(2n+ j)

(n+ j + 1)!
θj

)2

.

Hence

Yn =
4

(n+ θ − 1)n2(n− 1)
+

θ

n− 1
Yn+1 + An

where

An =
θ

n+ θ − 1

(
∞∑
j=0

2(n− 2)!(2n+ j)

(n+ j + 1)!
θj

)2

.

It is easy to deduce the following recursion formula for Yn

Yn =
m∑
k=1

4(n− 2)!θk−1

(n+ θ + k − 2)(n+ k − 1)2(n+ k − 2)!

+
m∑
k=1

(n− 2)!θk−1

(n+ k − 3)!
An+k−1 +

(n− 2)!θm

(n+m− 2)!
Yn+m.
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We have the identity (see the Appendix below)

An =
4θ

(n+ θ − 1)(n2 − 1)2n2

(
2n+ θ +

(n+ θ − 1)eθ

θn+1

∫ θ

0

tn+1e−tdt

)2

(3.1)
from which we deduce that

An ≤
16θ

n2(n− 1)2(n+ θ − 1)

(
∞∑
j=0

θj

j!

)2

≤ 16θe2θ.

Hence
∑∞

k=0
Ak+2θ

k

k!
converges for all θ. Now, by letting m tends to ∞, we

have the following

Yn =
∞∑
k=1

4(n− 2)!θk−1

(n+ θ + k − 2)(n+ k − 1)2(n+ k − 2)!

+
∞∑
k=1

(n− 2)!θk−1

(n+ k − 3)!
An+k−1 + lim

m→∞

(n− 2)!θm

(n+m− 2)!
Yn+m.

It is easy to check that

∞∑
k=1

4(n− 2)!θk−1

(n+ θ + k − 2)(n+ k − 1)2(n+ k − 2)!

= 4
F33 ([1, n, n+ θ − 1], [n+ θ, n+ 1, n+ 1], θ)

(n+ θ − 1)n2(n− 1)
.

We need to show that

lim
m→∞

(n− 2)!θm

(n+m− 2)!
Yn+m = 0.

With the notation introduced in section 2, we have that Hn+m = Tn+m−1 +
Hn+m−1, and from the strong Markov property, Tn+m−1 and Hn+m−1 are
independent, consequently

Varθ(Hn+m)− Varθ(Hn+m−1) = Varθ(Tn+m−1) ≤ Eθ(T
2
n+m−1).

By an argument similar to that in the proof of theorem 2, one can show that

Eθ(T
2
n+m−1) ≤

c′

(n+m)2(n+m− 1)2
, (3.2)
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Consequently

lim
m→∞

(n− 2)!θm

(n+m− 2)!
(Varθ(Hn+m)− Varθ(Hn+m−1)) = 0.

The theorem follows.

4. Expectation of the length of the ARG

Theorem 4.1. The expectation of the length of the ancestral recombinaison
graph is given by

Eθ(Ln) = E0(Ln) + θ Eθ(Hn).

Proof. We define, Vn = Eθ(Ln). The following recursion formula for Vn
follows by considering the possible states after the first transition

Vn =
2

n+ θ − 1
+

θ

n+ θ − 1
Vn+1 +

n− 1

n+ θ − 1
Vn−1.

It is easy to show that Kn := E0(Ln) +θ Eθ(Hn) satisfies the same recursion.
So we have

(n− 1)(Vn − Vn−1) = 2 + θ(Vn+1 − Vn).

If we define Zn = Vn − Vn−1, we obtain the following relation

Zn = 2
m∑
k=1

θk−1

(n− 1)n · · · (n+ k − 2)
+

θm

(n− 1)n · · · (n+m− 2)
Zn+m.

Hence

Zn = 2
∞∑
k=1

θk−1

(n− 1)n · · · (n+ k − 2)
+ lim

m→∞

θm

(n− 1)n · · · (n+m− 2)
Zn+m.

