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Abstract

The goal of this paper is to study the lookdown model with selection in the case of a population contain-
ing two types of individuals, with a reproduction model which is dual to the Λ-coalescent. In particular we
formulate the infinite population “Λ-lookdown model with selection”. When the measure Λ gives no mass
to 0, we show that the proportion of one of the two types converges, as the population size N tends to in-
finity, towards the solution to a stochastic differential equation driven by a Poisson point process. We show
that one of the two types fixates in finite time if and only if the Λ-coalescent comes down from infinity. We
give precise asymptotic results in the case of the Bolthausen–Sznitman coalescent. We also consider the
general case of a combination of the Kingman and the Λ-lookdown model.
c⃝ 2014 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper we consider the lookdown (which is in fact usually called the “modified look-
down”) model with selection where we replace the usual reproduction model by a population
model dual to the Λ-coalescent. We first recall the models from [19,8], and then we will describe
the variant which will be the subject of the present paper.

Pitman [19] and Sagitov [20] have pointed at an important class of exchangeable coalescents
whose laws can be characterized by an arbitrary finite measure Λ on [0, 1]. Specifically, a
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Λ-coalescent is a Markov process (Πt , t ≥ 0) on P∞ (the set of partition of N) started from the
partition 0∞ := {{1}, {2}, . . .} and such that, for each integer n ≥ 2, its restriction (Π [n]

t , t ≥ 0)
to Pn (the set of partitions of {1, 2, . . . , n}) is a continuous time Markov chain that evolves by
coalescence events, and whose evolution can be described as follows.

Consider the rates

λk,ℓ =

 1

0
pℓ−2(1 − p)k−ℓΛ(dp), 2 ≤ ℓ ≤ k. (1.1)

Starting from a partition in Pn with k non-empty blocks, for each ℓ = 2, . . . , k, every possible
merging of ℓ blocks (the other k − ℓ blocks remaining unchanged) occurs at rate λk,ℓ, and no
other transition is possible. This description of the restricted processes Π n determines the law of
the Λ-coalescent Π .

Note that if Λ({0}) = Λ([0, 1]) > 0, then only pairwise merging occurs, and the correspond-
ing Λ-coalescent is just a time rescaling (by Λ(0)) of the Kingman coalescent. When Λ({0}) = 0
which we will assume except in the very last section of this paper, a realization of the
Λ-coalescent can be constructed (as in [19]) using a Poisson point process

m =

∞
i=1

δti ,pi (1.2)

on R+ × (0, 1] with intensity measure dt ⊗ ν(dp) where ν(dp) = p−2Λ(dp). We will assume
that the measure ν(dp) has infinite total mass. Each atom (t, p) of m influences the evolution as
follows:

• for each block of Π (t−) run an independent Bernoulli (p) random variable;
• all the blocks for which the Bernoulli outcome equals 1 merge immediately into one single

block, while all the other blocks remain unchanged.

In order to obtain a construction for a general measure Λ, one can superimpose onto the
Λ-coalescent independent pairwise mergers at rate Λ({0}).

The lookdown construction was first introduced by Donnelly and Kurtz in 1996 [8]. Their goal
was to give a construction of the Fleming–Viot superprocess that provides an explicit description
of the genealogy of the individuals in a population. Donnelly and Kurtz subsequently modified
their construction in [10] to include more general measure-valued processes. Those authors
extended their construction to the selective and recombination case [9].

We are going to present our model which we call Λ-lookdown model with selection. An
important feature of our model is that we will describe it for a population of infinite size, thus
retaining the great power of the lookdown construction. As far as we know, this has not yet
been done in the case of models with selection except in our previous publication [4], where we
considered a model dual to Kingman’s coalescent.

We consider the case of two alleles b and B, where B has a selective advantage over b. This
selective advantage is modeled by a death rate α for the type b individuals. We will consider the
proportion of b individuals. The type b individuals are coded by 1, and the type B individuals
by 0. We assume that the individuals are placed at time 0 on levels 1, 2, . . . , each one being,
independently from the others, 1 with probability x , 0 with probability 1−x , for some 0 < x < 1.
For each i ≥ 1 and t ≥ 0, let ηt (i) ∈ {0, 1} denote the type of the individual sitting on level i at
time t . The evolution of (ηt (i))i≥1 is governed by the two following mechanisms.
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1. Births Each atom (t, p) of the Poisson point process m corresponds to a birth event. To each
(t, p) ∈ m, we associate a sequence of i.i.d. Bernoulli random variables (Zi , i ≥ 1) with
parameter p. Let

It,p = {i ≥ 1 : Zi = 1}

and

ℓt,p = inf{i ∈ It,p : i > min It,p}.

At time t , those levels with Zi = 1 and i ≥ ℓt,p modify their label to ηt−(min It,p). In other
words, each level in It,p immediately adopts the type of the smallest level participating in
this birth event. For the remaining levels, we reassign the types so that their relative order
immediately prior to this birth event is preserved. More precisely

ηt (i) =

ηt−(i), if i < ℓt,p
ηt−(min It,p), if i ∈ It,p \ {min It,p}

ηt−(i − (#{It,p ∩ [1, . . . , i]} − 1)), otherwise.

We refer to the set It,p as a multi-arrow at time t , originating from min It,p, and with tips
at all other points of It,p. This procedure is usually referred to as the modified lookdown
construction of Donnelly and Kurtz. In the original construction, the types of the levels
in the complement of It,p remained unchanged at time t , hence the types ηt−(i), for i ∈

It,p \ {min It,p} got erased from the population at time t .
2. Deaths Any type 1 individual dies at rate α, his vacant level being occupied by his right

neighbor, who himself is replaced by his right neighbor, etc. In other words, independently of
the above arrows, crosses are placed on all levels according to mutually independent rate α
Poisson processes. Suppose there is a cross at level i at time t . If ηt−(i) = 0, nothing happens.
If ηt−(i) = 1, then

ηt (k) =


ηt−(k), if k < i;
ηt−(k + 1), if k ≥ i.

We refer the reader to Fig. 1 for a pictorial representation of our model. Note that the types of the
newborn individuals are found by “looking down”, while the type of the individual who replaces
a dead individual is found by looking up. So maybe our model could be called “look-down,
look-up”.

Since we have modeled selection by death events, the evolution of the N first individuals
ηt (1), . . . , ηt (N ) depends upon the next ones, and X N

t = N−1(ηt (1) + · · · + ηt (N )), the
proportion of type b individuals among the N lowest levels, is not a Markov process. We will
show however that for each t > 0 the collection of r.v.’s {ηt (k), k ≥ 1} is well defined (which
is not obvious in our setup) and constitutes an exchangeable sequence of {0, 1}-valued random
variables. We can then apply de Finetti’s theorem, and prove that X N

t → X t a.s. for any fixed
t ≥ 0, where (X t )t≥0 is a [0, 1]-valued Markov process, which is a solution to the stochastic
differential equation (which we call the Λ-Wright–Fisher SDE with selection)

X t = x − α

 t

0
Xs(1 − Xs)ds +


[0,t]×]0,1[

2
p(1u≤Xs−

− Xs−)M̄(ds, du, dp), (1.3)

where M̄(ds, du, dp) = M(ds, du, dp)− p−2dsduΛ(dp), and M is a Poisson point measure on
R+×]0, 1[×]0, 1] with intensity dsdup−2Λ(dp). The process (X t )t≥0 represents the proportion
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Fig. 1. The graphical representation of the Λ-lookdown model with selection of size N = 9. Solid lines represent type
B individuals, while dotted lines represent type b individuals.

of type b individuals at time t in the infinite size population. Note that uniqueness of a solution
to (1.3) is proved in [7].

The paper is organized as follows. We both construct our process, and establish the crucial
exchangeability property satisfied by the Λ-lookdown model with selection in Section 2. In
Section 3 we establish the convergence of X N to the solution to (1.3). In Section 4 we show
that one of the two types fixates in finite time if and only if the Λ-coalescent comes down from
infinity. Moreover, in the case of no fixation, we show that X t → X∞ ∈ {0, 1} as t → ∞, and
discuss when X∞ = 0 a.s. and when P(X∞ = 1) > 0. In the case of the Bolthausen–Sznitman
coalescent (which does not come down from infinity), we precise the law of X∞, and study
the speed at which either of the two types invades the whole population. Finally, we extend our
results to the case Λ({0}) > 0 in the last Section 5.

In this paper, we use N to denote the set of positive integers {1, 2, . . .}, and [n] to denote the
set {1, . . . , n}. We suppose that the measure Λ fulfills the condition

0 < Λ((0, 1)) < ∞, Λ({1}) = 0, (1.4)

and in all the paper except in Section 5, we assume that Λ({0}) = 0.

2. The lookdown process, exchangeability

2.1. Some results for general Λ

Throughout the paper, the notation

µr :=


[0,1]

prΛ(dp)
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is used for the r th moment of the finite measure Λ on [0, 1] for arbitrary real r . Note that µr is
a decreasing function of r with ∞ > µ0 ≥ µr > 0 for r ≥ 0, while µr may be either finite or
infinite for r < 0. For r = 0, 1, . . . observe from (1.1) that µr = λr+2,r+2 is the rate at which
Πn jumps to its absorbing state {[n]} from any state with r + 2 blocks. Let X denote a random
variable with distribution µ−1

0 Λ, defined on some background probability space (Ω ,F ,P) with
expectation operator E, so E(Xr ) = µr/µ0. Recall the formula (1.1) for the transition rates λk,ℓ
of the Λ-coalescent, which we rewrite as

λk,ℓ = µ0E(Xℓ−2(1 − X)k−ℓ) for all 2 ≤ ℓ ≤ k.

For any partition with a finite number n ≥ 2 of blocks, the total rate of transitions of all kinds
in a Λ-coalescent, which can be rewritten as

λn :=

n
ℓ=2

n

ℓ


λn,ℓ =

 1

0

1 − (1 − p)n − np(1 − p)n−1

p2 Λ(dp)

= µ0E


1 − (1 − X)n − nX (1 − X)n−1

X2


.

By monotone convergence,

λn ↑ µ−2 =


[0,1]

p−2Λ(dp) as n ↑ ∞.

2.2. Construction of our process

In this section, we will construct the process {ηt (i), i ≥ 1, t ≥ 0} corresponding to a given
initial condition (η0(i), i ≥ 1) defined in the Introduction.

Recall the Poisson point process m defined in (1.2). For each n ≥ 1 and t ≥ 0, let

I (n, t) = {k ≥ 1 : tk ∈ [0, t] and #{Itk ,pk ∩ [n]} ≥ 2}.

We have

Lemma 2.1. For each n ≥ 1 and t ≥ 0,

#I (n, t) < ∞ a.s.

Proof. Each atom (t, p) of m affects at least 2 of the n first individuals with probability

1 − (1 − p)n − np(1 − p)n−1
≤

n

2


p2.

Consequently

E(#I (n, t)) ≤

n

2


t
 1

0
Λ(dp) < ∞.

The result follows. �

2.2.1. Λ-lookdown model without selection
In this subsection, we essentially follow [10]. For each N ≥ 1, one can define the vector

ξ N
t = (ξ N

t (1), . . . , ξ
N
t (N )), t ≥ 0 with values in {0, 1}

N , by
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1. ξ N
0 (i) := η0(i) for all i ≥ 1.

