Ancestral selection graph meets lookdown construction

Ellen Baake

Bielefeld University

joint work with Ute Lenz, Sandra Kluth, and Anton Wakolbinger

Ellen Baake ASG and LD

Moran model with mutation and selection

N individuals, types 0 ('good'), 1 ('bad')

- → neutral reproduction, rate 1 (for all individuals)
- \rightarrow selective reproduction, rate s (for 0 individuals)
- mutation to 0, rate $u\nu_0$
- × mutation to 1, rate $u\nu_1$ $(\nu_0 + \nu_1 = 1)$

Moran model with mutation and selection

N individuals, types 0 ('good'), 1 ('bad')

- → neutral reproduction, rate 1 (for all individuals)
- \rightarrow selective reproduction, rate s (for 0 individuals)
- mutation to 0, rate $u\nu_0$
- × mutation to 1, rate $u\nu_1$ $(\nu_0 + \nu_1 = 1)$

Moran model with mutation and selection

N individuals, types 0 ('good'), 1 ('bad')

- → neutral reproduction, rate 1 (for all individuals)
- selective reproduction, rate s (for 0 individuals)
- mutation to 0, rate $u\nu_0$
- × mutation to 1, rate $u\nu_1$ $(\nu_0 + \nu_1 = 1)$

 X_t frequency of type-0 individuals at time tdiffusion limit: $t \to t/N$, $N \to \infty$ s.t. $Ns \to \sigma$, $Nu \to \theta$

Looking back

ancestors? genealogy? MRCA?

-

E) E

History

- 1981 neutral case ($\sigma = 0$): Kingman's coalescent; genealogy independent of types
- -1996 coalescent with selection ($\sigma > 0$): considered impossible due to principal reasons
- 1997 Krone and Neuhauser, ancestral selection graph (ASG)
- 1999 Donnelly and Kurtz, lookdown construction (LD) with selection

follow back all potential ancestors.....

.... and keep in mind pecking order

step 1: backward, w/o types

(branching: rate σ per line; coalescence: rate 1 per ordered pair)

step 1: backward, w/o types

A 1

step 1: backward, w/o types

・ロ・・ (日・・ (日・・ (日・)

・ロト ・回 ト ・ヨト ・ヨト

・ロト ・回 ト ・ヨト ・ヨト

$$\begin{split} h(x) &:= \mathbb{P} \left(\text{'winner' at } t = 0 \text{ is of type } 0 \mid X_0 = x \right) \\ &= \sum_{n \ge 0} a_n x (1 - x)^n \qquad (\text{Fearnhead 2002, Taylor 2007}) \\ &(n + 1 + \theta + \sigma) a_n = (n + 1 + \theta \nu_1) a_{n+1} + \sigma a_{n-1} \\ &1 = a_0 \ge a_1 \ge \cdots, \qquad \lim_{n \to \infty} a_{n+1}/a_n = 0 \end{split}$$

bias towards type 0 ! probabilistic meaning, graphical approach ???

Immortal and ancestral line

immortal line:

- each ancestral line coalesces into it
- ancestral line of an individual sampled at a late time
- back to ASG

▲ □ ► ▲ □ ►

∃ >

Number of lines in ASG

 K_r number of lines in ASG at time r = -t $(K_r)_{r \ge 0}$ birth-death process with rates

$$q_{\mathcal{K}}(n, n+1) = n\sigma, \quad q_{\mathcal{K}}(n, n-1) = n(n-1), \qquad n = 1, 2...$$

and (reversible) equilibrium distribution $(r \rightarrow \infty)$

$$\mathbb{P}(K = n) = \frac{\sigma^n}{n!(\exp(\sigma) - 1)}, \quad n \in \mathbb{N}$$

(i.e., Poisson(σ) conditioned to $\{1, 2, ...\}$)

Ancestral line

- $(K_r)_{r\geq 0}$ has bottlenecks
- identify true ancestor of first bottleneck individual
- assign types to K₀ lines (stationary!) at t = 0 (by drawing iid according to X₀)
- propagate types, apply pecking order (confusing!)
- \rightsquigarrow bring some order into the picture!

Lookdown construction ($\sigma = 0$)

Donnelly & Kurtz 1999:

lines on levels $\in \mathbb{N}_{\geq 0}$:

- immortal line on level 0 at all times
- exchangeability preserved
 → assign types iid according to X₀

 $h(x) = \mathbb{P}(\text{level 0 is 'good'} \mid X_0 = x) = x$

3 N

Lookdown construction ($\sigma = 0$)

Donnelly & Kurtz 1999:

lines on levels $\in \mathbb{N}_{\geq 0}$:

- immortal line on level 0 at all times
- exchangeability preserved
 → assign types iid according to X₀

 $h(x) = \mathbb{P}(\text{level 0 is 'good'} \mid X_0 = x) = x$

∃ ⊳

Lookdown construction ($\sigma = 0$)

Donnelly & Kurtz 1999:

lines on levels $\in \mathbb{N}_{\geq 0}$:

- immortal line on level 0 at all times
- exchangeability preserved
 → assign types iid according to X₀

 $h(x) = \mathbb{P}($ level 0 is 'good' $| X_0 = x) = x$

▲ □ ► ▲ □ ►

3 N

Lookdown-like representation of ASG ??

