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Abstract

In this paper we are interested in solving backward stochastic differential equations (BSDEs
for short) under weak assumptions on the data. The first part of the paper is devoted to the
development of some new technical aspects of stochastic calculus related to BSDEs. Then we
derive apriori estimates and prove existence and uniqueness of solutions in L? p > 1, extending
the results of [3] to the case where the monotonicity conditions of [6] are satisfied. We consider
both a fixed and a random time interval. In the last section, we obtain, under an additional
assumption, an existence and uniqueness result for BSDEs on a fixed time interval, when the
data are only in L .

1 Introduction

In this paper, we are concerned with backward stochastic differential equations (BSDEs for short
in the remaining); a BSDE is an equation of the following type

T T
Yt=§+/ f(r,n,zr)dr—/ Z.dB,, 0<t<T, (1)
t t

where B is a standard Brownian motion and £ is a random variable measurable with respect to the
past of B up to time T'. ¢ is the terminal condition and f the coefficient (also called the generator).
The unknowns are the processes {Y; }+cjo,7] and {Zi}+c[o,71, Which are required to be adapted with
respect to the filtration of the Brownian motion : this is a crucial point.

Such equations, in the nonlinear case, have been introduced by E. PARDOUX and S. PENG in
1990 in [7]. They proved an existence and uniqueness result under the following assumption: f is
Lipschitz continuous in both variables y and z and the data, { and the process {f(t,0,0)}¢co,17,
are square integrable.

Since this first existence and uniqueness result, many papers have been devoted to existence
and/or uniqueness results under weaker assumptions. Among these papers, we can distinguish
two different classes: scalar BSDEs and multidimensional BSDEs. In the first case, one can take
advantage of the comparison theorem: we refer to [3] for this result. In this spirit, let us mention
the contributions of M. KOBYLANSKI [4] and J.-P. LEPELTIER and J. SAN MARTIN [5] which



dealt with quadratic growth generators in z. For multidimensional BSDEs, there is no comparison
theorem and to overcome this difficulty a monotonicity assumption on the generator f in the
variable y is used. This condition is essential in the study of BSDEs with random terminal time
and appears for the first time in this context in a paper by S. PENG [8]. When the terminal time
is deterministic, this condition allows to get rid of the growth condition in the variable y : see the
work of PH. BRIAND and R. CARMONA [1] for a study of polynomial growth in L? with p > 2
and the work of E. PARDOUX [6] for an arbitrary growth.

Let us mention also that when the generator is Lipschitz continuous, a result of N. EL KAROUT,
S. PENG and M.-C. QUENEZ [3], provides the existence of a solution when the data & and
{f(t,0,0) }scjo,r) are in LP even for p € (1,2). The first part of this paper is devoted to the
generalization of this result to the case of a monotone generator, both for equations on a fixed and
on a random time interval.

Let us briefly comment the main issue of our study. In [9], S. PENG introduced the notion of
g—martingales which can be viewed, in some sense, as nonlinear martingales. g-martingales are
solutions to BSDEs. It is not so surprising to consider solutions to BSDEs as “martingales” since
in the simplest case, namely when the generator is 0, the solution to the BSDE is the martingale
E(£| F;). Since the classical theory of martingales is carried in the space L!, the question of solving
a BSDE when the data are only integrable comes up naturaly. S. PENG gives an answer for real
BSDEs only in the case where f(t,y,2) = fi(t,z) + fa(t,y) is Lipschitz in (y, z) with f1(¢,0) = 0,
f2(t,0) > 0 and for £ > 0. One of the objectives of this paper is to prove an existence and
uniqueness result for BSDEs in R? when £ and the process {f(t,0,0)}¢co,7] are integrable with f
only monotone in the variable y.

The paper is organized as follows: the next section contains all the notations, some basic
identities and essential estimates. Section 3 is devoted to the case where the data are in LP with
p € (1,2) on a fixed time interval, section 4 with the same problem, but for a BSDE on random
time interval, and finally the last section studies the case p = 1, where an additional assumption
on the coefficient is required.

2 Preliminaries

2.1 Notations and definition

First of all, B = {B;}+>0 is a standard Brownian motion with values in R¢ defined on some complete
probability space (Q,F,P). {F;i}s>o0 is the augmented natural filtration of B which satisfies the
usual conditions. In this paper, we will always use this filtration.

In most of this work, the stochasic processes will be defined for ¢ € [0, 7], where T is a positive
real number, and will take their values in R" for some positive integer n. If X = {X;};c0,17 is
such a process, we will simply write X, or sup, | X;| instead of sup;co 71 [X:| where |z| denotes the
Euclidean norm of x € R™.

For any real p > 0, SP(R") denotes the set of R"-valued, adapted and cadlag processes
{Xt}+e0,1) such that

1Al
X ls» = E[ sup, [ X,[?]"""/? < +o0.

Ifp>1,|-|sris a norm on SP(R") and if p € (0,1), (X, X') — | X — X'| 5, defines a distance
on S”. Under this metric, SP(R™) is complete.
MP(R™) denotes the set of (equivalent classes of) predictable processes {X¢}c[o,7] With values

in R™ such that

s

T /2 1A1/p
(I X[lme = E l(/o | X2 dr) ] < +o00.