2. At any birth event (t, p) ∈ m and such that {It,p ∩ [N ]} ≥ 2, for each i ∈ [N ], ξ N
t (i) evolves

as follows

ξ N
t (i) =


ξ N

t−(i), if i < ℓt,p

ξ N
t−(min It,p), if i ∈ It,p \ {min It,p}

ξ N
t−(i − (#{It,p ∩ [1, . . . , i]} − 1)), otherwise.

Using the above lemma, we see that the process ξ N
t has finitely many jumps on [0, t] for all t > 0,

hence its evolution is well defined. From this definition, one can easily deduce that the evolution
of the type at levels 1 up to i depends only upon the types at levels up to i . Consequently, if
1 ≤ N < M , the restriction of ξM to the N first levels yields ξ N , in other words:

{ξM
t (1), . . . , ξ

M
t (N ), t ≥ 0} ≡ {ξ N

t (1), . . . , ξ
N
t (N ), t ≥ 0}.

Hence, the process η = ξ∞ is easily defined by a projective limit argument as a {0, 1}
∞-valued

process.

2.2.2. Λ-lookdown model with selection
This section is devoted to the construction of the infinite population lookdown model with

selection.
For each M ≥ 1, we consider the process (ηM

t (i), i ≥ 1, t ≥ 0) obtained by applying all the
arrows between 1 ≤ i < j < ∞, and only the crosses on levels 1 to M . Using the fact that we
have a finite number of crosses on any finite time interval, it is not hard to see that the process
(ηM

t , t ≥ 0) is well defined by applying the model without selection between two consecutive
crosses, and applying the recipe described in the Introduction at a death time. More generally,
our model is well defined if we suppress all the crosses above a curve which is bounded on any
time interval [0, T ]. Note also that, if we remove or modify the arrows and or the crosses above
the evolution curve of a type B individual, this does not affect her evolution as well as that of
those sitting below her.

At any time t ≥ 0, let Kt denote the lowest level occupied by a B individual. Of course, if
K0 = 1, then Kt = 1, for all t ≥ 0. If for any T , sup0≤t≤T Kt < ∞ a.s., then the process
{Kt , t ≥ 0} is well defined by taking into account only those crosses below the curve Kt , and
evolves as follows. When in state n > 1, Kt jumps to

1. n + k at rate


n+k−1
k+1


λn+k,k+1, k ≥ 1;

2. n − 1 at rate α(n − 1), α > 0,

where we have used the notation λk,ℓ defined by (1.1). In other words, the infinitesimal generator
of the Markov process {Kt , t ≥ 0} is given by:

Lg(n) =

∞
k=1


n + k − 1

k + 1


λn+k,k+1[g(n + k)− g(n)]

+α(n − 1)[g(n − 1)− g(n)]. (2.1)

Now, we are going to show that the process {ηt (i), i ≥ 1, t ≥ 0} is well defined. For this, we
study two cases.

Case 1: Kt → ∞ as t → ∞.
For each N ≥ 1, t ≥ 0, we define

K N
t = the level of the N th individual of type B at time t;
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and

T N
∞ = inf{t ≥ 0 : K N

t = ∞}.

We have T 1
∞ ≥ T 2

∞ ≥ · · · > 0. For each N ≥ 1, we define

H N = {(s, k); k ≤ K N
s }.

Consider first the event

A = {T N
∞ = ∞ ,∀ N ≥ 1}.1

Recall the Poisson point measure m defined in (1.2). Now, for each N ≥ 1, we define the process
(ηN

t (i), i ≥ 1, t ≥ 0), with values in {0, 1}
∞, by

1. ηN
0 (i) := η0(i) for all i ≥ 1.

2. At any birth event (t, p) ∈ m, ηN
t evolves as follows

ηN
t (i) =


ηN

t−(i), if i < ℓt,p

ηN
t−(min It,p), if i ∈ It,p \ {min It,p}

ηN
t−(i − (#{It,p ∩ [1, . . . , i]} − 1)), otherwise.

3. Suppose there is a cross on level j at time s. If (s, j) ∉ H N or (s, j) ∈ H N and ηs−( j) = 0,
nothing happens. If (s, j) ∈ H N and ηs−( j) = 1, then

ηN
s (i) =


ηN

s−(i), if i < j;

ηN
s−(i + 1), if i ≥ j.

In other words, the process {ηN
t (i), i ≥ 1, t ≥ 0} is obtained by applying all the arrows between

1 ≤ i < j < ∞, and only the crosses on levels 1 to K N
t . On the event A, we have a finite number

of such crosses on any finite time interval, and (ηN
t (i), i ≥ 1, t ≥ 0) is constructed as explained

above. Now, let

H = ∪N H N .

By a projective limit argument, we can easily deduce that the process {ηt (i), i ≥ 1, t ≥ 0} is
well defined on the set H. Our model is defined on the event A.

Now we consider the event Ac. We first work on the event {T 1
∞ < ∞}. This means that the

allele b fixates in finite time. It implies that for each N ≥ 2, T N
∞ is finite as well. Consider first

the process {η1
t (i), i ≥ 1, t ≥ 0} defined on H1, i.e. we take into account all the arrows between

1 ≤ i < j ≤ K 1
t , and only the crosses on levels 1 to K 1

t . This process is well defined on the
time interval [0, T 1

∞). However, on the interval [T 1
∞,∞), η1

t (i) = 1, ∀i ≥ 1, hence the process
is well defined in H1. We next consider the process {η2

t (i), i ≥ 1, t ≥ 0} defined on H2. This
process is well defined on the time interval [0, T 2

∞). But on the interval [T 2
∞,∞), there is at most

one B, whose position is completely specified from the previous step. Iterating that procedure,
and using again a projective limit argument, we define the full Λ-lookdown model with selection.

If T 1
∞ = +∞, but T N

∞ < +∞ for some N , the construction is easily adapted to that case. In
fact some arguments in Section 4 show that this cannot happen with positive probability.

1 We shall see below that P(A) = 1 if the Λ-coalescent does not come down from infinity and P(A) = P(type B
fixates) otherwise.
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Case 2: Kt 9 ∞, t → ∞.
Let

T1 = inf{t ≥ 0 : Kt = 1}.

We now show that {T1 < ∞} a.s. on the set {Kt 9 ∞, t → ∞}. Indeed, for any stopping time
T and M > 1, define DT,M to be the event that there is at least one cross on each of the levels
1, 2, . . . ,M − 1 on the interval (T, T + 1), and BT,M to be the event that no birth arrow points
to a level less than or equal to M on the time interval (T, T + 1). It is plain that the quantity

pα,M = P(DT,M ∩ BT,M |FT )

is deterministic, independent of T , and that pα,M > 0. Now clearly

{KT ≤ M} ∩ DT,M ∩ BT,M ⊂ {KT +1 = 1}.

Hence

P(KT +1 = 1|KT ≤ M) ≥ pα,M ,

or equivalently

P(KT +1 > 1|KT ≤ M) ≤ 1 − pα,M .

Let now

AM :=


there exists an infinite sequence of stopping times T k

M
such that T k+1

M ≥ T k
M + 1 and KT k

M
≤ M, for all k ≥ 1.


We deduce from the last inequality and the strong Markov property that for any n ≥ 1,

P(AM ∩ {KT n+1
M

> 1}) ≤ (1 − pα,M )
n

consequently P(AM ∩ {T1 = +∞}) = 0. This being true for all M > 0, the claim follows.
If T1 < ∞, the idea is to show that there exists an increasing mapping ψ : N → N such

that a.s. for N large enough, any individual sitting on level ψ(N ) at any time never visits a level
below N , with the convention that if that individual dies, we replace him by his neighbor below.
Once this is true, the evolution of the individuals sitting on levels 1, 2, . . . , N is not affected
by deleting the crosses above level ψ(N ). Hence it is well defined. If this holds for all N large
enough, the whole model is well defined.

Let

M = sup
0≤t<T1

Kt .

For each N ≥ M , we will show that an individual sitting on a high enough level at any time t ≥ 0
never visits a level below N . In order to prove this, we couple our model with the following one.

On the interval [0, T1], we erase all the arrows pointing to levels above Kt , and pretend that
all individuals above level Kt , 0 ≤ t ≤ T1, are of type b, i.e. coded by 1, and we apply all the
crosses above level Kt . This model is clearly well defined since until T1 there is only one 0, all
other sites being occupied by 1’s. We next extend this model for t > T1 as follows:

For each t ≥ T1, let K̄t denote the lowest level occupied by a b individual. At time T1,
ηT1(1) = 0, ηT1(i) = 1, for all i ≥ 2. At any time t > T1, we shall have ηt (i) = 0 for i < K̄t ,
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and ηt (i) = 1 for i ≥ K̄t . Again all crosses are kept, and we keep only those arrows whose tip
hits a level j ≤ K̄t .

This model is well defined. For each N ≥ 1, we define SN as the first time where all the N
first individuals of this model are of type B. We have

Lemma 2.2. If T1 < ∞, then for each N ≥ 1,

SN < ∞ a.s.

Proof. The result follows from T1 < ∞ and the fact that the process of arrows from 1 to 2 is a
Poisson process with rate λ2,2 = Λ((0, 1)). �

Now, let ϕ(N ) = NeαSN (NeαSN + 1) + K0 and {ξ
ϕ(N )
t , t ≥ 0} denote the process which

describes the position at time t of the individual sitting on level ϕ(N ) at time 0 in the present
model.

We will prove below that the individual who sits on level ϕ(N ) at time 0 will remain below
the level ϕ(N ) + N on the time interval [0, SN ]. If she does not visit any level below N before
time SN , she will never visit any level below N at any time, and moreover any individual who
visits level ϕ(N ) + N before time SN will remain above the individual who was sitting at level
ϕ(N ) at time 0 until SN , hence will never visit any level below N .

Since the “true” model has more arrows and less “active crosses” than the present model, if we
show that in the present model a.s. there exists N such that the individual who starts from level
ϕ(N ) at time 0 never visits a level below N , we will have that in the true model a.s. for N large
enough the evolution within the box (t, i) ∈ [0,∞) × {1, 2, . . . , N } is not altered by removing
all the crosses above ϕ(N )+ N . A projective limiting argument allows us then to conclude that
the full model is well defined.

The result will follow from the Borel–Cantelli lemma and the following lemma.

Lemma 2.3. If T1 < ∞, then for each N ≥ M,

PN (∃0 < t ≤ SN such that ξϕ(N )t ≤ N ) ≤
2

N 2 ,

wherePN [.] = P(. | SN )

Proof. It is clear from the definition of ξϕ(N )t that there exists a death process (Dt , t ≥ 0), which
is independent of (Kt , t ≥ 0) conditionally upon D0 = ϕ(N )− K0, and such that

ξ
ϕ(N )
t = K̃t + Dt , ∀t ≥ 0,

where

K̃t =


Kt , 0 ≤ t ≤ T1;

K̄t − 1, t > T1.

On the other hand, we have

{ inf
0≤t≤SN

ξ
ϕ(N )
t > N } ⊃ { inf

0≤t≤SN
Dt > N } ⊃ {DSN > N }.

All we need to prove is that

PN (DSN ≤ N ) ≤
2

N 2 .
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The process (Dt , t ≥ 0) is a jump Markov death process which takes values in the space {0, 1,
. . . , ϕ(N ) − K0}. When in state n, Dt jumps to n − 1 at rate αn (recall that all crosses are kept
in the present model). In other words the infinitesimal generator of {Dt , t ≥ 0} is given by

Q f (n) = αn[ f (n − 1)− f (n)].

