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Monotonicity Methods for White Noise
Driven Quasi-Linear SPDEs

R. Buckdahn and E. Pardoux

Abstract
We establish existence and uniqueness for nonlinear elliptic and parabolic
SPDEs driven by white noise, with nonlinearities of monotone type.

1. Introduction

The aim of this paper is to establish existence and uniqueness results both
for nonlinear elliptic stochastic partial differential equations of the type :

(™ —Au(z) + f(u(z)) = W(z), z € D
ﬁ_mb =0

where D is an open bounded subset of R¥ (& = 1,2,8), W denotes white

noise, and f is an increasing function; and for nonlinear parabolic stochastic

partial differential equations of the type :

(1.2)
du 8%u *w
MQ_SV - %ﬁuuﬁv + %Aﬁvﬁa_ﬁu e %a%.ﬁmuuﬂv +%Auuﬁv. t > O_ 0 M z < H

u(0,z) = zo?.vro <z < Lut0)=u(t1)=0

2 . - ” .
where w“mw denotes the second order mixed derivative of the brownian sheet

{Wiz}, i.e. space-time white noise, and

F=hH+fa

where f; is increasing and f, is Lipschitz.
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We shall establish existence and uniqueness of a solution for these two
classes of equations.

Note that a lot is known about equation (1.1) in case of a linear function
f, see e.g. Benfatto, Gallavotti, Nicold [2], Rozanov [7]. It is known that the
solution is a process in the ordinary sense iff k - the dimension of the space
variable z — is less than or equal to three. This is the reason for our restriction
to k < 3. There seems to be no literature on nonlinear elliptic SPDEs with
the white noise on the right side. For nonlinear elliptic PDEs with measures
as right side or boundary condition, we refer to Boccardo, Gallouét [1] and
Réckner, Zegarlinski [6]. Our approach will consist in generalizing the use of
monotonicity by Lions [4] to solve certain classes of deterministic nonlinear
PDEs. Let us note that our results could be extended to more general PDE
operators, and other types of boundary conditions.

Moreover, in the case k = 1, the nonlinear function f can depend also
on W, see Nualart, Pardoux [5] where it is shown that the solution (u, wlu
is a Markov field iff f is linear. The positive part of that result is still true
for k = 2,3 (see e.g. Rozanov [8]), and we suspect that the negative part
also generalizes, but we have not been able to prove it yet.

Concerning the parabolic equation (1.2), let us note that existence and
uniqueness is known in case f is Lipschitz, even with a non constant diffu-
sion coefficient, see e.g. Walsh [9]. However, our result with fi monotone
increasing and not necessarily Lipschitz seems to be new.

2. Elliptic equations

The aim of this section is to study the equation :

—Au(z) + f(u)(z) = g(2) + W(z), z €D
ulsp =0

(2.1)

where D is a bounded domain of R*, k = 1,2 or 3, whose boundary 0D
is supposed to be regular in the sense of potential theory, g € L*(D), W
denotes “white noise”-%and

F(u)(2) = f(=z,u(=))

wheref(z,r) is a measurable function of (z,7) € D x R which satisfies prop-
erties to be stated below. We first note that we can and shall w.l.o.g. assume
that f(z,0) = 0. We moreover assume that :

(2.2) # — f(z,7) is continuous and non decreasing, for any z € D

and moreover

(2.3) f is locally bounded
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Note that (2.2) together with f(z,0) = 0 i
: ,0) = 0 imply that rf(z,r} > 0 d
EonM<MH from (2.3) f(z,u(z)) is bounded whenever u(z) mmﬁoozwa.ma '
et us now give a more rigorous formulation of equati 5
i nore ation (2.1), i.e.
“weak formulation” , which is as follows. An a.s. vozuwma ?:nmmonv ,:HM.OHM

D into R is said to satisfy the weak f : 2
shichi vanighos:on B, orm of (2.1) if for any ¢ € CZ(D)NC(D),

(2.9)
- \n w(z)Ad(z) dz + \b Fi)olaide = \u o(2)é(z) dz + \u é(z) dW,

where {W,;z € R¥} is a standard Wiener process with k—dimensional pa-

. L . ; .
eter, Le. 1t is an a.s. continuous Gaussian random field with zero mean
and covariance operator defined by

‘ .mm._.‘g\uﬁ.ﬁ\@._HH\/Q

(zAy=(e1 A1) (zk Ayp)).
ﬁ<<m shall ﬂo_.w smg another equivalent formulation, which we call an
ntegral formulation”. Before introducing that formulation, we need to

introduce the kernel associated to the li :
e lin .
Consider the elliptic PDE : ear version of the above equation.