For p > 1, MP(R") is a Banach space endowed with this norm and for p € (0,1) MP? is a complete
metric space with the resulting distance.



Let us consider a random function f: [0,7] x @ x R¥ x R¥*¢ — R*¥ measurable with respect
to Prog x B(RF) x B(RF*4) where Prog denotes the sigma-field of progressive subsets of [0,7] x €,
and an R¥—valued Fr—measurable random vector .

REX4 i5 identified with the space of real matrices with k rows and d columns. If z € RFX4  we
have |z|? = trace(zz*).

Let us recall what we mean by a solution to the BSDE (1).

Definition 2.1. A solution to the BSDE (1) is a pair of progressively measurable processes (Y, Z)
with values in RF x R¥*? such that: P-a.s., t — Z; belongs to L2(0,T), t — f(t,Y;, Z;) belongs
to L}(0,T) P-a.s. and

T T
Yt=f+/ f(r,Yr,zr)dr—/ Z.dB.. 0<t<T.
t t

2.2 A basic identity

As explained in the introduction, we want to deal with BSDEs with data in L? with p < 2 and
we would like to use Itd’s formula applied to the function & — |2|P which is not smooth enough.
That is why we start by a generalization to the multidimensional case of the Tanaka formula. Let
us now introduce the notation # = |#| " #1,20. The following lemma will be our basic tool in the
treatment of LP-solutions.

Lemma 2.2. Let {K;}iepo,17 and {Hyi}iepo, ) be two progressively measurable processes with values
respectively in R* and RF*? such that P-a.s.,

T
/ (1K) + |HyJ?) dt < +oo.
0
We consider the RF —valued semimartingale {X;}iepo,1) defined by
¢ ¢
Xt:X0+/ sts—}—/ H,dB,, 0<t<T.
0 0
Then, for any p > 1, we have
¢ R t R
|XelP —1p=1 Ly = |Xof? +p/ |X3|p_1 (X5, Ks) ds +p/ |X8|p_1<XS>Hs dBs)
0 0

t
2 [P 21000 {@ =) (1HLP = (%, HHR)) + (0= DIFLP fds,
0

where {Li}icio,1 8 a continuous, increasing process with Lo = 0, which increases only on the
boundary of the random set {t € [0,T], X; = 0}.

Proof. Since the function  — |z|? is not smooth enough (for p € [1, 2))to apply Ito’s formula we

use an approximation. Let ¢ > 0 and let us consider the function u.(z) = (|z|*> + 52)1/ > Ttisa
smooth function and we have, denoting I the identity matrix of R¥,

Vil(e) =pul @)a, D) = pul @)1 +p(p - e (o) (@ ©3).
1t6’s formula leads to the equality,
t t
W2(X) =u2(Xa) +p [ 02 200) (X Kobds +p [ a2 (L) (X, HudB.)
0 0

o (2)
+ 5/ trace (D?u?(X,)H,H;) ds.
0



It remains essentially to pass to the limit when € — 0 in this identity. To do this, let us first
remark that

t t
/ug—2(Xs) (XS,Ks)ds—>/ | X, [P~H{X,, K,) ds,
0 0

P-a.s. and that, at least uniformly on [0, 7] in P—probability, we have
t t ~
/ u? ?(X,) (X, HydBs) — / |7 (X, Hy dB,);
0 0
this convergence of stochastic integrals follows from the following convergence
T 2
| 1P L ol P (1772 = a2 (X)) dr >,
0

which is clear from the dominated convergence theorem.
It remains to study the convergence of the term including the second derivative of u.. Let us
write

* — 4— — v * T
trace (D2uP(X)HLH?) = p2—p) (Xs|ur (X)) 7 1XaP 215,20 (|HS|2 —(X,, H,H XS))
_ 4— _
+p(p — 1) (1Xsluz" (X)) 7 | X7 1x, 20| Hs |* + C5(p),

where C¢(p) = pe?|Hg|*uP*(X5).
One has R R
|52 > <XS,HSH:XS>. (3)

Moreover,
| X |
7 1x,
Ue (Xs) {Xa20}

as € = 0. Hence by monotone convergence, as € — 0,

t
|zt () 0 {2 =) (L = (R B R)) + (= DI ds

converges to

t
|1 {2 p) (P — (R0 HHR) + (0 - DI} ds
0

P-a.s.,forall 0 <t <T.
It now follows from (2) that {L,f (p) == f; C:(p) ds}t 011 converges as € = 0 to a continuous
€

)

increasing process {L¢(p) }+¢[o,7], and the result follows.
For p > 4, L(p) = 0 since C*(p) converges to 0 in L1 (0,T). Now, if p € (1,4), we write