Let f : N → R. The process (M f
t )t≥0 given by

M f
t = f (Dt )− f (D0)− α

 t

0
Ds[ f (Ds − 1)− f (Ds)]ds (2.2)

is a martingale. Applying (2.2) with the particular choice f (n) = n, there exists a martingale
(M1

t )t≥0 such that M1
0 = 0 and

Dt = D0 − α

 t

0
Dsds + M1

t , t ≥ 0. (2.3)

We note that {M1
t , t ≥ 0} is a martingale under PN [.]. This is due to the fact that the Poisson

process of crosses above Kt is independent of Kt . We first deduce from (2.3) that EN (Ds) =

D0e−αs .
Using the fact that Dt is a pure death process, we obtain the identity

[M1
]t = D0 − Dt ,

which, together with (2.3), implies

⟨M1
⟩t = α

 t

0
Dsds.

From (2.3), it is easy to deduce that (recall that ϕ(N ) = NeαSN (NeαSN + 1)+ K0)

Dt = e−αt (ϕ(N )− K0)+

 t

0
e−α(t−s)d M1

s ,

which implies that

PN (DSN ≤ N ) ≤ PN

 SN

0
e−α(SN −s)d M1

s

 ≥ N 2eαSN


= PN

 SN

0
eαsd M1

s

 ≥ N 2e2αSN


≤

1

N 4e4αSN

 SN

0
αe2αsEN (Ds)ds

≤
2

N 2 .

The result is proved. �

From now on, we equip the probability space (Ω ,F ,P) with the filtration defined by Ft =

∩ε>0 F̊t+ε, where F̊t = σ {ηs(i), i ≥ 1, 0 ≤ s ≤ t} ∨ N , and N stands for the class of P-null
sets of F . Any stopping time will be defined with respect to that filtration.
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2.3. Exchangeability

In this subsection, we will show that the Λ-lookdown model with selection preserves the
exchangeability property, by an argument similar to that which we developed in [4].

Let Sn denote the group of permutations of the set {1, 2, . . . , n}. For all π ∈ Sn and a[n]
=

(ai )1≤i≤n ∈ {0, 1}
n , we define the vectors

π−1(a[n]) = (aπ−1(1), . . . , aπ−1(n)) = (aπi )1≤i≤n,

π(ξ
[n]

t ) = (ξt (π(1)), . . . , ξt (π(n))).

We should point out that π(ξ [n]

t ) is a permutation of (ξt (1), . . . , ξt (n)) and it is clear from the
definitions that

{π(ξ
[n]

t ) = a[n]
} = {ξ

[n]

t = π−1(a[n])}, for any π ∈ Sn . (2.4)

The main result of this subsection is

Theorem 2.4. If (η0(i))i≥1 are exchangeable random variables, then for all t > 0, (ηt (i))i≥1
are exchangeable.

We first establish two lemmas, which treat respectively the case of resampling and of death
events (we refer the reader to (1.2) for the definition of the collection {ti , i ≥ 1}).

Lemma 2.5. For any finite stopping time τ , any N-valued Fτ -measurable random variable n∗,
if the random vector η[n∗

]
τ = (ητ (1), . . . , ητ (n∗)) is exchangeable, and T is the first time after

τ of an arrow pointing to a level ≤ n∗ or a death at a level ≤ n∗, then conditionally upon the
fact that T = ti0 , for some i0 ≥ 1 and #(Iti0 ,pi0

∩ [n∗
]) = k, where k ≥ 2, the random vector

η
[n∗

−1+k]

ti0
=


ηti0
(1), . . . , ηti0

(n∗
− 2 + k), ηti0

(n∗
− 1 + k)


is exchangeable.

Note that η[n∗
−1+k]

ti0
is the list of the types of the individuals sitting on levels 1, . . . , n∗

−1+ k
just after a birth event during which one of the individuals sitting on a level between 1 and n∗

has put k − 1 children on levels up to n∗.

Proof. For the sake of simplifying the notations, we condition upon n∗
= n, ti0 = t, pti0

= p
and #(Iti0 ,pi0

∩ [n∗
]) = k. We start with some notation.

A j0,..., jk−1
t := {the k levels selected by the point (t, p) between

levels 1 and n are j0, j1, . . . , jk−1}.

We definePt,n[.] = P(.|ti0 = t, n∗
= n, #(It,p ∩ [n]) = k).

Thanks to (2.4), we deduce that, for π ∈ Sn−1+k, a[n−1+k]
∈ {0, 1}

n−1+k ,Pt,n(π(η
[n−1+k]

t ) = a[n−1+k])

=


1≤ j0< j1<···< jk−1≤n

Pt,n


{η

[n−1+k]

t = (aπ1 , . . . , aπn−1+k)}, A j0,..., jk−1
t


. (2.5)
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On the event A j0,..., jk−1
t , we have:

ηt (i) =


ηt−(i), if 1 ≤ i < j1
ηt−( j0), if i ∈ { j1, j2, . . . , jk−1}

ηt−(i − (#{{ j1, j2, . . . , jk−1} ∩ [i]})), if j1 < i ≤ n − 1 + k,
i ∉ { j2, . . . , jk−1}.

This implies that

A j0,..., jk−1
t ∩ {η

[n−1+k]

t = (aπ1 , . . . , aπn−1+k)} ⊂ {aπj0 = aπj1 = aπj2 = · · · = aπjk−1
}.

For 1 < j1 < j2 < · · · < jk−1 ≤ n, define the mapping ρ j1, j2,..., jk−1 : {0, 1}
n+k−1

−→ {0, 1}
n

by:

ρ j1, j2,..., jk−1(b1, . . . , bn−1+k) = (B j1 , . . . , B jk−1),

where

B j1 = (b1, . . . , b j1−1),

B jm = (b jm−1+1, b jm−1+2, . . . , b jm−1), 2 ≤ m ≤ k − 2

B jk−1 = (b jk−1+1, b jk−1+2, . . . , bn−1+k).

In other words, ρ j1, j2,..., jk−1(z) is the vector z from which the coordinates with indices j1, . . . ,
jk−1 have been suppressed. The right hand side of (2.5) is equal to

1≤ j0< j1<···< jk−1≤n

1{aπj0
=aπj1

···=aπjk−1
}
Pt,n


{η

[n]

t− = ρ j1, j2,..., jk−1

× (π−1(a[n−1+k]))}, A j0,..., jk−1
t


.

It is easy to see that the events (η[n]

t− = ρ j1, j2,..., jk−1(π
−1(a[n−1+k]))) and A j0,..., jk−1

t are indepen-
dent. Thus

Pt,n(π(η
[n−1+k]

t ) = a[n−1+k]) =


1≤ j0< j1<···< jk−1≤n

1{aπj0
=aπj1

···=aπjk−1
}

×Pt,n


η

[n]

t− = ρ j1, j2,..., jk−1 (π
−1(a[n−1+k]))

Pt,n(A
j0,..., jk−1
t )

=

n

k

−1 
1≤ j0< j1<···< jk−1≤n

1{aπj0
=aπj1

···=aπjk−1
}

×Pt,n


η

[n]

t− = ρ j1, j2,..., jk−1 (π
−1(a[n−1+k]))


.

On the other hand, we have

#{1 ≤ j0 < · · · < jk−1 ≤ n : a j0 = · · · = a jk−1}

= #{1 ≤ j0 < · · · < jk−1 ≤ n : aπj0 · · · = aπjk−1
}.

Let ℓ0 < ℓ1 < · · · < ℓk−1 be the increasing reordering of the set {π( j0), π( j1), . . . , π( jk−1)}.
If a j0 = a j1 = · · · = a jk−1 , then we have aπℓ0

= aπℓ1
· · · = aπℓk−1

= a j0 = a j1 = · · · = a jk−1 , and

consequently ρ j1, j2,..., jk−1(a
[n−1+k]) and ρℓ1,ℓ2,...,ℓk−1(π

−1(a[n−1+k])) contain the same number
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of 0’s and 1’s. Since η[n]

t− is exchangeable,

Pt,n(π(η
[n−1+k]

t ) = a[n−1+k]) =

n

k

−1 
γ∈{0,1}


1≤ℓ0<ℓ1<···<ℓk−1≤n

1{aπℓ0
=aπℓ1

···=aπℓk−1
=γ }

×Pt,n


η

[n]

t− = ρℓ1,ℓ2,...,ℓk−1(π
−1(a[n−1+k]))


=

n

k

−1 
γ∈{0,1}


1≤ j0< j1<···< jk−1≤n

1{a j0=a j1 ···=a jk−1=γ }

×Pt,n


η

[n]

t− = ρ j1, j2,..., jk−1(a
[n−1+k])


= Pt,n(η

[n−1+k]

t = a[n−1+k]).

The result follows. �

Lemma 2.6. For any finite stopping time τ , any N-valued Fτ -measurable random variable n∗, if
the random vector η[n∗

]
τ = (ητ (1), . . . , ητ (n∗)) is exchangeable, and T is the first time after τ of

an arrow pointing to a level ≤ n∗ or a death at a level ≤ n∗, then conditionally upon the fact that
T is the time of a death, the random vector η[n∗

−1]

T = (ηT (1), . . . , ηT (n∗
− 1)) is exchangeable.

Proof. To ease the notation we will condition upon n∗
= n and T = t . Let π ∈ Sn−1 and

a[n−1]
∈ {0, 1}

n−1 be arbitrary. We consider the events:

Bi
t := {the level of the dying individual at time t is i}.

LetPt,n[.] = P(.|T = t, n∗
= n). We have

Pt,n(π(η
[n−1]

t ) = a[n−1]) =


1≤i≤n

Pt,n


η

[n−1]

t = π−1(a[n−1]), Bi
t


=


1≤i≤n

Pt,n


ηt (1) = aπ1 , . . . , ηt (n − 1) = aπn−1, Bi

t


.

Define

cπ,ni = (aπ1 , . . . , aπi−1, 1, aπi , . . . , aπn−1), cn
i = (a1, . . . , ai−1, 1, ai , . . . , an−1).

The last term in the previous relation is equal to
1≤i≤n

Pt,n


η

[n]

t− = cπ,ni , Bi
t


=


1≤i≤n

P

η

[n]

t− = cπ,ni

Pt,n


Bi

t | η
[n]

t− = cπ,ni


=

1

1 +

n−1
j=1

aπj


1≤i≤n

P

η

[n]

t− = cπ,ni


.

Thanks to the exchangeability of (ηt−(1), . . . , ηt−(n)), we have

Pt,n(π(η
[n−1]

t ) = a[n−1]) =
1

1 +

n−1
j=1

a j


1≤i≤n

P

η

[n]

t− = cn
i


,

since
n−1

j=1 aπj =
n−1

j=1 a j and cπ,ni is a permutation of cπi . The result follows. �
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We can now proceed with the

Proof of Theorem 2.4. For each N ≥ 1, let {V N
t , t ≥ 0} denote the N-valued process which

describes the position at time t of the individual sitting on level N at time 0, with the convention
that, if that individual dies, we replace him by his neighbor below. The construction of our process
{ηt (i), i ≥ 1, t ≥ 0} in Section 2.2 shows that inft≥0 V N

t → ∞, as N → ∞.
It follows from Lemmas 2.5 and 2.6 that for each t > 0, N ≥ 1, (ηt (1), . . . , ηt (V N

t )) is an
exchangeable random vector.

