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General aim

Study/understand the space-time embedding of ancestral lineages in
spatial models for populations with local density regulation (in particular,
with non-constant local population sizes).

A step towards combining ecological and population genetics aspects in a
stochastic spatial population model

Caveat: Most results so far are more of conceptual than practical interest.
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Outline

1 Introduction

2 Logistic branching random walks and ‘relatives’
Coupling

3 Spatial embedding of an ancestral line

4 Outlook
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Introduction

M. Lamotte’s grove snail data (cepaea nemoralis)
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(c) Wikipedia user Mad Max

Maxime Lamotte, Recherches sur la structure génétique des populations
naturelles du Cepaea nemoralis, Bulletin biologique de France et de Belgique,
Suppl. 35, 1–239, (1951)
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Introduction

Let η(x) = frequency of gene b+ in colony at x ∈ R2

Question: For population in homogeneous equilibrium,

E
[(
η(x)− η(y)

)2]
= ?

E
[(
η(x)− η(y)

)2]
=E
[
η(x)2

]
+ E

[
η(y)2

]
− E

[
η(x)

]
− E

[
η(y)

]
+ 1

− φ(x, y),

where

φ(x, y) = Prob.(two individuals, sampled at x and at y have same type).

Assuming stationarity, we can estimate E
[
η(x)2

]
= E

[
η(0)2

]
and

E
[
η(x)

]
= E

[
η(0)

]
from the data, for φ(x, y) we use Malécot’s formula

(assuming, in particular, small mutation rates).
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Introduction

Malécot’s formula

φ(x, y) = φ(x− y) ≈ 1

N + log(σ/κ
√

2µ)
K0

(√
2µ||x− y||/σ

)
with µ = mutation rate, σ = (backward) ‘dispersal distance’,
N = ‘neighbourhood size’, κ = ‘local scale’
[and K0(r) =

∞∫
0

exp(−r2t − 1/(4t)) dt
t

is the modified Bessel function of the second kind of order 0]

(Malécot 1948, cf also Barton, Depaulis, Etheridge 2002)

Obtained from recursive decomposition (‘follow two lineages backwards’)

φ(z) = (1− µ)2
(1− φ(0)

δ

∫
R2

g(y)g(z− y) dy

+

∫
R2

∫
R2

g(x)g(x′)φ(z + x− x′) dxdx′
)

with g(·) an isotropic Gaussian density
[then solved e.g. via Fourier transform plus ad hoc assumption about behaviour near z = 0]
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Introduction

M. Lamotte’s grove snail data again
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A successful fit??? φ(0) ≈ 0.22, φ(0)2 ≈ 0.06, applying Malécot’s formula with
µ = 10−8, κ = 0.3, N = 35, σ = 1028
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Introduction

Stepping stone model (Kimura, 1953) (here, in discrete time)

Colonies of fixed size N are arranged in a geographical space, say Zd

... ...

(d = 1 in this picture)

For each child: Assign a random parent in same colony with probability
1− ν, in a neighbouring colony with probability ν

... ...

More generally, at for each individual in colony x , with probability
p(x , y) = p(y − x) assign a random parent in previous generation from
colony y

“Trivial” demographic structure, but paradigm model for evolution of type
distribution in space
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Introduction

Stepping stone model: Ancestral lines

... ...

... ...

... ...

... ...

... ...

... ...

... ...today

past 10/26



Introduction

The stepping stone model (Kimura, 1953)

Fixed local population size N in each patch (arranged on Zd), patches
connected by (random walk-type) migration

Pros: + Stable population, no local extinction, nor unbounded growth

+ Ancestral lineages are (delayed) coalescing random walks (in
particular, well defined),

this makes detailed analysis feasible, yields via duality:
long-time behaviour of (neutral) type distribution

Cons: − An ‘ad hoc’ simplification, effects of local size fluctations not
explicitly modelled

− N is an ‘effective’ parameter, relation to ‘real’ population
dynamics is unclear

− Grid not so realistic for most populations

11/26



Introduction

Remark: A problem with branching random walk

(Critical) branching random walks, where particles move and produce
offspring independently, explicitly model fluctuations in local population
size, but do not allow stable populations in d ≤ 2:
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(Felsenstein’s “pain in the torus” 1975; Kallenberg 1977) 12/26



Logistic branching random walks and ‘relatives’

Branching random walk with local density-dependent
feedback

Possible and natural extension of the stepping stone model
(and of branching random walks)

Offspring distribution supercritical when there are few neighbours,
subcritical when there are many neighbours

e.g. Bolker & Pacala (1997), Murrell & Law (2003), Etheridge (2004),

Fournier & Méléard (2004), Hutzenthaler & Wakolbinger (2007)

Blath, Etheridge & Meredith (2007), B. & Depperschmidt (2007),

Pardoux & Wakolbinger (2011), Le, Pardoux & Wakolbinger (2013), ...