C(p) = p (| H, Puz?(X,)) (21HP) 7,

where 8 = (4 — p)/3 € (0,1), and then, we get, using Holder’s inequality,

T 1/(1-6)
Ly (p) < pLi(1)"* (/ 62|H5|2d8> :
0

which tends to 0 as € = 0 so that L(p) = 0.
Let us denote by L the process L(1) and let us set A = {t € [0,T], X; = 0}. If ¢ is in the
interior of A, then there exists § > 0 such that X; = 0 whenever |t — s| < J; the quadratic variation



of X is constant on the interval [t — d,t + J] and then H; = 0 almost everywhere on this interval.
If ¢ is in the complement of the set A, there exists 6 > 0 such that X, # 0 if |t — s| < 4. In both
cases, C¢(1) converges to 0 in L'(¢ — §,¢ + J) and

t+d

Lt+6 — Lt,5 = cll_l;r(l) C;(l) ds = 0.
t—¢

This concludes the proof of the lemma. O

Corollary 2.3. If (Y,Z) is a solution of the BSDE (1), p > 1, ¢(p) = pl(p — 1) A 1]/2 and
0<t<u<T, then

u u
YilP + e(p) / YalP21y, 2ol Zef2 ds < [Yul? +p / Va1 (Vs f(s, Y, Z4)) ds
t L (4)
“p / IV, P~1(V,, Z,dB,).
t

Proof. The proof follows from the following consequence of Lemma 2.2, for 0 < ¢t < u < T and
c(p) =pllp —1) A 1]/2,

u u
| Xul? > | X [? +P/ | X [P~ X, Ks) d8+p/ | X5 [P~ (X, HydBs)
t t

u
+e(p) / X2 x o | H, [ ds.
t

3 Apriori estimates

First of all, we state some estimates concerning solutions to the BSDE (1). In what follows we
assume that p > 1, € is an R¥—valued, Fy—measurable random vector and f is a random function
from [0, 7] x Q x RF x R¥*4 into R¥, which is measurable with respect to Prog x B(R¥) x B(Rk*4).
We will make use of the following assumption: P-a.s.,

V(t,y,2) € [0, T] x R x R*™%, (G, f(t,y,2)) < fo + plyl + Alz], (A)

where p € R, A > 0 and { ft}te[o,T] is a non-negative progressively measurable process. Let us set
F=[fdr

Here, we want to obtain estimates for solutions to a BSDE in L? in the spirit of the work
[3] which shows that these estimates are very useful for the study of existence and uniqueness of
solutions. The difficulty here comes from two facts: firstly, the function f is not supposed to be
Lipschitz continuous and secondly, we want to obtain LP—estimates for p € (1,2).

We start by showing how to control the process Z in terms of the data and Y.

Lemma 3.1. Let the assumption (A) hold and let (Y, Z) be a solution to the BSDE (1). Let us
assume moreover that, for some p > 0, FP is integrable.

If Y € SP then Z belongs to MP and there exists a constant C, depending only on p such that
for any a > p+ A%,

T /2
E[(/ e2“t|ZT|2dr)p ] <C,E
0

T p
sup ™ i+ ([ egrar)’)
0



Proof. Let us fix a > p + A% and define Y; = €2V}, Z, = e®Z,. (Y, Z) solves the BSDE
~ ~ T _ T _
Yt=€+/ f(nYr,Zr)dr—/ Z,dB,, 0<t<T,
t t

where € = €T ¢ and f(t,y,2) = et f(t, ey, e~z) — ay which satisfies the assumption (A) with

f~t =ef,, X=Xand = p—a. Since we are working on a compact time interval, the integrability

conditions are equivalent with or without the superscript™ Thus, with this change of variable we

reduce to the case a = 0 and p + A% < 0. We forget the superscript ™ for notational convenience.
For each integer n > 1, let us introduce the stopping time

¢
Tp = inf {t € [0,71], / |Z,|? dr > n} AT.
0
1t6’s formula gives us,
Tn Tn Tn
%o+ [Tz =1y, P2 [0 10 20 —2 [ (8, 2,dB,).
0 0 0

But, from the assumption on f, we have, since p + A2 <0,

2y, f(r,y,2)) < 2ly|fr + 2uly” + 2X°|y|* + |2[°/2 < 2|yl f» + |2[* /2.
Thus, since 7, < T', we deduce that

1 Tn T Tn
5/ |Z,[2dr < Y2 + 2Y,,/ frdr + 2‘ / (Y,, Z,dB,)
0 0 0

Tn T 9 -
/ |Z2dr <4 Y2+ (/ fr dr) + ‘ / (Y, Z.dB,)
0 0 0

and thus that

(/OTn IZrlzdr)p/z <o (Y*”+ (/OTder)p+ ‘ /OTH<YT,Z,-dBT)

p/2
) - (5)
But by the BDG inequality, we get

/2 Tn P/4- Tn . /4
P ] gd,,E[(/ |YT|2|ZT|2d7‘) gdp]E[y*pm(/ |Z7-|Zd7‘)p }’
0 0

™ 2] & T /2
cp]E“/O (Y, ZvdB,)|" ]SEPIE[Y*P]JF%]E (/0 |z,,|2dr)” ]

Coming back to the estimate (5), we get, for each n > 1,

E[(/OT" |ZT|2dr)p/2] <CLE|YP+ (/OTdeT)p]

and, Fatou’s lemma implies that

]El(/OT|ZT|2dr)p/2 Yf+(/0Tfrdr)p].

The result follows. |

It follows that

¢ E “ /0 Y., Z,dB,)

and thus

<C,E




We keep on this study by stating the standard estimate in our context. The difficulty comes
from the fact that f is not Lipschitz in y and also from the fact that the function y — |y|P is not
C? since we will work with p € (1,2).