Consequently, for any t > 0, n ≥ 1, π ∈ Sn, a[n]
∈ {0, 1},

|P(η[n]

t = a[n])− P(η[n]

t = π−1(a[n]))| ≤ P(V N
t < n),

which goes to zero, as N → ∞. The result follows. �

For each N ≥ 1 and t ≥ 0, denote by X N
t the proportion of type b individuals at time t among

the first N individuals, i.e.

X N
t =

1
N

N
i=1

ηt (i). (2.6)

We are interested in the limit of (X N
t )t≥0 as N tends to infinity. The following corollary is a

consequence of the well-known de Finetti’s theorem (see e.g. [1]), which says that since they are
exchangeable, the r.v.’s {ηt (i), i ≥ 1} are i.i.d., conditionally upon their tail σ -field.

Corollary 2.7. For each t ≥ 0,

X t = lim
N→∞

X N
t exists a.s. (2.7)

Remark 2.8. Since the r.v.’s ηt (i) take their values in {0, 1}, their tail σ -field is exactly σ(X t ).
This fact will be used below.

3. Tightness and convergence to the Λ-W–F SDE with selection

3.1. Tightness of {X N , N ≥ 1, t ≥ 0}

In this part, we will prove the tightness of (X N )N≥1 in D([0,∞[), where for each N ≥ 1 and
t ≥ 0, X N

t is defined by (2.6). For that sake, we shall write an integral equation for X N
t . We start

with some notation.
For any N , n, r, p such that N ≥ 1, Nr ∈ N, r ∈]0, 1], p ∈ [0, 1], we define Y (·, N , p) to be

the binomial distribution function with parameters N and p; H(·, N , n, r) the hypergeometric
distribution function with parameters (N − 1, n − 1, Nr−1

N−1 ); H̄(·, N , n, r) the hypergeometric

distribution function with parameters (N − 1, n − 1, Nr
N−1 ). For every v,w ∈ [0, 1], let

F N
p (v) = inf{s; Y (s, N , p) ≥ v},

G N ,n,r (w) = inf{s; H(s, N , n, r) ≥ w},

Ḡ N ,n,r (w) = inf{s; H̄(s, N , n, r) ≥ w}.

It follows that if V,W are U([0, 1]) r.v.’s, then the law of F N
p (V ) is binomial with parameters

N , p. G N ,n,r (W )(resp Ḡ N ,n,r (W )) is hypergeometric with parameters N − 1, n − 1, Nr−1
N−1
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(resp N − 1, n − 1, Nr
N−1 ). Note that F N

p (·) = Y −1(·, N , p),G N ,n,r (·) = H−1(·, N , n, r) and
Ḡ N ,n,r (·) = H̄−1(·, N , n, r). We recall that if X is hypergeometric with parameters (N , n, p)
such that N p ∈ N and p ∈ [0, 1], then

E(X) = np and Var(X) =
N − n

N − 1
np(1 − p).

Now, for every r, u, p, v, w ∈ [0, 1], let

ψN (r, u, p, v, w) =
1
N

1F N
p (v)≥2


1u≤r


F N

p (v)− 1 − G N ,F N
p (v),r

(w)


− 1u>r Ḡ N ,F N
p (v),r

(w)

. (3.1)

From the identity r(n − 1 − E[G N ,n,r (W )]) = (1 − r)E[Ḡ N ,n,r (W )], we deduce the

Lemma 3.1. For each N ≥ 1, r, p, v ∈ [0, 1] and t ≥ 0,
]0,1]

2
ψN (r, u, p, v, w)dudw = 0.

Using the definition of the model, one deduces that

X N
t = X N

0 +


[0,t]×]0,1]

4
ψN (X N

s− , u, p, v, w)M0(ds, du, dp, dv, dw)

−
1
N


[0,t]×[0,1]

1u≤X N
s−

1ηs−(N+1)=0 M N
1 (ds, du)

where M0 and M N
1 are two mutually independent Poisson point processes. M0 is a Poisson point

process on R+ ×[0, 1]× [0, 1]× [0, 1]× [0, 1] with intensity measure µ(ds, du, dp, dv, dw) =

dsdup−2Λ(dp)dvdw, M N
1 is a Poisson point process on R+ × [0, 1] with intensity measure

αNλ(ds, du) = αNdsdu. The reason why X N
t follows the above SDE is as follows. Births

events happen according to the PPP m. With probability X N
s− , the individual which is copied (if

at all) is of type 1. It is copied in a number which equals (F N
p (V )−1)+, where F N

p (V ) follows the
binomial law (N , p). The increase in the number of 1’s is that number, minus the number of ones
which get pushed over level N , and that umber is the hypergeometric r.v. G N ,F N

p (V ),X
N
s−
(W ). In

case the individual who is copied is a 0, the decrease in the number of ones is the hypergeometric
r.v. Ḡ N ,F N

p (V ),X
N
s−
(W ). Concerning the deaths, they happen according to a PPP with rate αN X N

s− ,

and a death at time s decreases the number of 1’s by 1 iff ηs−(N + 1) = 0.
Now let

M̄0 = M0 − µ, M̄ N
1 = M N

1 − αNλ. (3.2)

Using Lemma 3.1, we have

X N
t = X N

0 +


[0,t]×]0,1]

4
ψN (X N

s− , u, p, v, w)M̄0(ds, du, dp, dv, dw)

−
1
N


[0,t]×[0,1]

1u≤X N
s−

1ηs−(N+1)=0 M̄ N
1 (ds, du)− α

 t

0
X N

s 1ηs (N+1)=0ds. (3.3)
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For each N ≥ 1, t ≥ 0, we define

M N
t =


[0,t]×]0,1]

4
ψN (X N

s− , u, p, v, w)M̄0(ds, du, dp, dv, dw)

N N
t =

1
N


[0,t]×]0,1]

1u≤X N
s−

1ηs−(N+1)=0 M̄ N
1 (ds, du)

V N
t = −α

 t

0
X N

s 1ηs (N+1)=0ds.

M N
t and N N

t are two orthogonal martingales. We have

X N
t = X N

0 + V N
t + M N

t − N N
t .

∀N ≥ 1, X N
0 ∈ [0, 1], which implies that it is tight. Moreover, we have

Proposition 3.2. The sequence (X N , N ≥ 1) is tight in D([0,∞]).

We first establish the lemma:

Lemma 3.3. For each N ≥ 1 and t ≥ 0,

⟨M N
⟩t = Λ((0, 1))

 t

0
X N

s (1 − X N
s )ds

⟨N N
⟩t =

α

N

 t

0
X N

s 1ηs (N+1)=0ds.

Proof. Using the fact that M N and N N are pure-jump martingales, we deduce that

⟨M N
⟩t =


[0,t]×]0,1]

4
(ψN (X N

s , u, p, v, w))2dsdup−2Λ(dp)dvdw.

Let

A N (X N
s , p) =


]0,1]

3
(ψN (X N

s , u, p, v, w))2dudvdw

=
1

N 2


]0,1]

2
1F N

p (v)≥2


X N

s


F N

p (v)− 1 − G N ,F N
p (v),X

N
s−
(w)

2

+ (1 − X N
s )(Ḡ N ,F N

p (v),X N
s
(w))2


dvdw.

Tedious but standard calculations yield
[0,1]


r


F N
p (v)− 1 − G N ,F N

p (v),r
(w)

2
dw + (1 − r)


Ḡ N ,F N

p (v),r
(w)

2
dw

=
N

N − 1
r(1 − r)F N

p (v)(F
N
p (v)− 1),

for every v, r ∈ [0, 1]
2. Consequently

A N (X N
s , p) =

X N
s (1 − X N

s )

N (N − 1)


[0,1]

1F N
p (v)≥2 F N

p (v)(F
N
p (v)− 1)dv

= p2 X N
s (1 − X N

s ).
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We deduce that

⟨M N
⟩t =


[0,t]×[0,1]

A N (X N
s , p)dsp−2Λ(dp)

= Λ((0, 1))


[0,t]
X N

s (1 − X N
s )ds.

Similarly, we have

⟨N N
⟩t =

α

N


[0,t]×[0,1]

1u≤X N
s

1ηs (N+1)=0dsdu

=
α

N


[0,t]

X N
s 1ηs (N+1)=0ds.

The lemma has been established. �

We can now proceed with the

Proof of Proposition 3.2. We have

X N
t = X N

0 + V N
t + M N

t − N N
t

and

⟨M N
− N N

⟩t = ⟨M N
⟩t + ⟨N N

⟩t .

Moreover, from Lemma 3.3dV N
t

dt

 ≤ α, 0 ≤
d⟨M N

⟩t

dt
≤

Λ((0, 1))
4

, 0 ≤
d⟨N N

⟩t

dt
≤
α

N
.

Aldous’ tightness criterion (see Aldous [2]) is an easy consequence of those estimates. �

Now, from Proposition 3.2 and (2.7), it is not hard to show there exists a process X ∈ D([0,
∞)), such that for all t ≥ 0,

X N
t → X t a.s., (3.4)

and

X N
⇒ X weakly in D([0,∞)).

3.2. Convergence to the Λ-Wright–Fisher SDE with selection

Our goal is to get a representation of the process (X t )t≥0 defined in (3.4) as the unique weak
solution to the stochastic differential equation (1.3).

Let (Ω ,F ,P) be a fixed probability space, on which the above Poisson measures are defined,
which is equipped with the filtration described at the end of Section 2.2. Recall the Poisson point
measure M =


∞

i=1 δti ,ui ,pi defined in the Introduction, and for every u ∈]0, 1[ and r ∈ [0, 1],
we introduce the elementary function

Ψ(u, r) = 1u≤r − r.
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We rewrite Eq. (1.3) as

X t = x − α

 t

0
Xs(1 − Xs)ds +


[0,t]×]0,1[

2
pΨ(u, Xs−)M̄(ds, du, dp),

t > 0, 0 < x < 1, (3.5)

which we call the Λ-Wright–Fisher SDE with selection. Without loss of generality, we shall
assume that α > 0, which means that X t represents the proportion of non-advantageous alleles.

The proof of the following identity is standard and left to the reader.

Lemma 3.4. For each r ∈ [0, 1],
[0,1]4


ψN (r, u, p, v, w)− pΨ(u, r)

2
dup−2Λ(dp)dvdw

= 2r(1 − r)
 N

N − 1


[0,1]2

(1 − up)N−1duΛ(dp)−
Λ([0, 1])

N − 1


.

Let us now prove the main result of this section.

Theorem 3.5. Suppose that X N
0 → x a.s., as N → ∞. Then the [0, 1]-valued process {X t ,

t ≥ 0} defined by (3.4) is the unique solution to the Λ-W–F SDE with selection (3.5).

Proof. Strong uniqueness of the solution to (3.5) follows from Theorem 4.1 in [7]. We now prove
that (X t )t≥0 defined by (3.4) is a solution to the Λ-Wright–Fisher (3.5).