On the other hand, we have

Zn+m = Vn+m − Vn+m−1 = Eθ(Ln+m)− Eθ(Ln+m−1) := Eθ(Ln+m−1)

Again by conditioning upon the value of Rn+m, we can show that

Eθ(Ln+m−1) ≤
c′

(n+m)(n+m− 1)
.

9



It is now easy to deduce that

lim
m→∞

θm(n− 2)!

(n+m− 2)!
Zn+m = 0, ∀θ ≥ 0.

We can easily obtain the following relation

Kn = 2
∞∑
k=1

θk−1

(n− 1)n · · · (n+ k − 2)

+ lim
m→∞

θm

(n− 1)n · · · (n+m− 2)
(E0(Ln+m)− E0(Ln+m−1))

+ lim
m→∞

θm+1

(n− 1)n · · · (n+m− 2)
(Eθ(Hn+m)− Eθ(Hn+m−1)) ,

Again the two limits on the right vanish. The result follows.

Recalling that (in case θ = 0, the ARG reduces to Kingman’s coalescent)

E0(Ln) = 2

(
1 + · · ·+ 1

n− 1

)
,

we deduce from the last Theorem

Corollary 4.2. For large n,

lim
n→∞

Eθ(Ln) ∼ 2 ln(n) +
2

θ

∫ θ

0

ex − 1

x
dx.

We note that the additional length produced by the recombinations is
bounded in mean, as n→∞.

5. Variance of the length of the ARG

Theorem 5.1. The variance of the length of the ancestral recombinaison
graph is given by

Varθ(Ln) =
n∑
p=2

[
4
F22 ([1, p+ θ − 1], [p+ θ, p], θ)

(p+ θ − 1)(p− 1)
+
∞∑
k=1

(p− 2)!θk−1

(p+ k − 3)!
Bp+k−1

]
where

Bn =
4θ

n2(n− 1)2(n+ θ − 1)

(
2n− 1 +

1

n+ 1
(2nθ + θ2 +

(n+ θ − 1)eθ

θn

∫ θ

0

tn+1e−tdt)

)2

.
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Proof. We have for n ≥ 2, with the same notation as in section 3,

Ln = nSn + Ln−1I{Coalescence} + Ln+1I{Recombination}.

It is easy to show that Sn is independent of Ln−1I{Coalescence}+Ln+1I{Recombination},
hence

Varθ(Ln)− Varθ(Ln−1) =
4

(n+ θ − 1)(n− 1)
+

θ

n− 1
[Varθ(Ln+1)− Varθ(Ln)]

+
θ

n+ θ − 1
[Eθ(Ln+1)− Eθ(Ln−1)]

2.

But we have

Eθ(Ln+1)− Eθ(Ln−1) =
4n− 2

n(n− 1)
+
∞∑
j=1

2(n− 2)!(2n+ j − 1)

(n+ j)!
θj.

Define Dn := Varθ(Ln)− Varθ(Ln−1), hence

Dn =
4

(n+ θ − 1)(n− 1)
+

θ

n− 1
Zn+1 +Bn,

where

Bn =
θ

n+ θ − 1

(
4n− 2

n(n− 1)
+
∞∑
j=1

2(n− 2)!(2n+ j − 1)

(n+ j)!
θj

)2

.

Then

Dn =
m∑
k=1

4(n− 2)!θk−1

(n+ θ + k − 2)(n+ k − 2)!
+

m∑
k=1

(n− 2)!θk−1

(n+ k − 3)!
Bn+k−1 +

(n− 2)!θm

(n+m− 2)!
Zn+m.

So we have the following whose proof is similar to that of (3.1)

Bn =
4θ

n2(n− 1)2(n+ θ − 1)

(
2n− 1 +

1

n+ 1
(2nθ + θ2 +

(n+ θ − 1)eθ

θn

∫ θ

0

tn+1e−tdt)

)2

.

(5.1)

It is easy to show that
∑∞

k=1
Bk+2θ

k

k!
converges for all θ.