Proposition 3.2. Let the assumption (A) hold and let us assume that, for some p > 1, F belongs
to LP. Let (Y,Z) be a solution to the BSDE (1) where Y belongs to SP. Then, there exists a
constant Cp, depending only on p, such that for any a > pu+ M2/[1A (p — 1)],

e®T|¢|P + (/OT e [ dr)p] .

Proof. Let us fix a > p + A2/[1A (p — 1)]. As in the proof of the previous lemma, we make
the change of variables Y; = e®Y;, Z; = e®Z;. This reduces the proof to the case a = 0 and
u+ A2/[LA (p—1)] <0 ; omitting the superscript”, we have to prove that

VP + (/OT | Z,|? dr)p/2 € + (/OTder)p] )

From Corollary 2.3, we get the following inequality,

apt T 2ar 2 »/2
E [sup, e®®|Y;|P + ( e\ Z,| dr) <CpE
0

E <C,E

T
Vi + c(p) / Y1721y, 20 |2, [2dr
t

T T
<l +p [ PUES0 Y 2 dr—p [ VPNE 2B,
t t
The assumption on f yields the inequality

@, f(r,y,2)) < fr + plyl + Alzl,

from which we deduce that, with probability one, for all ¢ € [0,T],

T
W +co) [P Ly, g0 |2, dr
t

T T T
< P +p / (Yo [P~ £, + ulY, [P)dr + pA / VP42, dr — p / Y,[P (¥, Z,dB,).
t t t

First of all we deduce from the previous inequality that, P-a.s.

T
| 1y 0012, dr < oo
0
Moreover, we have

C
v+ Py 21y, 012,02,

)\2
p—1 < p

(r-1)

and thus, since p + A2/[1 A (p — 1)] < 0, we get the inequality

p C(p) T p—2 2 p T p—1 T p—1/3;
|Yt| + —2 |Yr| lYﬁéO |Z7'| dr S |§| +p |Yr| fr dr —-bp |Y;"| (YTaZrdBr)-
t t t

Let us set X = [P +pf0T |Y,.|P~! f. dr; then, we have, a.s., for each t € [0,7],

T T
C _ _ ~
1P+ 9D [Pty 2 < X —p [ ¥ P 2B, ©
t t



It follows from the BDG inequality that {Mt = fot |Yr|”*1(}7;, ZrdBr)} is a uniformly

0<t<T
integrable martingale. Indeed, we have, by Young’s inequality

Y*P—1</T|ZT|2dr)1/2 (/T|ZT|2dr)p/2],
0 0

the last term being finite since Y belongs to SP and then Z belongs to M? by Lemma 3.1.
Coming back to the inequality (6), and taking the expectation for ¢ = 0, we get both

E[(M,M)}*] <E < ?E[Yf] + %E

T
Du| [ W15, 012, dr | <BX] g
and,
E[Y7] <E[X] + k, E[(M, M)7°]. (8)

On the other hand, we have also,

k, E [(M, M);/Q]

IA

k, E

T 1/2
V2P [ty 012, P i) ]

k2
< %E[Y*"H—”E

T
2| [Pz ar] .
0

Coming back to the inequalities (7) and (8), we obtain
E[V?] < d, BX].

Applying once again Young’s inequality, we get

Y,f’—l/Tder < %E[thd;E[(/Tfrdr)p],
0 0

from which we deduce, coming back to the definition of X, that

€l + (/OTfrdr)p] .

The result follows from Lemma 3.1. O

Pdp E

T
/ i dT] <pd, E
0

E[Y?] < C,E

4 Existence and uniqueness of a solution

With the help of the above apriori estimates, we can obtain an existence and uniqueness result.
As before, let us consider an R¥ —valued Fr—-measurable random vector ¢ and a random function
F:[0,T] x Q x R¥ x RE*? — R* which is Prog x B(R*) x B(R*¥*?)-measurable.
We will work under the following assumptions: for some p > 1,

T 4
P + < / |f<s,o,0)|ds>

there exist constants A > 0 and p € R such that, P-a.s., for each (¢,y,y',2,2') € [0,T] x R¥ x RF x
kad X kad:

E < 4o00; (H1)

|f(ty,2) — f(ty,2")| < Alz = 2], (H2)



=y, flt,y,2) = ft.y',2) <ply -y (H3)

We assume also that,

P-as., Y(tz)€[0,T] x RF*d y — f(t,y,2) is continuous, (H4)
and finally that
Vr>0, () = sup [f(t,y,0) - f(£,0,0)| € L' ([0,T] x Q,m & P) (H5)
ly|<r

We want to obtain an existence and uniqueness result for the BSDE (1) under the previous
assumptions for all p > 1.

Firstly, let us recall the result of E. PARDOUX, Theorem 2.2 in [6]. For this, let us introduce
the following assumption:

Pas, Yty €[0,T]xR:,  |f(ty,0)] <|f(t0,0)]+¢(y)), (H5)
where ¢ : Ry — R, is a deterministic continuous increasing function.

Theorem 4.1. Letp = 2. Under the assumptions (H1), (H2), (H3), (H4) and (H5’), the BSDE (1)
has a unique solution in S? x M2.

We now prove our existence and uniqueness result.

Theorem 4.2. Under the assumptions (H1), (H2), (H3), (H{) and (H5), the BSDE (1) has a
unique solution in SP x MP.