We know that X N
t → X t a.s. for all t ≥ 0 and that X N

⇒ X weakly in D([0,+∞)) as
N → ∞. Recall the decomposition

X N
t = X N

0 + M N
t − N N

t + V N
t . (3.6)

It follows from Lemma 3.3 that N N
t → 0 in probability, as N → ∞. We next show that

M N
t →


[0,t]×]0,1[×]0,1[

pΨ(X t− , u)M̄(ds, du, dp) in probability, as N → ∞, (3.7)

where M =

[0,1]2 M̄0(., ., ., dv, dw). For each N ≥ 1 and t ≥ 0, let

hN (t) =


[0,t]×[0,1]4


ψN (X N

s− , u, p, v, w)− pΨ(Xs− , u)


M̄0(ds, du, dp, dv, dw),

where M̄0 is defined by (3.2). {hN (t), t ≥ 0} is a martingale, and

⟨hN
⟩t =


[0,t]×[0,1]4


ψN (X N

s , u, p, v, w)− pΨ(Xs, u)
2

dsdup−2Λ(dp)dvdw.

We have

⟨hN
⟩t ≤ 2


[0,t]×[0,1]2


pΨ(X N

s , u)− pΨ(Xs, u)
2

dsdup−2Λ(dp)

+ 2t sup
0≤s≤t


[0,1]4


ψN (X N

s , u, p, v, w)− pΨ(X N
s , u)

2
dup−2Λ(dp)dvdw
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≤ 2


[0,t]×[0,1]2


pΨ(X N

s , u)− pΨ(Xs, u)
2

dsdup−2Λ(dp)

+ 2t sup
0≤r≤1


[0,1]4


ψN (r, u, p, v, w)− pΨ(r, u)

2
dup−2Λ(dp)dvdw.

Using the fact that X N
s → Xs a.s., it is not hard to show by the dominated convergence theorem

that as N → ∞,
[0,t]×[0,1]2


Ψ(X N

s , u)− Ψ(Xs, u)
2

dsduΛ(dp) → 0 a.s. (3.8)

Now from Lemma 3.4, it is easy to show that as N → ∞,

sup
0≤r≤1


[0,1]4


ψN (r, u, p, v, w)− pΨ(r, u)

2
dup−2Λ(dp)dvdw → 0. (3.9)

Combining (3.8) and (3.9), we deduce that

∀t ≥ 0, ⟨hN
⟩t → 0 a.s., as N → ∞.

On the other hand, from the bound |ψ(r, u)| ≤ 1 and Lemma 3.4, we deduce that

⟨hN
⟩t ≤ CtΛ([0, 1]), ∀N ≥ 2.

Hence from the dominated convergence theorem

lim
N→∞

E[hN (t)2] = 0 ∀t ≥ 0

i.e.

M N
t =


[0,t]×[0,1]4

ψN (X N
s− , u, p, v, w)M̄0(ds, du, dp, dv, dw)

L2

−→


[0,t]×[0,1]4

pΨ(Xs− , u)M̄(ds, du, dp)

as N → ∞, in particular

M N
t →


[0,t]×[0,1]2

pΨ(Xs− , u)M̄(ds, du, dp) in probability, as N → ∞.

(3.7) is established.
From (3.6), we deduce that

1
N

N
k=1

V k
t =

1
N

N
k=1

X k
t −

1
N

N
k=1

X k
0 −

1
N

N
k=1

Mk
t +

1
N

N
k=1

N k
t .

It follows from the above arguments and our assumption on the initial condition that for all t ≥ 0,
as N → ∞, the right-hand side converges in probability towards

X t − x −


[0,t]×[0,1]4

pΨ(Xs− , u)M̄(ds, du, dp).
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But

1
N

N
k=1

V k
t = −α

 t

0

1
N

N
k=1

X k
s 1ηs (k+1)=0ds

= −α

 t

0

1
N

N
k=1


X k

s − Xs


1ηs (k+1)=0ds − α

 t

0
Xs


1
N

N
k=1

1ηs (k+1)=0


ds

→ 0 − α

 t

0
Xs(1 − Xs)ds

a.s., as N → ∞. The result follows clearly from the above facts. �

Remark 3.6. Our proof establishes in fact that for all t > 0, as N → ∞, t

0
X N

s 1ηs (N+1)=0ds →

 t

0
Xs(1 − Xs)ds

in probability. This does not mean that 1ηs (N+1)=0 converges, but it seems intuitively clear that
for any 0 ≤ r < t , t

r
1ηs (N+1)=0ds →

 t

r
(1 − Xs)ds.

However, that convergence is not really easy to establish.

Remark 3.7. Suppose we know a priori that (X t )t≥0 defined by (3.4) is a Markov process. Then
we can prove that (X t )t≥0 is a solution to the Λ-Wright–Fisher SDE (3.5) as follows. Let us
look backwards from time t to time 0. For each 0 ≤ s ≤ t , we denote by Zn,t

s the highest level
occupied by the ancestors at time s of the n first individuals at time t . We know that conditionally
upon X t , the {ηt (i), i ≥ 1} are i.i.d. Bernoulli with parameter X t . Consequently, for any n ≥ 1,

Xn
t = P(ηt (1) = · · · = ηt (n) = 1 | X t ),

this implies that

Ex [Xn
t ] = Ex [P(ηt (1) = · · · = ηt (n) = 1 | X t )]

= Px (ηt (1) = · · · = ηt (n) = 1)

= Px (the 1 · · · Zn,t
0 individuals at time 0 are all b)

= En[x Zn,t
0 ].

It is plain that the conditional law of Zn,t
0 , given that (ηt (1) = · · · = ηt (n) = 1) equals the

conditional law of Rt , given that R0 = n. Consequently, for each n ≥ 1

E[Xn
t | X0 = x] = E[Y n

t | Y0 = x],

where (Yt )t≥0 is a solution to (3.5). But for all t > 0, r ∈ [0, 1], the conditional law of X t , given
that X0 = x is determined by its moments, since X t is a bounded r.v. So (X t )t≥0 and (Yt )t≥0
have the same transition densities, that is {X t , t ≥ 0} is the unique weak solution to (3.5).

3.3. An alternative proof of uniqueness

Uniqueness in law could also by proved as in [6] (where the case α = 0 is treated) by a duality
argument, which we now sketch.
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Recall the notation Ψ(u, y) = 1u≤y − y. For every y ∈ [0, 1] and every function g : [0, 1] →

R of class C 2, we set

Lg(y) =


[0,1]×[0,1]


g(y + pΨ(u, y))− g(y)− pΨ(u, y)g′(y)


× p−2Λ(dp)du − αg′(y)(1 − y)y.

A solution (Yt )t≥0 of (3.5) is a Markov process with generator L. Hence for every g : [0, 1] → R
of class C 2, the process

g(Yt )−

 t

0
dsLg(Ys), t ≥ 0

is a martingale.
It is plain that for g(z) = zn

Lg(z) =

n
k=2

n

k


λn,k(z

n−k+1
− zn)+ αn(zn+1

− zn). (3.10)

Let {Rt , t ≥ 0} be a N-valued jump Markov process which, when in state k, jumps to

1. k − ℓ+ 1 at rate


k
ℓ


λk,ℓ, 2 ≤ ℓ ≤ k;

2. k + 1 at rate αk, α > 0.

In other words, the infinitesimal generator of {Rt , t ≥ 0} is given by:

L∗ f (k) =

k
ℓ=2


k

ℓ


λk,ℓ[ f (k − ℓ+ 1)− f (k)] + αk[ f (k + 1)− f (k)].

For every z ∈ [0, 1] and every r ∈ N, we set

P(z, r) = zr . (3.11)

Viewing P(z, r) as a function of r , we have

L∗ P(z, r) =

r
k=2

r

k


λr,k[z

r−k+1
− zr

] + αr [zr+1
− zr

].

On the other hand, viewing P(z, r) as a function of z we can easily evaluate L P(z, r) from
formula (3.10), and we deduce that

L P(z, r) = L∗ P(z, r). (3.12)

Now suppose that (Yt )t≥0 is a solution to (3.5), and let R0 = n. By a standard argument (see
Section 4.4 in [11]) we deduce from (3.12) that

E[P(Yt , R0)] = E[P(Y0, Rt )],

i.e

E[Y n
t |Y0 = x] = E[x Rt |R0 = n].

Since this is true for each n ≥ 1 and Yt take values in the compact set [0, 1], this is enough
to identify the conditional law of Yt , given that Y0 = x , for all 0 ≤ x ≤ 1. Since (Yt )t≥0 is a
homogeneous Markov process, this implies that the law of (Yt )t≥0 is uniquely determined.
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4. Fixation and non-fixation in the Λ-W–F SDE

4.1. The CDI property of the Λ-coalescent

In this subsection, we recall a remarkable property of the Λ-coalescent (Πt )t≥0 defined in the
introduction. For each n ≥ 1, let #Π [n]

t denote the number of blocks in the partition Π [n]

t (Π [n]

t

is the restriction of Πt to [n]). Then let Tn = inf{t ≥ 0 : #Π [n]

t = 1}. As stated in (31) of [19],
we have

0 = T1 < T2 ≤ T3 ≤ · · · ↑ T∞ ≤ ∞.

We say the Λ-coalescent comes down from infinity (Λ ∈ CDI) if P(#Πt < ∞) = 1 for all t > 0,
and we say it stays infinite if P(#Πt = ∞) = 1 for all t > 0. The coalescent comes down from
infinity if and only if T∞ < ∞ a.s. We will show that this is equivalent to fixation. Kingman
showed that the δ0-coalescent comes down from infinity.

A necessary and sufficient condition for a Λ-coalescent to come down from infinity was given
by Schweinsberg [21]. Define

φ(n) =

n
k=2

(k − 1)
n

k


λn,k,

and

ν(dp) = p−2Λ(dp).

It is not hard to deduce from the binomial formula that

φ(n) =

 1

0
[np − 1 + (1 − p)n]ν(dp).

Schweinsberg’s result [21] says that the Λ-coalescent comes down from infinity if and only if

∞
n=2

1
φ(n)

< ∞. (4.1)

We shall see below that the convergence of this series is also necessary and sufficient for fixation
in finite time. Using the fact that the function fn(p) = (1 − p)n − 1 is decreasing for any fixed
n, we have 1

0
(np − 1)ν(dp) ≤ φ(n) ≤ n

 1

0
pν(dp), ∀n ≥ 1.

The last assertion together with (4.1), implies that if
 1

0 pν(dp) < ∞ then the Λ-coalescent stays
infinite. This result has been proved by Pitman (see Lemma 25 in [19]).

Theorem 3.5 shows that (X t )t≥0 is a bounded supermartingale. Indeed, if (X t )t≥0 is a solution
to (3.5), then for all 0 ≤ t ≤ s,

E(X t | Fs) ≤ x − α

 s

0
Xr (1 − Xr )dr

+ E


[0,t]×]0,1[×]0,1[

pΨ(u, Xs−)M̄(ds, du, dp) | Fs


= Xs .
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Consequently the following limit exists a.s.

X∞ = lim
t→∞

X t ∈ {0, 1}. (4.2)

Indeed, 0 and 1 are the only possible limit values.

4.2. Fixation and non-fixation in the Λ-W–F SDE

We assume that the initial proportion x of type B individuals satisfies 0 < x < 1. In this
section, we prove that fixation happens in finite time iff the condition (4.1) is satisfied. Before
establishing the main result of this section, we collect some results which will be required for its
proof.

Lemma 4.1.

φ(n)

n
↑

 1

0
pν(dp) as n ↑ ∞,

where ν(dp) = p−2Λ(dp).

Proof.

φ(n) =

 1

0


np − 1 + (1 − p)n


ν(dp)

=

 1

0


n

p


1 −

 1

0
(1 − up)n−1du


Λ(dp).