Ordering the ASG

ASG

・ロト ・日下・ ・ヨト

< ≣⇒

Ordering the ASG

ASG

ordering convention:

イロン イヨン イヨン イヨン

э

Ordering the ASG

ASG

ordering convention:

1. Construction from a given realisation of the ordered ASG

・ロト ・回ト ・ヨト

< ∃ >

3

1. Construction from a given realisation of the ordered ASG

・ロン ・回 と ・ ヨ と ・ ヨ と

3

1. Construction from a given realisation of the ordered ASG

イロン 不同と 不同と 不同と

2. Markovian dynamics backward in time

independent Poisson point processes:

- branching: stars at rate σ on every occupied level
- coalescence: arrows at rate 2 for every ordered pair (i, j) of occupied levels (j > i)
- mutation: circles and crosses at rates $\theta \nu_0$ and $\theta \nu_1$

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

2. Markovian dynamics backward in time

 K_r highest occupied level (= number of lines) at time r ($(K_r)_{r \in \mathbb{R}}$ birth-death process)

Ellen Baake ASG and LD

→ Ξ →

The immune line

Definition

At any given time, the immune line is the line that will be immortal if all lines at that time are of type 1.

for $\theta = 0$:

- starts at bottleneck
- moves up at branching events ~> follows continuing branch!
- follows coalescence events downwards

イロト イポト イヨト イヨト

assign types (at t = 0 iid according to X_0) \rightsquigarrow type and level of immortal line?

• • • •

assign types (at t = 0 iid according to X_0) \rightsquigarrow type and level of immortal line?

assign types (at t = 0 iid according to X_0) \rightsquigarrow type and level of immortal line?

assign types (at t = 0 iid according to X_0) \rightsquigarrow type and level of immortal line?

A ►

assign types (at t = 0 iid according to X_0) \rightsquigarrow type and level of immortal line?

Level and type of immortal line ($\theta = 0$)

Proposition (Level and type of immortal line)

For $\theta = 0$, the level of the immortal line in the equilibrium LD-ASG with types assigned at t = 0 is either the lowest type-0 level or, if all lines at t = 0 are of type 1, it is the level of the immune line. Therefore,

$$\begin{split} h(x) &= \mathbb{P}(\text{immortal line has type 0 at } t = 0 \mid X_0 = x) \\ &= \sum_{n \ge 1} \mathbb{P}(K_0 \ge n)(1-x)^{n-1}x \\ &= \frac{1 - \exp(-\sigma x)}{1 - \exp(-\sigma)}. \end{split}$$
 (Kimura 1962)

LD-ASG with mutations

LD-ASG:

Ellen Baake ASG and LD

・ロト ・回ト ・ヨト

< ∃ >

3

LD-ASG with mutations

LD-ASG:

Ellen Baake ASG and LD

・ロト ・回ト ・ヨト

< ∃ >

3

LD-ASG with mutations

LD-ASG:

pruned LD-ASG:

The pruned LD-ASG

immune line: jumps to levels of circles

Image: A math a math

1

The pruned LD-ASG

relocation to top on deleterious mutation

- < ∃ →

3

The pruned LD-ASG

 L_r = highest occupied level (= number of lines) at time r $(L_r)_{r \in \mathbb{R}}$ Markov chain in continuous time with rates

stationary distribution ($r \to \infty$):

 $\rho_n := \mathbb{P}(L=n), \quad a_n := \mathbb{P}(L>n), \quad n=0,1,2,\ldots$

given via recursion (Fearnhead/Taylor)

$$(n+1+\theta+\sigma)a_n = (n+1+\theta\nu_1)a_{n+1}+\sigma a_{n-1},$$

$$a_0=1, \quad \lim_{n\to\infty}a_{n+1}/a_n=0.$$

Ellen Baake

ASG and LD

(ロ) (同) (E) (E) (E)

The pruned LD-ASG with types

assign types: type and level of immortal line?

all lines untyped (except immune line), and arranged according to pecking order \rightarrow results for $\theta = 0$ carry over!

Level and type of immortal line ($\theta = 0$)

$$\begin{split} h(x) &= \mathbb{P} \text{ (immortal line has type 0 at } t = 0 \mid X_0 = x) \\ &= \sum_{n \ge 1} \mathbb{P}(L \ge n) (1 - x)^{n - 1} x \\ &\qquad \mathbb{P}(L \ge n) = \mathbb{P}(\text{level } n \text{ is occupied}), \\ &\qquad 1 = \mathbb{P}(L \ge 1) \ge \mathbb{P}(L \ge 2) \ge \mathbb{P}(L \ge 3) \dots \end{split}$$

 \rightsquigarrow bias towards type 0.

Level and type of immortal line ($\theta > 0$)

Theorem

- The level of the immortal line in the LD-ASG with types assigned at t = 0 is either the lowest type-0 level or, if all lines at t = 0 are of type 1, it is the level of the immune line.
- *h*(*x*) = ℙ (immortal line has type 0 | *x*) is the probability of at least one success when tossing *L* times a coin with success probability *x*,

$$h(x) = \sum_{n\geq 1} \mathbb{P}(L\geq n)(1-x)^{n-1}x .$$

3 × 1

Some pictures: $a_n := \mathbb{P}(L > n)$ and h(x) $\sigma = 0, 1, 5, 10, \quad \theta = 1, \quad \nu_1 = 0.5$

э

Conclusion

Pruned LD-ASG to identify ancestral individual and obtain its type distribution

Key ingredients:

- equilibrium ASG (without types)
- ordering of lines
- LD-ASG
- pruned LD-ASG (still without types)
- assign types

TPB 2015

∃ >