Proof. Let us start by studying the uniqueness part. Let us consider (Y, Z) and (Y',Z') two
solutions of our BSDE in the appropriate space. We denote by (U, V') the process (Y —Y', Z —Z');
this process is solution to the following BSDE:

T T
Ut:/ g(S,Us,‘/s)dS—/ Vsst, OStST,
t t

where g stands for the random function

9(ty,2) = f(ty + Y/, 2 + Z) — f(t, Y, Z)).
Thanks to the assumptions (H2), (H3), the function g satisfies the assumption (A) with f; = 0.
By Proposition 3.2, we get immediately that (U, V) = (0,0).

Let us turn to the existence part. In order to simplify the calculations we will always assume
that the condition (H3) is satisfied with u = 0. If it is not true, the change of variables Y; = e#'Y},
Z; = e Z, reduces to this case. We set fO = f(t,0,0).

The proof will be split into two steps.

First step. We assume that £ and sup, |f?| are bounded random variables. Let r be a positive

real such that
VeI (lig]l o + T || 7] ,) <7

Let 6, be a smooth function such that 0 <8, <1, 6,(y) =1 for |y| < r and 8,(y) = 0 as soon
as |y| > r + 1. For each n € N*, we denote g¢,(z) = zlzlﬁ and set

ha(t,y,2) = 0:(y) (F(t,y,4n(2)) — £7) —+ £

_n
¢r+1 (t) \



This function still satisfies the quadratic condition (H3) but with a positive constant. Indeed, let
us pick y and y' in R*. If |y| > r + 1 and |y'| > r + 1, the inequality is trivially satisfied and thus
we reduce to the case where |y'| <r + 1. We write

<y - ylahn(t:yaz) - hn(ta ylaz)) = ar(y)m <y - ylaf(tayaqn(z)) - f(taylaqn(z)))

toven () = 0:-(") (=o', [F (10 an(2)) = £7]) -

The first term of the right hand side of the previous equality is negative since the condition (H3)
is in force for f with 4 = 0. For the second term, one can use the fact that 6, is C(r)-Lipschitz,
to get, since |y'| <7 +1,

6r(y) — 6:(¥")) (= v, [f (£, ¥, an(2)) — £7]) Cr) ly—y'l’ £ty an(2)) — 7]

< COn+ ) ly— o',

IA

and thus
n

VT 6-(y) = 0-(y") (v — ¥, [F(t: ¥, qn(2)) — f2]) < CEYA+ Dnly —y'|*.

Then the pair (£, h,,) satisfies the assumptions of Theorem 4.1. Hence, for each n € N*, the
BSDE associated to (&, h,,) has a unique solution (Y™, Z") in the space S x M2.
Since

(W, hn(t,y,2)) < Iyl || 7°] . + Alyl |-

and £ is bounded, Lemma 2.2 in [1] shows that the process Y satisfies the inequality ||Y™[| <.
In addition, from Proposition 3.2,
127l <7, (9)

where ' is another constant. As a byproduct (Y™, Z™) is a solution to the BSDE associated to
(&, fn) where
fn(tayaz): (f(t,yaQn(z))—f?) +f1?7
for this function (H3) is satisfied with “u = 0". _
We now have, for ¢ € N, setting U = Y+ — Y™ V = Zn — 7" using the assumptions (H2),
(H3) on fryi

_n
¢r+1 (t) vn

1 T
X't |Ut|2 + 3 / e2X’s |V;|2 ds
t

T T
< 2 [ VU furi (V2D — L (s Y 2D ds =2 [ X0 (UL VidB,).

¢ ¢
But [|U]|,, < 2r so that

222¢ 2 1 ’ 2225 2
e |Ut| + 5 e |V;| ds
t
T T
< 4 / 62)\ S|fn+i (s,Y;",Z:) _fn (S,Y;H,Z:)|d8—2 / 62)‘ S<USJVSdBS)7
0 t

and using the BDG inequality, we get, for a constant C' depending only on A and T,

T
E[supt|Ut|2+/ |Vs|>ds| < CrE
0

T
/ i (8, Y7%, Z0) = fo (5, Y, Z0)] ds] -
0

10



On the other hand, since ||Y"||_, <, we have
[frri (Y, Z3) = fo (8, Y], Z2)| S 2X|Z7 | 1123 5m + 2|22 [ Ly Ly ()5 + 20r41(8) Ly (5)>m

from which we deduce, with the help of the inequality (9) and the assumption (H5), that (Y, Z")
is a Cauchy sequence in S? x M2. Tt is easy to pass to the limit in the approximating equation,
yielding a solution to the BSDE (1).

Second step. We now treat the general case. For each n € N*, let us define

&n = an(§), fn(tayaz):f(tayvz)_f?+Qn (fto)

For each pair (&, f,), the BSDE (1) has a unique solution (Y™, Z") in L? thanks to the first step
of this proof, but in fact also in all I”, p > 1 according to Lemma 3.1. Now from Proposition 3.2,
for (i,n) € N x N*,

T
E |sup, [Y;*T — Yt"|p + (/ |zt — Z§‘|2 ds)p/2]
0

< CE

i =6+ ([ v (01 =0 D] .

where C' depends on T and .
The right hand side of the last inequality clearly tends to 0, as n — oo, uniformly in 4, so we
have again a Cauchy sequence and the limit is a solution to the BSDE (1). O

Remark 4.3. In the case k = 1, Theorem 4.2 remains valid if we replace (H5) by the weaker
condition
¢, € LY0,T), as. Vr>0.