On the last line, we have made use of the identity

(1 − p)n − 1 =

 1

0
−np(1 − up)n−1du.

For each p ∈]0, 1], let

f n(p) =
1
p


1 −

 1

0
(1 − up)n−1du


.

We have,

n−1φ(n) =

 1

0
f n(p)Λ(dp).

The result follows from the monotone convergence theorem. �

We now deduce that

Lemma 4.2. The function φ increases, and

∞
n=2

1
φ(n)

< ∞ ⇒

∞
n=2

1
φ(n)− αn

< ∞.
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Proof. We have

φ(n + 1)− φ(n) =

 1

0
[p + (1 − p)n+1

− (1 − p)n]ν(dp)

=

 1

0
p(1 − (1 − p)n)ν(dp)

≥ 0.

Which implies the first claim. Now, we already know that if


∞

n=2
1

φ(n) < ∞, then
 1

0 pν(dp) =

∞. Thus, the second assertion is a consequence of the last lemma and the following relation
∞

n=2

1
φ(n)− αn

=

∞
n=2

α

φ(n)(n−1φ(n)− α)
+

∞
n=2

1
φ(n)

.

The lemma is proved. �

For each t ≥ 0, we define again

Kt = inf{i ≥ 1 : ηt (i) = 0}

and

T1 = inf{t ≥ 0 : Kt = 1}.

We have the following

Theorem 4.3. If Λ ∈ CDI, then one of the two types (b or B) fixates in finite time, i.e.

∃ ζ < ∞ a.s. : Xζ = X∞ ∈ {0, 1}.

If Λ ∉ CDI, then

∀t ≥ 0, 0 < X t < 1 a.s.

Proof. The proof has been inspired by [5] (see Section 4).
STEP 1: Suppose that Λ ∈ CDI. We consider two cases.

CASE 1: K0 = 1.
In this case, the allele B fixates in the population. Indeed, the individual at level 1 never dies

and he cannot be pushed to an upper level. Let

ζ = inf{t > 0 : ηt (i) = 0, ∀i ≥ 1}.

ζ is the time of fixation of allele B. We are going to show that ζ < ∞ a.s.
We couple our original population process with the following N-valued process {Yt , t ≥ 0},

which describes the growth of a population which we denote “the B-population”, and whose
dynamics we now describe. Y0 = 1, at time zero the B-population consists of a unique individual
who occupies site 1, while all other sites k ≥ 2 are empty. We follow the same realizations of
the Poisson point process m on R+ × [0, 1] (see (1.2)) and of the sets It,p as presented in the
Introduction.

At each time t corresponding to an atom (t, p) of the Poisson point process m, we associate
the set It,p. We put a cross at time t on all levels i ∈ It,p, except the lowest one. If there is at
least one cross on the interval [2, Yt− + 1], we modify the population as follows (otherwise we
do nothing). All individuals sitting at time t− below the lowest cross do not move. All others
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are displaced upwards in such a way that all sites with a cross become free, and the respective
orders of the individuals remain unchanged. Finally, individuals are added on all sites with a
cross which lie below or immediately above an occupied site. Clearly, as long as the growing
number of individuals of the B-population remains below any given value k, the number of
atoms of the Poisson process m which modify the size of the population on any given finite time
interval remains finite, and each jump in the population size is finite. However, we will now show
that as a consequence of the CDI property of the associated coalescent process, the jumps of Yt
accumulate in such a way that Yt = +∞, for some finite (random) t . Since it is plain that Yt is
less than the total number of type B individuals in the population, this will show that ζ < ∞ a.s.

Indeed, looking backward in time, starting from any t > 0 the process which describes the
genealogy of the “B-population” is the Lambda-coalescent. More precisely, as a time-reversal
of our B-population process, it is the Lambda-coalescent starting from the random value Yt , and
conditioned upon the fact that all the partitions have coalesced into one single partition by time 0.

This claim is justified as follows. Let {Us = Yt−s, 0 ≤ s ≤ t}. At each time s of a point (s, p)
of the PPP m where ♯


Is,p ∩ [1,Us−]


≥ 2, all lineages of the set Is,p∩[1,Us−] coalesce. Would

we describe the evolution of {Us, s ≥ 0} using copies of m and the Is,p’s which would be inde-
pendent of those used to describe the growth of Y·, then U·, starting from U0 = Yt = N , would
be an instance of the N–Λ-coalescent. Here and below we make a slight abuse of terminology,
calling Λ-coalescent the process which describes the number of blocks in a Λ-coalescent.

For each N ≥ 2, we define

ξN = inf{t > 0, Yt ≥ N },

and by θN the time taken by the N–Λ-coalescent to reach 1. It follows from an obvious coupling
that N → θN is increasing. In fact we shall only use the fact that N → EθN is increasing. Since
YξN − < N , it is plain that

EξN ≤ Eξ2 + EθN , (4.3)

and moreover the law of ξ2 is exponential with parameter
 1

0 p2ν(dp). Let us admit for a moment
the

Lemma 4.4. For any N > 1,

EθN ≤

∞
k=2

φ(k)−1,

and this bound is finite since Λ ∈ CDI.

Since ζ ≤ limN→∞ ξN , it follows from (4.3) and Lemma 4.4 that Eζ < ∞.
In order to conclude Case 1 of the first step of the proof of our theorem, let us proceed with the

Proof of Lemma 4.4. The Markov process which describes the number of ancestors in

Λ-coalescent jumps from n to n − ℓ + 1 (2 ≤ ℓ ≤ n) at rate


n
ℓ


λn,ℓ. In other words, its

infinitesimal generator Q is given by

Q f (n) =

n
ℓ=2


n
ℓ


λn,ℓ[ f (n − ℓ+ 1)− f (n)].

Let us define for each n ≥ 1

f (n) =

∞
k=n+1

1
φ(k)

.
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We have for 2 ≤ ℓ ≤ n

f (n − ℓ+ 1)− f (n) =

n
k=n−ℓ+2

1
φ(k)

.

Recall Lemma 4.2. Since 1/φ is decreasing, we have for 2 ≤ ℓ ≤ n,

f (n − ℓ+ 1)− f (n) ≥ (ℓ− 1)
1

φ(n)
,

and therefore

Q f (n) ≥
1

φ(n)

n
ℓ=2

n

ℓ


(ℓ− 1)λn,ℓ = 1.

Using the fact that the process

f (Ut )− f (U0)−

 t

0
Q f (Us)ds, t ≥ 0

is a martingale, we obtain

E(θN ) ≤ E
 θN

0
Q f (Us)ds


≤ f (1). �

CASE 2: K0 > 1.
If T1 < ∞ then type B fixates in finite time. Indeed, wait until T1 which is a stopping time at

which the Markov process {ηt (i), i ≥ 1}t≥0 starts afresh, and then use the argument from Case 1.
We suppose now that T1 = ∞, which implies that Kt → ∞ as t → ∞, as already noted in

Section 2.2.2. In other words, if T1 = ∞, then the allele B does not fixate in the population. Let

n0 = inf{n ≥ 1 : φ(n)− αn ≥ 1}.

Such an n0 exists because since Λ ∈ CDI,
 1

0 pν(dp) = +∞, hence by Lemma 4.1, we have
limn→∞ n−1φ(n) = +∞.

We define a “b-population” {Yt , t ≥ 0}, which again starts from a unique ancestor sitting
on level 1. The novelty is that now each individual dies at rate α. It then may happen that the
“b-population” gets empty. In that case, we immediately start afresh with a new unique ancestor
sitting at level 1. The fact that eventually the “b-population” grows and become larger than any
N is a consequence of the fact that Kt → ∞ as t → ∞.

Note that the process describing the number of ancestors of the present individuals in that
population is now a jump-Markov process with generator Qα given by

Qα f (n) =

n
ℓ=2

n

ℓ


λn,ℓ[ f (n − ℓ+ 1)− f (n)] + αn( f (n + 1)− f (n)),

conditioned upon hitting 1 before time t .
Let N > n0 denote a fixed integer, ξN the time taken by the “b-population” to reach the value

N , i.e.

ξN = inf{t > 0, Yt ≥ N },
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and by θn0
N the time taken by the process with generator Qα to come down below n0, starting

from N . Similarly as in (4.3), we have

EξN ≤ Eξn0 + Eθn0
N . (4.4)

In order to show that the allele b fixates in finite time, it remains to establish the

Lemma 4.5. There exists a constant C < ∞ such that

Eθn0
N ≤ C,

for all N > n0.

Proof. For each n ≥ 1, we define

f (n) =

∞
k=n+1

1
(φ(k)− αk) ∨ 1

.

By Lemma 4.2, for each n ≥ 2, f (n) is finite. We have for 2 ≤ ℓ ≤ n

f (n − ℓ+ 1)− f (n) =

n
k=n−ℓ+2

1
(φ(k)− αk) ∨ 1

.

Since k → 1/(φ(k)− αk) ∨ 1 is decreasing, we obtain

f (n − ℓ+ 1)− f (n) ≥ (ℓ− 1)
1

(φ(n)− αn) ∨ 1
,

and therefore

Q f (n) ≥
1

(φ(n)− αn) ∨ 1

n
ℓ=2

n

ℓ


(ℓ− 1)λn,ℓ −

αn

(φ(n + 1)− α(n + 1)) ∨ 1

=
φ(n)

(φ(n)− αn) ∨ 1
−

αn

(φ(n + 1)− α(n + 1)) ∨ 1

≥
φ(n)

(φ(n)− αn) ∨ 1
−

αn

(φ(n)− αn) ∨ 1

hence Q f (n) ≥ 1, for each n ≥ n0. Since the process

f (Ut )− f (U0)−

 t

0
Q f (Us)ds, t ≥ 0

is a martingale and Ut remains bounded while 0 ≤ t ≤ θ
n0
N ,

E(θn0
N ) ≤ E

 θ
n0
N

0
Q f (Us)ds


= f (U

θ
n0
N
)− f (U0)

≤ f (1). �

STEP 2: Suppose Λ ∉ CDI, that is the Λ-coalescent does not come down from infinity. We
have

∞
n=2

1
φ(n)

= +∞. (4.5)
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We claim that (Kt , t ≥ 0) does not reach ∞ in finite time. The contrary would imply that
∃T < ∞ such that KT = ∞ a.s., so the number of ancestors at time 0 of the infinite population
at time T in the Λ-lookdown model would be finite, which contradicts the fact that Λ ∉ CDI.
Hence Kt < ∞ a.s. This implies that X t < 1, for all t ≥ 0. Indeed if X t = 1, for some t > 0,
by applying de Finetti’s Theorem, we deduce that ηt (i) = 1, ∀i ≥ 1, which contradicts the fact
that Kt < ∞. It remains to show that X t > 0 for all t ≥ 0.

For any m ≥ 1, t > 0, we define the event

Am
t = {The m first individuals of type b at time 0 are dead at time t}.

We have

P(Am
t ) = (1 − e−αt )m,

and then

P(∩m Am
t ) = 0 ∀t > 0.

From this, we deduce that ∃i ≥ 1 such that ηt (i) = 1. The same argument used for the proof of
X t < 1 now shows that X t > 0, for all t ≥ 0. �

4.3. The law of X∞

Let x be the proportion of type b individuals at time 0, where 0 < x < 1. As the individual at
level 1 cannot be pushed to an upper level, we have

{η0(1) = 0} ⊂ {X∞ = 0}, hence P(X∞ = 0) ≥ 1 − x .