It is not hard to show that
∞∑
k=1

4(n− 2)!θk−1

(n+ θ + k − 2)(n+ k − 2)!
= 4

F22 ([1, n+ θ − 1], [n+ θ, n], θ)

(n− 1)(n+ θ − 1)
.
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Similarly as in section 3, Ln+m = Xn+m + Ln+m−1, where

Xn+m ≤ (n+m+Rn+m)Tn+m−1

with again Xn+m and Ln+m−1 independent, so that

Varθ(Ln+m)− Varθ(Ln+m−1) = Varθ(Xn+m) ≤ 2(n+m)2Eθ(T
2
n+m−1) + 2Eθ(R

2
n+mT

2
n+m−1).

We deduce from (3.2) that for m large enough say (m+ n ≥ 8θ)

(n+m)2Eθ(T
2
n+m−1) ≤

c1
(n+m− 1)2

,

and also

Eθ(R
2
n+mT

2
n+m−1) =

∞∑
k=1

k2Eθ(T
2
n+m−1 |Rn+m = k) Pθ(Rn+m = k)

≤ c2
(n+m)(n+m− 1)

∞∑
k=1

(k + 1)2

(
4θ

n+m− 1

)k
≤ c′2

(n+m)(n+m− 1)
.

Consequently for all θ ≥ 0, as m→∞,

(n− 2)!θm

(n+m− 2)!
Dn+m → 0.

Therefore we obtain the following relation

Varθ(Ln)− Varθ(Ln−1) = 4
F22 ([1, n+ θ − 1], [n+ θ, n], θ)

(n+ θ − 1)(n− l)
+
∞∑
k=1

(n− 2)!θk−1

(n+ k − 3)!
Bn+k−1.

The Theorem follows.

A. Proof of (2.1).

We define

Cj :=
∞∑
k=1

1

k(k + 1)...(k + j)
.

It is easy to show that Cj − Cj+1 = Cj − 1
(j+1)!

+ jCj+1, so

Cj+1 =
1

(j + 1)(j + 1)!
,∀j ≥ 0.

On the other hand,
∞∑
j=1

θj−1

j!
=
eθ − 1

θ
hence

∞∑
j=1

θj

j.j!
=

∫ θ

0

ex − 1

x
dx.
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B. Proof of (3.1).

∞∑
j=0

θj

k(k + 1) · · · (k + j + 1)

=
1

k(k + 1)
+

1

k(k + 1)

[
θ

k + 2
+

θ2

(k + 2)(k + 3)
+

θ3

(k + 2)(k + 3)(k + 4)
+ · · ·

]
=

1

k(k + 1)
+

1

k(k + 1)

eθ

θk+1

∞∑
j=0

(−1)j
θk+j+2

j!(k + j + 2)

=
1

k(k + 1)
+

1

k(k + 1)

eθ

θk+1

∫ θ

0

tk+1 exp(−t)dt.

The second identity follows from

1

(k + 2)(k + 3) · · · (k + j + 1)
=

a2

k + 2
+

a3

k + 3
+ · · ·+ aj+1

k + j + 1
,

where the coefficients are given by al = (−1)l

(l−2)!(j−l+1)!
. By using the above

relation we obtain

Ak =
4θ

k + θ − 1

(
∞∑
j=0

2k

(k − 1)k · · · (k + j + 1)
θj +

∞∑
j=0

j

(k − 1)k · · · (k + j + 1)
θj

)2

.

The first term in the right can be written as

2k

k − 1

∞∑
j=0

θj

k(k + 1) · · · (k + j + 1)
=

2

k2 − 1

(
1 +

eθ

θk+1

∫ θ

0

tk+1e−tdt

)
,

and also
∞∑
j=0

θj

(k − 1)k · · · (k + j + 1)
=

2

k(k2 − 1)

(
1 +

eθ

θk+1

∫ θ

0

tk+1e−tdt

)
.

Differentiating with respect to θ and multipling by θ and combinig this iden-
tity with that we obtained, we deduce (3.1)

∞∑
j=0

jθj

(k − 1)k · · · (k + j + 1)
=

θ

k(k2 − 1)

(
1 +

(θ − k − 1)eθ

θk+2

∫ θ

0

tk+1e−tdt

)
.
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