The additional estimate in this case which allows that generalization is the following:

E [(/OTU(s,YS,zsnds)” g7 + (/0T|f§’|dt)p] ,

for a certain constant ¢ depending only upon 7', u and A. Indeed, it follows from (4), that

<cE

T
et Yy +/ e’ |f(s,Y,,0) — f) — pYs| ds
t

T T T
< et +/ et? |f£| ds + )\/ e* | Z,|ds — / e**sgn(Ys) ZsdBs,
¢ ¢ ¢

and it remains to combine this last inequality with Proposition 3.2.

5 L2 solution of a BSDE with a random terminal time

We now assume that T is a stopping time for the filtration F;, which need not be bounded (T' = + o0
is an interesting particular case, which we have in mind). The assumptions (H2), (H3), (H4) are
still in force. We shall assume in this section that p > 1. We shall follow closely the approach in
[6], which treats the same problem in the case p = 2.

The assumption (H1) will be replaced by the following condition. For some

/\2

Svi=pt+ —0——
P T ap-1)
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(where p and A are the constants appearing in conditions (H3) and (H2) respectively),

T
E [ePPT|§|P+/ ePPt | £(t,0,0)P dt| < +oo. (H1)
0
The assumption (H5) is replaced by
¢r € L'((0,n) x @, m @ P), Vn e N, Vr>0, (H5”)

and we shall need the following additional assumption

T
¢ is Fr—measurable and E l/ ePrt |f (t,e " &, e " i) |p dt| < +oo, (H6)
0
where £ = evT¢, & = E(e"T ¢ | F;) and 7 is predictable and such that
_ 0o oo ) p/2
E=E[{] +/ ndB;, E (/ |73 dt) < 400.
0 0

Definition 5.1. A pair (Y, Z:)t>0 of progressively measurable processes with values in R¥ x R¥*d
is a solution to the BSDE with random terminal time T with data (£, f) if on the set {t > T} Y; =¢
and Z; = 0, P-a.s. t — Li<r f(t, Y2, Z;) belongs to Li, .(0,00), t — Z; belongs to L (0, 00)
and, P-a.s., for all 0 < ¢t < u,

uNT uNT

£(s,Ys, Zs) ds—/ Z,dB,. (10)

Yinr = Yunr + /
tAT

tAT

A solution is said to be in L? if we have moreover

T T
]El sup e””t|Yt|p+/ e””t|Y}|”dt+/ ePP Y, |P2| Z, 2 dt| < +oc.
0<I<T 0 0

We have the

Theorem 5.2. Under the assumptions (H1’), (H2), (H3), (H4), (H5”) and (H6), the BSDE with
random terminal time (10) has a unique solution satisfying

T

T
E[ sup e”ptIYtl"Jr/ P | P2 Y + IZt|2}dt] ScEle””TlfSI”/
0<t<T 0 0

for some constant ¢ depending upon p, A and p.

Proof. The proof follows the steps of the proof of [6, Theorem 4.1]. Firstly, we make the change
of variables Y; = e”Y; to reduce to the terminal condition & which belongs to LP. We derive the
apriori estimate in L? with p € (1,2), which is the only difference with the proof in [6]. It follows
easily from the identity (4) that, for 0 < ¢ < u,

unT

-1
eP? N Yy g |P +p/ ePr® (p—|Y3|”_2|Zs|2 + p|Ys|p) ds
AT 2
uAT . uAT =
|V, [P H(Y,, £ (5, Y5, Zs))ds —P/ e |V, [PH(Y;, Z,dBs).

< PPEAD Y, P 4 p /
tAT

tAT
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The assumptions on f together with Young’s inequality leads to the inequality, denoting as before
12 = f(5,0,0), for any 0 < 6 < (p—1)/2,

lylP~ 1, f(s,y,2))

A2 p—1 1 ps \'7P
- @00 P _ p—2 2 - 0P
< (u+5+2(p_1_25))|y| +( 5 5)Iy| l2* + 2 15 (p—_1> :

We choose § > 0 small enough so that pu + 2§ + ﬁ < p and deduce from the previous

inequalities that
uNT
PNYiprP g8 [ (VP + VP IZL) ds
AT
unT unT =R
< D Yarf? + C(p,d) / e[| ds—p / e’ |Y,[P (Y, Z,dBs).
AT AT
Taking the expectation and sending u to infinity in the last inequality, we get

T
* [epp(tAT)m/\TP + 5/ PP ([VelP + |Y5|P~2| Z %) ds]
0

< CpdHE

T
e””T|§|’J +/ ePrs |f£|p ds] .
0

Using a standard argument based on the Burkholder—-Davis—Gundy inequality, we can moreover
include a sup, inside the expectation of the left hand side. O

Remark 5.3. In most interesting applications, in particular to elliptic PDEs, if 7" is an unbounded
stopping time (e. g. = 400), (H1’) cannot be satisfied unless p < 0. This implies in particular
that u < 0, which should be expected, from the relation with elliptic PDEs, see [6].