If α = 0, (X t )t≥0 is a bounded martingale, so

P(X∞ = 1) = E(X∞) = E(X0) = x .

If α > 0, by using (3.5) together with (4.2), we deduce that

P(X∞ = 1) = EX∞ < x .

In this subsection we want to describe those cases where can we decide whether P(X∞ = 1) > 0
or P(X∞ = 1) = 0. We first prove

Proposition 4.6. If Λ ∈ CDI, then

P(X∞ = 1) > 0.

Proof. Since Λ ∈ CDI, if all individuals at time 0 would be of type b, there would be a (random)
level J such that the individual sitting on level J at time 0 reaches +∞ in finite time. Now
P(X∞ = 1) > 0 follows from the fact that P(K0 > J ) > 0, where K0 denotes the lowest level
occupied by a type B individual at time 0. �

In the case Λ ∉ CDI, since selection has infinite time to act, one may wonder whether or not
P(X∞ = 1) = 0. Some partial results have been obtained in that direction in Bah [3], but since
then the question has been completely settled by Foucart [12] and Griffiths [14], who prove
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Theorem 4.7. Suppose that 0 < x < 1, and let

α∗
:=

 1

0
log


1

1 − p


ν(dp).

1. If α < α∗, then 0 < P(X∞ = 0|X0 = x) < 1.
2. If α ≥ α∗, then X∞ = 0 a.s.

Needless to say, if α∗
= +∞, which is in particular the case when Λ ∈ CDI, we are in the

first case. Note that [12] settles the two cases α < α∗ and α > α∗, while [14] treats the case
α = α∗ as well, assuming α∗ < ∞ in the first case. We refer to [12,14] for references to earlier
partial results on this problem in the biological literature.

4.4. The fixation line, special case of the Bolthausen–Sznitman coalescent

The aim of this section is to connect our model and results with the recent work of Hénard
[16], and to compute the law of X∞ and the speed at which either type invades the whole
population, in the case of the Bolthausen–Sznitman coalescent.

Hénard’s definition of the fixation line is as follows. Consider the levels of the offsprings
at time t > 0 of the individual sitting at time 0 at level 1. This constitutes a subset of N, the
connected component containing 1 of which is of the form {1, . . . , L t }. This defines the fixation
line L t . In our case (in contradiction with Hénard’s situation), there may be no such connected
component containing 1, if η0(1) = 1 and ηt (1) = 0 for some t > 0, in which case we define L t
to be 0. Hénard’s fixation line is an increasing process. Our is increasing if the individual sitting
on level 1 at time 0 is of type B (i.e. is a 0), but this is not the case if that individual is of type b
(i.e. is a 1).

We are only interested in this second case, which is the only one where conditionally upon the
value of η0(1), X∞ is random. However, we will not necessarily assume that L0 = 1. We prefer
to define the fixation line as follows.

For all t ≥ 0, let

L t = max{k ≥ 1; η1(t) = η2(t) = · · · = ηk(t) = 1},

and this defines also L0. Equivalently, L t = Kt − 1, where Kt is the lowest level occupied at
time t by an individual of type 0, see the discussion in Section 2.2.2. L t is clearly a Z+-valued
continuous time Markov process.

L t does not evolve as discussed in [16], since those individuals sitting on levels {1, 2, . . . , L0},
as well as their offsprings, are type b individuals, who die at rate α, each death inducing a jump
of L t of size −1. The process {L t , t ≥ 0} is a Z+-valued Markov process, whose jump rates are
given by

Γi, j =




j
j − i + 1

 1

0
x j−i−1(1 − x)iΛ(dx), if 1 ≤ i < j < ∞;

αi, if j = i − 1;

whenever i ≥ 1, and the process is absorbed at 0. Indeed, Γi, j is the rate at which Kt jumps
from i + 1 to j + 1. As was shown in Section 2.2.2, either L t → ∞, as t → ∞, in which case
X∞ = 1, or else L t hits zero in finite time, in which case X∞ = 0. In the first case, L t explodes
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in finite time iff Λ ∈ CDI. In the case where Λ ∉ CDI, it is of interest to describe the speed at
which L t → ∞, whenever this happens. This is done in the case without selection (and it applies
in our situation to the case where K0 = 1) in [16], in the situation Λ(dx) = dx , i.e. the case
of the Bolthausen–Sznitman coalescent. We will show that the same result applies in our case,
i.e. the slow-down due to the death essentially does not modify that speed.

Recall that the Bolthausen–Sznitman coalescent belongs to the family of the Beta(2 −

α, α) (0 < α < 2) coalescents, it corresponds to the case α = 1. Note that the Beta(2 − α, α)

coalescent comes down from infinity iff 1 < α < 2. The Bolthausen–Sznitman coalescent is the
border case. One may expect that in this model, on the event {L t → ∞}, L t → ∞ very fast, as
t → ∞.

Before going to that, let us compute explicitly the law of X∞, in that case of the Bolthausen–
Sznitman coalescent. The possibility of that computation is due to the remark that in this
particular case (and only in that one), the process L t is a continuous time branching process.
Indeed in the case Λ(dx) = dx , we have

Γi,i+ j =


i

j ( j + 1)
, if j ≥ 1;

αi, if j = −1.

This means that L t is a Markov continuous time branching process, with life time exponential
with parameter 1 + α, and family size distribution {p j , j = 0, 2, 3, . . .} given by

p0 =
α

1 + α
, p j =

1
j ( j − 1)(1 + α)

.

Note that the generating function of that probability distribution is given by

h(s) =
s + α

1 + α
+

1 − s

1 + α
log(1 − s).

We have

Proposition 4.8. Conditionally upon L0 = k (k ≥ 1),

P(L t = 0) =

1 − exp{−α(1 − e−t )}

k
, P( lim

t→∞
L t = 0) =


1 − e−α

k
.

Proof. It suffices to consider the case L0 = 1, which we now do. In that case, it follows from
general results on continuous time branching processes, see e.g. Chapter V in [15], that the
collection of generating functions ft (s) = E[sL t ] satisfies the ODE

∂t ft (s) = Φ( ft (s)),

f0(s) = s,

where Φ(z) = (1+α)(h(z)−z) = (1−z)[α+log(1−z)] is the so-called infinitesimal generating
function. It is not too hard to check that the solution of that ODE is

ft (s) = 1 − exp

α(e−t

− 1)+ e−t log(1 − s)

.

Hence

P(L t = 0) = ft (0) = 1 − exp

α(e−t

− 1)

,

from which the result follows. �
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We can now conclude

Corollary 4.9. Again in the case Λ(dx) = dx,

P(X∞ = 0|X0 = x) =
1 − x

1 − x(1 − e−α)
.

Proof. Recall that L0 = K0 − 1 = 0 iff level 1 is occupied by a type B individual at time 0, and
that at time 0 individuals placed at levels 1, 2, . . . are chosen in an i.i.d. manner, each one being
of type b (i.e. 1) with probability x , and of type B (i.e. 0) with probability 1 − x . We have

P(X∞ = 0|X0 = x) =

∞
k=0

(1 − e−α)kP(L0 = k)

= (1 − x)
∞

k=0

[x(1 − e−α)]k

=
1 − x

1 − x(1 − e−α)
,

were we have used Proposition 4.8 for the first equality. The result follows. �

Note that in the case Λ(dx) = dx , Theorem 4.7 tells us that 0 < P(X∞ = 0) < 1 for all
α > 0 since α∗

= +∞, which is consistent with the last result. Note also that [14] gives, for
a general Λ coalescent, an expression for the above quantity in terms of the sum of an infinite
series. It does not seem easy to deduce our result from that formula.

Remark 4.10. The proportion of advantageous alleles is Yt = 1 − X t . Our formula says (here
“BS” refers to the Bolthausen–Sznitman coalescent)

PBS(Y∞ = 1|Y0 = y) =
y

y + (1 − y)e−α
.

If we replace the Bolthausen–Sznitman by Kingman’s coalescent, it is well-known (see e.g. [14])
that the formula reads

PK (Y∞ = 1|Y0 = y) =
1 − e−2αy

1 − e−2α .

We note that these two formulae coincide, and are equal to (1 + e−α)−1, in the case y = 1/2.
The following comparison holds: for all α > 0, PBS(Y∞ = 1|Y0 = y) > PK (Y∞ = 1|Y0 = y) if
0 < y < 1/2, while PBS(Y∞ = 1|Y0 = y) < PK (Y∞ = 1|Y0 = y) if 1/2 < y < 1. Indeed the
difference PBS(Y∞ = 1|Y0 = y)− PK (Y∞ = 1|Y0 = y) has the same sign as

Φ(y) = e−2αy(e−α
+ y(1 − e−α))+ (e−α

− e−2α)y − e−α.

Now Φ(0) = Φ(1/2) = Φ(1) = 0,Φ′(0) > 0, Φ′(1/2) < 0 and Φ′(1) > 0 for all α > 0, while
Φ′′(y) vanishes at the unique point

0 < yα =
1 − e−α

− αe−α

α(1 − e−α)
< 1.
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We now establish

Theorem 4.11. In the case Λ(dx) = dx, if L0 = 1, then conditionally upon L t → ∞ as
t → ∞,

e−t log L t → e a.s.,

where e is a standard exponential r.v.

Proof. Recalling the infinitesimal generating function Φ specified in Proposition 4.8, it is not
hard to see that the function

1
Φ(1 − x)

−
1

x log x

is integrable near zero (one way to see that is to make the change of variable y = 1/x , and
note that the resulting integral, say from 2 to ∞, converges, by comparison with a Bertrand
series). Hence condition (3) of Theorem 3 from Grey [13] is satisfied, which implies the stated
convergence, but remains to specify the law of e.

We follow the strategy of proof of Proposition 3.8 in [16]. For each t > 0, s → ft (s) is a
bijection from [0, 1] onto [1 − exp{−α(1 − e−t )}, 1]. Its inverse reads

gt (s) = 1 − exp

α(et

− 1)+ et log(1 − s)

.

It is a bijection from [1 − exp{−α(1 − e−t )}, 1] onto [0, 1]. For each 1 − exp{−α} ≤ s ≤ 1,
0 < gt (s) ≤ 1, and the process {gt (s)L t , t ≥ 0} is Markov and has constant expectation. Indeed

E

gt (s)

L t


= ft (gt (s)) = s.

Hence it is a [0, 1]-valued martingale, which converges a.s. as t → ∞ to a r.v. V (s). Moreover,
by dominated convergence and explicit computation, for any β > 0,

E[V (s)β ] = lim
t→∞

E

gt (s)

βL t


= lim
t→∞

ft [gt (s)
β
] = s.

This implies that V (s) takes values in {0, 1}, and P(V (s) = 1) = E(V (s)) = s.
Let us now define the r.v.

U = inf{1 − e−α < s ≤ 1, V (s) = 1}.

It is plain that {U ≤ s} = {V (s) = 1}, hence P(U ≤ s) = s, for s ∈ (1 − e−α, 1]. On the other
hand, since g(1 − e−α) = 1 − e−α , we have that {V (1 − e−α) = 1} = {L(t) → 0}, and we
see that the law of U has a Dirac measure of mass 1 − e−α at 1 − e−α , and has density 1 on the
interval (1 − e−α, 1).