Challenges:

Mathematical analysis harder (population sizes are now a space-time
random field; feedback mechanism makes different families
dependent)

Dynamics of ancestral lineages?
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Logistic branching random walks and ‘relatives’

Logistic branching random walks

Particles ‘live’ in Zd in discrete generations,
ηn(x) = # particles at x ∈ Zd in generation n.

Given ηn,

each particle at x has Poisson
((

m −
∑

z λz−xηn(z)
)+)

offspring,
m > 1, λz ≥ 0, λ0 > 0, symmetric, finite range.

(Interpretation as local competition:
Ind. at z reduces average reproductive success of focal ind. at x by λz−x)

Children take an independent random walk step to y with probability py−x ,
pxy = py−x symmetric, aperiodic finite range random walk kernel on Zd .

Given ηn,

ηn+1(y) ∼ Poi
(∑

x

py−xηn(x)
(
m −

∑
z λz−xηn(z)

)+
)
, independent
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Logistic branching random walks and ‘relatives’

Remarks

ηn+1(y) ∼ Poi
(∑

x
py−xηn(x)

(
m −

∑
z λz−xηn(z)

)+
)
, independent

For λ ≡ 0, (ηn) is a branching random walk.

(ηn) is a spatial population model with local density-dependent
feedback:
Offspring distribution supercritical when there are few neighbours,
subcritical when there are many neighbours

System is in general not attractive.

Conditioning1 on ηn(·) ≡ N for some N ∈ N (“effective local
population size”) yields a discrete version of the stepping stone model

1and considering types and/or ancestral relationships
15/26



Logistic branching random walks and ‘relatives’

Remarks, 2

Poisson offspring distribution is a somewhat artificial (though
technically very convenient) choice, one could take any family
ν(a) ∈M1(Z+) parametrised by

a =
∑
k

kνk(a) satisfying
∑
k

(k − a)2νk(a) ≤ Const.× a

Logistic term x(1− x) could be replaced by another suitable function
h(x), e.g. h(x) = x exp(a− bx).

We have little “explicit” information on the system, e.g. no closed
formulas for means, variances/covariances, etc.

Related continuous-mass models (Etheridge 2004, Blath et al 2007)
can be obtained as scaling limit
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Logistic branching random walks and ‘relatives’

Survival and complete convergence

Theorem (B. & Depperschmidt, 2007)

Assume m ∈ (1, 3), 0 < λ0 � 1, λz � λ0 for z 6= 0.

(ηn) survives for all time globally and locally with positive probability for
any non-trivial initial condition η0. Given survival, ηn converges in
distribution to its unique non-trivial equilibrium.

Proof uses

corresponding deterministic system

ζn+1(y) =
∑

x
py−xζn(x)

(
m −

∑
z λz−xζn(z)

)+

has unique (and globally attracting) non-triv. fixed point

strong coupling properties of η

coarse-graining and comparison with directed percolation

Restriction m < 3 is “inherited” from logistic iteration wn+1 = mwn(1− wn).

17/26



Logistic branching random walks and ‘relatives’

Survival and complete convergence

Theorem (B. & Depperschmidt, 2007)

Assume m ∈ (1, 3), 0 < λ0 � 1, λz � λ0 for z 6= 0.

(ηn) survives for all time globally and locally with positive probability for
any non-trivial initial condition η0. Given survival, ηn converges in
distribution to its unique non-trivial equilibrium.

Proof uses

corresponding deterministic system

ζn+1(y) =
∑

x
py−xζn(x)

(
m −

∑
z λz−xζn(z)

)+

has unique (and globally attracting) non-triv. fixed point

strong coupling properties of η

coarse-graining and comparison with directed percolation

Restriction m < 3 is “inherited” from logistic iteration wn+1 = mwn(1− wn).
17/26



Logistic branching random walks and ‘relatives’ Coupling

Coupling: An essential proof ingredient
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m = 1.5, p = (1/3, 1/3, 1/3), λ = (0.01, 0.02, 0.01)

Starting from any two initial conditions η0, η′0, copies (ηn), (η′n) can be
coupled such that if both survive, ηn(x) = η′n(x) in a space-time cone.
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Spatial embedding of an ancestral line

Dynamics of an ancestral line

Given stationary (ηstatn (x), n ∈ Z, x ∈ Zd), cond. on ηstat0 (0) > 0 (and
“enrich” suitably to allow bookkeeping of genealogical relationships),
sample an individual from space-time origin (0, 0) (uniformly)

Let Xn = position of her ancestor n generations ago:

Given ηstat and Xn = x , Xn+1 = y w. prob.

px−yη
stat
−n−1(y)

(
m −

∑
z λz−yη

stat
−n−1(z)

)+∑
y ′ px−y ′η

stat
−n−1(y ′)

(
m −

∑
z λz−y ′η

stat
−n−1(z)

)+

Question:
(Xn) is a random walk in a – relatively complicated – random
environment. Is it similar to an ordinary random walk when viewed over
large enough space-time scales?
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Spatial embedding of an ancestral line

Dynamics of an ancestral line

P
(
Xn+1 = y

∣∣Xn = x , ηstat
)

=
px−yη

stat
−n−1(y)

(
m −

∑
z λz−yη

stat
−n−1(z)

)+∑
y ′ px−y ′η

stat
−n−1(y ′)

(
m −

∑
z λz−y ′η

stat
−n−1(z)

)+

Remarks

Analysis of random walks in random environments (also in dynamic
random environments) is today a major industry.
Yet as far as we know, none of the general techniques developed so
far in this context is applicable.