In the case p = 2, the condition p > p + (2(p — 1)) 71 \? reduces to p > pu + A?/2, which is the
condition in [6]. On the other hand, as p — 1, the condition

2(p—1)

requires p to be negative, with larger and larger absolute value. No result for the case p = 1 can
be deduced from the above.

w+ <p<O

6 Integrable parameters

In this section, we will deal with the case p = 1 which appears to be very different from the previous
one. Let us denote Y7 the set of all stopping times 7 such that 7 < T'; we recall that, for a process
Y = {Yi}o<i<T, Y belongs to the class (D) if the family {Y;, 7 € X7} is uniformly integrable. For
a process Y in the class (D), we put

V1l = sup {E[|¥; ], 7 € =1}

The space of progressive measurable continuous processes which belong to the class (D) is complete
under this norm see [2, p. 90].

We will need a further assumption on the function f: we will assume that there exist two
constants v > 0, a € (0,1) and a non-negative progressively measurable process {g; }+c[o,7] such
that

V(t,y,2) € [0,T] x R* x R**4, | f(t,y,2) = f(,4,0)| < v (g + y[ +[2)*.  (HT)
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Note that this assumption is trivially satisfied if f does not depend on z.
We will also assume that:

E

T
|£| +/0 (ft+gt) dt| < +o0. (Hl”)

Firstly, let us recall the following result which can be found in [10] with a different constant
but in a more general context.

Lemma 6.1. Let {M;}icjo,7) be a martingale. Then, for all B € (0,1),

B[MZ) < T=EllMr).

Proof. Let us denote ¢ = E[|Mr|]. We have, by Doob’s inequality, for each z > 0, ]P’(M* > x) <e.
Then,

+o0 +oo
E[MP]=E [/ 1ar, 5202571 dm] < / min(1,c¢/x) 2P~ dx = P /(1 - B).
0 0

QOur main results are Theorem 6.2 and Theorem 6.3 below.

Theorem 6.2. Let the assumptions (H1”), (H2), (H3), (H4), (H5) and (H7). Then the BSDFE (1)
has at most one solution (Y,Z) such that Y belongs to the class (D) and Z belongs to the space

Uﬂ>a Mﬁ'

Proof. We can assume without loss of generality that u = 0.
Let us consider (Y, Z) and (Y’, Z’) two solutions to (1) with the appropriate conditions. Once
again we introduce, for n € N*|

t
T":inf{te[O,T],/ (|Zr|2+|Z;|2)dr2n}/\T.
0

Setting y, = Yy — Y/, 2: = Z; — Z}, the formula (4) yields the inequality,

T,

n Tn
|yt/\'rn| S |y7'n| +/ <:T/\T7f(ral/;‘7ZT) - f(er;’)Z;‘)> dr — / (@\T:ZT‘ dBT)
t

tATR NTn
Thus, using the monotonicity of f in y, we get

Tn

T
|yt/\'rn| S |y7'n| +/ |f(T7 Yr; Zr) - f(T:Y;'a Z:-)| dr — / <?/J\7';zr dBr)a
0 t

NTn

and conditioning with respect to J; we have

T
|yt/\7’n| S E ('y‘l‘n| +/ |f(r7}/;‘7ZT) - f(T',Y;,Z,:.)| dr ‘ ft) .
0

Of course, we want to send n to infinity. To do this, let us mention that the process y is
continuous and belongs to the class (D). It follows that, P-a.s., ¥, = yrar, — yr = 0 and
moreover this convergence holds in L!. As a byproduct, we deduce that the continuous martingale
E(y., | Ft) converges to 0 in ucp. Extracting a subsequence, we obtain, P-a.s.,

T
Vi e [OaT]7 |yt|SE<~/O |f(7‘,1/;~,ZT)—f(T,Y;‘,Z:")|d'I“‘]:t> ) (11)
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and from the assumption (H7) we get, P—a.s.,
T
Vte[0,T], [y <2vE (/ (90 + 1Yol + |Z| +12])) ar ‘ ft) :
0

Since there exists 3 > a such that Z and Z' belongs to M? and since Y is of class (D), we
deduce immediately from the previous inequality and the assumption (H3) that y belongs to the
space S? for some ¢ > 1. Lemma 3.1 and Proposition 3.2 imply that (y, z) = (0,0) € STx M. O

We turn now to the existence part of our study. We are going to prove the following result.

Theorem 6.3. Let the assumptions (H1”), (H2), (H3), (H4), (H5) and (H7) hold. Then the
BSDE (1) has a solution (Y, Z) such that Y belongs to the class (D).
Moreover, for each 3 € (0,1), (Y, Z) belongs to the space S® x MP.

Before giving the proof of this result, we study the case where the generator is independent of
the variable z.

Proposition 6.4. Let the assumptions (H1”), (H3), (H4) and (H5) hold and let us suppose that f
does not depend on z. Then, the BSDE (1) has a solution (Y, Z) such that'Y belongs to the class
(D). Moreover, for each B € (0,1), (Y, Z) belongs to the space S® x MP.