For 0 ≤ s ≤ e−α , we have that log[gt (1 − s)] ≃ −(ρs)e
t

as t → ∞, where ρ = eα . If
s < 1 − U , then

gt (1 − s)L t → 1, hence

L t log[gt (1 − s)] → 0, or equivalently

(ρs)e
t
L t → 0, as t → ∞,

while if s > 1 − U ,

gt (1 − s)L t → 0, hence

L t log[gt (1 − s)] → −∞, or equivalently

(ρs)e
t
L t → ∞, as t → ∞.
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Let Θ := 1 − U . For any ε > 0,

[ρ(Θ − ε)]et
L t → 0, and [ρ(Θ + ε)]et

L t → +∞, as t → ∞.

Taking again the logarithm, we deduce that as t → ∞,

αet
+ log(Θ − ε)et

+ log(L t ) → −∞,

αet
+ log(Θ + ε)et

+ log(L t ) → +∞.

Consequently

− log(Θ + ε)− α ≤ lim inf
t→∞

e−t log(L t ) ≤ lim sup
t→∞

e−t log(L t ) ≤ − log(Θ − ε)− α.

This being true for any ε > 0, we have proved that, as t → ∞,

e−t log(L t ) → − log(Θ)− α.

We now define e := − log(Θ) − α. Conditionally upon L t → ∞ as t → ∞, the law of U is
uniform on [1 − e−α, 1], hence the law of Θ is uniform on [0, e−α

]. Then for r > 0,

P(e > r |L t → ∞) = P(Θ < exp[−(α + r)]|L t → ∞)

= exp[α] exp[−(α + r)] = e−r . �

Let βn the time taken by the fixation line L t , starting from L0 = 1, to exceed the value n. As
noted in [16], a consequence of Theorem 4.11 is that

βn
− log log(n) → − log(e) a.s. as n → ∞.

In the situation treated in [16], βn has the same law as τ n
1 , the time taken by the n–Λ coalescent

to hit the value 1, i.e. the time taken for n individuals to find their most recent common ancestor.
In our case, the Λ-coalescent must be replaced by the Λ-Ancestral Selection Graph. Indeed,

since in the forward time direction individuals die, in the backward time direction we have birth
of lineages.

The n–Λ-ASG is defined as follows. Starting from n lineages, the lineages coalesce according
to the Λ-coalescent, while new lineages are born according to the following rule. While there are
k ≥ 2 active lineages, a new lineage is born at rate αk, this lineage being placed on a level chosen
uniformly among the levels {1, 2, . . . , k + 1}. If the level ℓ ≤ k is chosen, the lineages located
on levels ℓ, ℓ + 1, . . . , k just before the birth event get pushed one level up. We refer to [17,18]
for the description of the ASG, where the coalescent is Kingman’s coalescent. We note that here
we consider only type b individuals, type B individuals occupying possibly some of the higher
levels.

Define τ n
1 to be the time for the n–Λ-ASG to find a common ancestor, i.e. the time for the

number of lineages to reduce to 1. It follows from Theorem 4.11 that, in the case Λ(dx) = dx , as
n gets large, the decrease of the number of lineages due to the coalescence events is much faster
than the creation of new lineages, hence τ n

1 < ∞ a.s. [16] shows that in the case α = 0, the
law of τ n

1 coincides with that of βn , the time taken by the fixation line starting from 1 to reach
a value greater than or equal to n. This is no longer true in the case α > 0, since the process of
the number of lineages in the n–Λ-ASG is no longer decreasing. Here βn has rather the law of
the time elapsed between the last time when there are at least n lineages in the n–Λ-ASG, and
the time when there is one lineage. However for large n this does not make a real difference, as
follows from the following result.
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Lemma 4.12. Fix an arbitrary h > 0. On the event that L t → ∞ as t → ∞, for n large enough,
Lτ n

1 +s > n, for all s ≥ h.

Proof. Choose ε > 0 small enough such that

e − ε

e + ε
> e−h .

It follows from Theorem 4.11 that there exists tε such that for any t ≥ tε,

e − ε ≤ e−t log L t ≤ e + ε,

and nε such that whenever n ≥ nε,

log log n − log(e + ε) ≤ τ n
1 ≤ log log n − log(e − ε).

Choose n ≥ nε such that moreover τ n
1 ≥ tε. Consequently

eτ
n
1 ≥

log n

e + ε
,

and whenever s ≥ h,

Lτ n
1 +s ≥ exp


eτ

n
1 +s(e − ε)


≥ exp


eτ

n
1 es(e − ε)


> exp


eτ

n
1 (e + ε)


≥ n. �

Consequently, the time elapsed between the first visit of a level above n by L t , and the last
visit below n after that time (if any) tends to zero in probability, as n → ∞. As a result, we can
conclude as in [16]

Proposition 4.13. Suppose we are again in the case Λ(dx) = dx, and define τ n
1 as above. Then,

as n → ∞,

τ n
1 − log log n ⇒ − log e.

Remark 4.14. We expect that our look-down construction, and the duality with the Λ-ASG can
produce new results beyond the case of the Bolthausen–Sznitman coalescent, at least in the
case of the Beta-coalescents, in particular concerning the law of the number of blocks implied
in the last coalescence in the Beta(2 − α, α)-ASG, and the expectation of the depth of the
Beta(2 − α, α)-ASG in case 1 < α < 2.

5. Kingman and Λ-coalescent

In this last section we suppose that the measure Λ is general (i.e. Λ({0}) > 0). This implies
that ν is infinite. Note that we could have Λ((0, 1)) = 0, but this case corresponds to “pure
Kingman”, which is already well understood, see in particular [4]. So we assume again that (1.4)
is satisfied. We will show that the proportion X t of type b individuals at time t in the population
of infinite size is a solution to the stochastic differential equation with selection
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X t = x − α

 t

0
Xs(1 − Xs)ds +

 t

0


cXs(1 − Xs)d Bs

+


[0,t]×]0,1[×]0,1[

p(1u≤Xs−
− Xs−)M̄(ds, du, dp), (5.1)

where c = Λ({0}), M̄ is the compensated measure M defined in Section 3.2, and B is a standard
Brownian motion. Let {W (ds, du)} be a white noise on (0,∞) × (0, 1] based on the Lebesgue
measure dsdu. We remark that if (X t )t≥0 satisfies (5.1), then X t is a solution in law of the
following stochastic differential equation

X t = x − α

 t

0
Xs(1 − Xs)ds +

√
c


[0,t]×]0,1[

(1u≤Xs − Xs)W (ds, du)

+


[0,t]×]0,1[

2
p(1u≤Xs−

− Xs−)M̄(ds, du, dp).

We first define the model. Recall the process {ηt (i), i ≥ 1, t ≥ 0} defined in the introduction.
The evolution of the population is the same as that described in the case Λ({0}) = 0 except that
we superimpose single births, which are described as follows

For any 1 ≤ i < j , arrows are placed from i to j according to a rate Λ({0}) Poisson process,
independently of the other pairs i ′ < j ′. Suppose there is an arrow from i to j at time t . Then a
descendant (of the same type) of the individual sitting on level i at time t− occupies the level j
at time t , while for any k ≥ j , the individual occupying the level k at time t− is shifted to level
k +1 at time t . In other words, ηt (k) = ηt−(k) for k < j, ηt ( j) = ηt−(i), ηt (k) = ηt−(k −1)
for k > j .

By coupling our model with the simplest lookdown model with selection defined in [4], it is not
hard to show that for N large enough, the individual sitting on level 2N at time 0 never visits a
level below N , that is the evolution within the box (t, i) ∈ [0,∞)× {1, 2, . . . , N } is not altered
by removing all crosses above 2N . The process {ηt (i), i ≥ 1, t ≥ 0} is well-defined.

For each N ≥ 1 and t ≥ 0, denote by X N
t the proportion of type b individuals at time t among

the first N individuals, i.e.

X N
t =

1
N

N
i=1

ηt (i). (5.2)

Combining the arguments in [4] and Section 2.3 (see above), it is easy to show if (η0(i))i≥1 are
exchangeable random variables, then for all t > 0, (ηt (i))i≥1 are exchangeable. An application
of de Finetti’s theorem, yields that

X t = lim
N→∞

X N
t exists a.s. (5.3)

Using the definition of the model, it is easy to see that (ψN was defined by (3.1))

X N
t = X N

0 + K N
t +


[0,t]×]0,1]

4
ψN (X N

s− , u, p, v, w)M̄(ds, du, dp, dv, dw)

−
1
N


[0,t]×[0,1]

1u≤X N
s−

1ηs−(N+1)=0 M N
1 (ds, du),

where K N
t is a martingale of jump size ±

1
N . We have
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Lemma 5.1.

⟨K N
⟩t =

 t

0
ϕN (s)ds

where, ϕN (s) = Λ(0)X N
s (1 − X N

s ).

Proof. For each 1 ≤ i < N , let P i be a Poisson process with intensity Λ(0)(N − i). At time
t ∈ P i , we have

1X N
t =


1
N
, if ηt−(i) = 1 and ηt−(N ) = 0

−
1
N
, if ηt−(i) = 0 and ηt−(N ) = 1

0, otherwise.

Now, let

Ai = {ηt (i) = 1, ηt (N ) = 0},

Bi = {ηt (i) = 0, ηt (N ) = 1}.

We have

P(Ai | X N
t ) = P(Bi | X N

t ) =
N

N − 1
X N

t (1 − X N
t ),

from which, we deduce that

⟨K N
⟩t =

1

N 2 Λ(0)
N (N − 1)

2
2N

N − 1
X N

t (1 − X N
t )

= Λ(0)X N
t (1 − X N

t ).

The result is proved. �

Now, let

Y N
t = X N

0 +


[0,t]×]0,1]

4
ψN (X N

s− , u, p, v, w)M̄(ds, du, dp, dv, dw)

−
1
N


[0,t]×[0,1]

1u≤X N
s−

1ηs−(N+1)=0 M N
1 (ds, du).

We have

X N
t = K N

t + Y N
t , ∀t ≥ 0. (5.4)

From Lemma 5.1, we have ∀T ≥ 0

sup
0≤t≤T

sup
N≥1

| ϕN (s) |≤ C a.s.

Using the last identity, we deduce by Aldous’ tightness criterion (see Aldous [2]) that

{K N
t , t ≥ 0, N ≥ 1} is tight in D([0,∞)).

Since K N is tight, there exists a subsequence of the sequence K N such that

K N
⇒ K weakly in D([0,∞)),
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where K is a continuous martingale (since the jumps of K N are of size ±
1
N ) such that

⟨K⟩t =

 t

0
cXs(1 − Xs)ds, (5.5)

where c = Λ(0). The main result of this section is

Theorem 5.2. Suppose that X N
0 → x a.s., as N → ∞. Then the [0, 1]-valued process {X t ,

t ≥ 0} defined by (5.3) is the (unique in law) solution to the stochastic differential equation

X t = x − α

 t

0
Xs(1 − Xs)ds +

 t

0


Λ(0)Xs(1 − Xs)d Bs

+


[0,t]×]0,1[

2
p(1u≤Xs−

− Xs−)M̄(ds, du, dp), (5.6)

where M̄ is the compensated measure M defined in Section 3.2, and B is a standard Brownian
motion.

The identification of the limiting equation is done similarly as in the proof of Theorem 3.5.
Strong uniqueness of the solution to (5.6) follows again from Dawson and Li [7], and weak
uniqueness could also be proved by a duality argument.

Since Kingman’s coalescent comes down from infinity, we have fixation in our new model in
finite time as soon as Λ(0) > 0.
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