In particular: The natural “forwards” time direction for the walk is
“backwards” time for the environment.

Observation: (Xn) is close to ordinary rw in regions where relative
variation of η−n−1(x) is small.
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Spatial embedding of an ancestral line

Large scale dynamics of an ancestral line

Xn = position of ancestor n generations ago of an individual sampled
today at origin in equilibrium

Theorem: LLN and (averaged) CLT

If m ∈ (1, 3), 0 < λ0 � 1, λz � λ0 for z 6= 0,

P
(1

n
Xn → 0

∣∣∣ η0(0) 6= 0
)

= 1 and E
[
f
(

1√
n

Xn

) ∣∣∣ η0(0) 6= 0
]
−→
n→∞

E
[
f (Z )

]
for f ∈ Cb(Rd), where Z is a (non-degenerate) d-dimensional normal rv.

The proof uses a regeneration construction
(and coarse-graining and coupling, in particular with directed percolation):

Regeneration times 0 = T0 < T1 < T2 < · · · , express XTk
= Y1 + · · ·+ Yk

with Yi := XTi
− XTi−1

and (Yi ,Ti − Ti−1)i≥1 ‘almost i.i.d.’
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Spatial embedding of an ancestral line

Spatial population models (ηn) and ancestral lineages (Xk):
Abstract conditions

Local Markov structure: ηn+1(x) is a function of ηn in a finite window
around x plus ‘local randomness’

Given η, (Xk)k=0,1,... is a Markov chain, P(Xk+1 = · | η,Xk = x)
depends on η−k , η−k−1 in a finite window around x
[note reversal of time between η and X ]

Good configurations and coupling propagation for η on coarse-grained
scale LspaceZd × LtimeZ: With high probability,

‘good’ blocks have to make neighbours good in Ltime steps and

η’s with two different good local initial conditions become locally
identical after Ltime steps

On good η blocks, the law of X is ‘well behaved’: e.g., close to a
non-disorded symmetric finite range reference walk

Symmetry in distribution
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Spatial embedding of an ancestral line

Idea for constructing regeneration times

Find time points along the path such that:

a cone (with fixed suitable base diameter

and slope)

centred at the current space-time
position of the walk covers the path
and everything it has explored so far
(since the last regeneration)

configuration ηstat at the base of the
cone is “good”

“strong” coupling for ηstat occurs inside
the cone

t0

t1

t2

t3

Then, the conditional law of future path increments is completely
determined by the configuration ηstat at the base of the cone
(= a finite window around the current position)
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Outlook

Outlook

Technique is robust (applies to many spatial population models in
“high density” regime) but current result “conceptual” rather than
practical

We are hopeful that a “joint regeneration” construction can be
implemented to analyse samples of size 2 (or even more) on large
space-time scales.

Meta-theorem: “Everything”2 that is true for the neutral multi-type
voter model is also true for the neutral multi-type spatial logistic
model.

Suitably controlled joint regeneration also allows to derive an a.s.
version of the CLT, conditioned on a fixed realisation of ηstat.

2with a suitable interpretation of “everything”.
Examples: Clustering of neutral types in d = 1, 2; multiype equilibria exist in d ≥ 3,
P
(
two ind. sampled at distance x have same type

)
∼ C x2−d .

24/26



Outlook

Outlook

In fact, such a “joint regeneration” construction has been carried out
for a simplified version of ηstat, the discrete time contact process.
Then, (Xn) is a directed random walk on the “backbone” of an
oriented percolation cluster.

The diffusion rate σ2 = σ2(p) = E
[
Y 2

1,1

]
/E[T1] ∈ (0,∞) is not very

explicit (though in principle accessible by simulations),

effective coalescence probability for two lineages still a “black box”
(at least to me).
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(Some) details can be found in

M. B., A. Depperschmidt, Ann. Appl. Probab. 17 (2007), 1777–1807

M. B., J. Černý, A. Depperschmidt, N. Gantert, Directed random walk on
an oriented percolation cluster, Electron. J. Probab. 18 (2013), Article 80

M. B., J. Černý, A. Depperschmidt, Random walks in dynamic random
environments and ancestry under local population regulation,
arXiv:1505.02791 (2015)

Thank you for your attention!
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