Proof. We use a standard truncation method still assuming that p = 0. Let us introduce, for each
integer n > 1, £™ = ¢, (€) and f"(t,y) = f(t,y) — f(£,0)+¢n(f(t,0)) with ¢, (y) = yn/(ly|vn). We
know from our previous result (Theorem 4.2) that the BSDE associated to the parameter (£7, f™)
has a unique solution in the space S? x M?2.

We set §Y =Yt Y™ §Z = Z"ti — Z'. Using the same computation as in the uniqueness
part, see (11), we have,

T .
6% <E (wa s [y - ey ar) ]—'t> ,

from which we derive the inequality

T
|6Y;| <E <|§|1|g|>n +/0 |£(r,0)[1£(r,0)>n dr ‘ ft) . (12)

We deduce immediately from this inequality that

T
ol <&t + 19000t

and from Lemma 6.1 that, for any 8 € (0,1),

B
1
E [sup; [6Y;|°] < mE

T
€111/ >n +/0 |f(7">0)|1|f(r,0)>ndr]

Thus (Y™)y is a Cauchy sequence for the || - ||; norm and for natural distance on S? for each
B € (0,1). Let Y be the progressive measurable continuous process limit of this sequence: Y
belongs to the class (D) and to S? for each 8 € (0,1).

Now, (6Y,Z) solves the following BSDE

T T
§Y, = ¢nti—¢n +/ F(r,0Y;)dr — / 0Z,dB,,
¢ ¢

15



where F stands for the random function
Ft,y) = """ (tby + ") — " (1Y)
since f™*? is monotone, F satisfies the inequality

(v, F(t:9)) < [yl £t 0)[1|£(t.0) >n-

Thus, using Lemma 3.1, we deduce that, for 5 € (0,1),

T B/2 T B
E[( | oz ar) ]soﬂElsuptme( 1000 ) ]

It follows that, for each 8 € (0,1), (Z*); is a Cauchy sequence in M? for the natural metric and
then converges in this space to some progressively measurable process Z.

Since fot Z7' dB, converges to f(f Z,dB, in ucp and since the map y — f(¢,y) is continuous,
we easily check by taking a limit in ucp that (Y, Z) solves the correct BSDE. O

With this proposition in hands we can prove our main existence result.

Proof of Theorem 6.3. Once again, we can assume that g = 0 without loss of generality. We will
use some kind of Picard’s iterative procedure. Let us set as usual (Y9, Z°) = (0,0) and define
recursively, in view of the previous proposition, for each n > 0,

T T
Yt = §+/ fer, Y 720 dr — / ZM'dB,,  0<t<T.
t t

Fore each n, Y™ belongs to the class (D) and (Y™, Z™) belongs to S® x M? for all 3 € (0,1).
For n > 1, arguing as in the proof of uniqueness, we deduce that

T
vte[0,T], |Y -V <2yE (/ (g0 + [V + |27 + | 2271 )% ar ‘ ft> :
0

Z™ and Z™! belongs to MP for each B € (0,1), Y™ belongs to the class (D) and {g;}sejo,77 is
integrable. Thus the random variable

T
= [ o+l |2+ |2 )" ar

belongs to the space LY as soon as ag < 1. Let us fix ¢ € (1,2) such that ag < 1. Then, for n > 1,
y™ = Y™l — Y™ belongs to the space S?. Let us set z” = Z"t1 — Z™. (y™,2") is solution to the
following BSDE

T T
yr = / Fulry?) dr — / 2rdB,,
t t

where
falryy) = f(ryy+ Y, Z0) = f (Y, 2070 .

Since f is assumed to satisfy the condition (H3) with u = 0, f,, satisfies the assumption (A) and,
using (H6), we have the inequality

@, fu(r,y)) < |f(r, Y, 20) = fr, Y, Z0 Y| < (g0 + |V + | 20| + |20 1))°

Lemma 3.1 shows that 2™ is in the space MY since I}, is in LY.
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Proposition 3.2 implies that there exists a constant C; depending only on ¢ such that for each
n>1,

T q
™, 2)]* < ¢, E l( /0 £ Y 20 = f Y, 20 ar) ] :

where || - || stands for the following norm on S x M¢:

1/q
T q/2
sup, |Y3|? + (/ |Zr|2dr) ])
0

For n > 2, we use the fact that f is A-Lipschitz in z to get, using Holder’s inequality,

where ¢ = C,A\9T%/2. Thus, we have, for n > 2,
@™ 2" < et 2h)]*

Let us assume first that ¢ = C,A97%/2 < 1. Since ||(y*,2%)||" is finite, it follows immediately
that (Y™ —Y1', Z™ — Z1) converges in the space S x M? to some (U, V). We deduce that (Y™, Z™)
converges to (Y = U +Y',Z =V + Z') in S x MP for each 8 € (0,1) since (Y'',Z') belongs
to it. Moreover Y™ converges to Y for the norm || - ||; since Y belongs to the class (D) and the
convergence in 8¢ with ¢ > 1 in stronger than the convergence in || - ||;-norm.

To conclude the proof in this case, it remains to pass to the limit in the equation satisfied by
(Y™, Z"™) to see that (Y, Z) solves the BSDE (1). This is easily done in ucp.

For the general case, we have only to subdivide the time interval [0, into a finite number of
small intervals. This completes the proof. O

[.2)] = (E
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