Anm

—Av(z) = p(z), z € D
e_mb =0

That equation defines a linear conti :
i ntinuous m 2 s .
which can be written as : apping from L*(D) into itself

v(z) = .\u K (z,y)e(y) dy

mr@ MH_.N._H now mmcm an ﬁuﬂﬁvﬂmmm“—o: mOH N..V Z mn ﬂTﬁ ﬁww €€ Ccase! —_— M .
1

Eﬁsua>@|alu..c

In case n = M~ we H.wmkwm

1 1
K(zy) = —g loglz —y| + 7—F; [log | B, — y]]

s&mﬁm {B:; t > 0} denote the standard two-dimensional Brownlan motion
starting from z under P;, and 7 is the exit time from D.
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In case n = 3, we use 35 same notations as for n = 2 (but now {By; t >
0} denotes the three-dimensional standard Brownian motion). We have :

K(z,y) = (dnlz - y)™" — B2 [(41B; — o) "]

Lemma 2.1. In the three cases k = 1,2,3, the random field

TE - \o K(z,y)dW,, ¢ € @w

Poe

possesses an a.s. continuous modification.

Proof: We consider successively the three cases. If D = (0,1),

v(z) = .\.E\%I\ W, ds

and the results is obvious in this case.
Consider now the case k = 2. Let

#(z) = \ log |z — y| dWy
D
We have for 2,z € D, e>0:

E [Jo(z) - 5(=)] = \U llog |z — 31 — log |z — " dy

2—-€ 5 ' R% mln&@
<o~ =P~/ Jlogle —vl =logl= ~Il\ || gz g @0 ]

2—
7 e 1 i
< |z — 2 \ llog |z ~"y| — log |z — yl|" h_u s iy o ﬁ_v i
B 1/q
€
< ele —z|*~* A\ _Hom_a —y| ~loglz — @__q mﬁv
D

i/p
XQ = _séi _Te_s-mL

where 2 + 1-1,1<p<(2—¢)7"2 It is not hard to deduce from these
Smpcm._n Bmm :

B[l5(s) - 9] < &le—#[', 2,2€ D
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But #(z) — 9(2) is a zero mean Gaussian random variable, and consequently
for any integer r and £ > 0,

E[lo(z) — 5(=)'] < chle — /0, 5,2 € D

Choosing r > 2, we conclude from Kolmogorov’s Lemma that ¥ possesses an
a.s. continuous modification. Having chosen that modification, we deduce
that E;[7(B,)] is continuous on D, and also :

v(z) = .\b K(z,y)dW,
= Awilim Aﬁaﬁmﬁmﬂ& - mﬁﬁb

where E; means here integrating with respect to the law of B,, {W,} being
fixed.

We consider finally the case n = 3, which is analogous to the last case.
It suffices to check that #(2) = [}, |z —y|~* dW, possesses an a.s. continuous
modification. For z,z € D, 0 < e < 1/4,

2

1
1 diy

o=yl 2 -yl
e

E[fs(z) - #(2)?] = \c
: 1 |z —yl—lz—

m\ -
pllz—yl |z—yl |z —yllz —yl

5 »
<lp—zfi \ R S T :NQ 2 v_:
pllz—yl ~ Je—yl D (lz—yllz— yl)i-2
1/2
< nm_HIN_mlm A.\ A.rcu +\ &@_a v
p lz—y|z¥% " Jp |z —y[Ft*
y h\ Q‘H\ v:__h Ar\ &_@ vu.\ﬁ
5 e~y 1 Je—yjP

dy

It then follows :
E[lo(z) - 9(2)]"] < chlz - 2|3%, 2,z € D

Again from well-known properties of Gaussian random variables, we deduce
that for any integer p,

E[lo(z) - 9(2)F] < ¢! 'le—z|[3-%% 2, 2€D

We conclude using Kolmogorov’s Lemma. ]
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Remark 2.2. It follows from the proof of Lemma 2.1 Quwm in case _‘n =1,
v has Lipchitz paths, in case k = 2, the paths of v are ..MOEE. no“zﬂanocm
of exponent 1 — ¢, Ye > 0, and in case k = 3 they are Hoélder continuous of
exponent 3 — ¢, Ve > 0. O

We shall say that an a.s. bounded function u from D into R solves the
“integral form” of equation (2.1) if :
(2.5)

%I“.\v K(z,9)f(u)(3) dy = \b K, i)a(o) A+ \U K(z,y)dW,, z€D

Note that if u satisfies (2.5), u is a.s. continuous on D, and vanishes on
aD.

Lemma 2.3. (2.4) and (2.5) are equivalent.
Proof: Suppose that u satisfies (2.5). Then u is a.s. continuous on D.

Let ¢ € C®(RF), with compact support in D. Multiply (2.5) by A¢(z) and
integrate over D. Using the identity

r\p%éﬁé%n&s

we deduce (2.4) for smooth ¢; the genaral case follows by density.
Suppose now that u satisfies (2.4). Choose

800 = [ $E)K (@) da ,
with % € C(D). Noting that
M) = ¥(),
we conclude that .
[ weriayas + [ [ @k e d=dy
_ \c \c $(2)K (2, 9)o(y) dady + \u \b ¥(2)K (2, y) dW, dz

from which (2.5) follows. O
We shall rewrite equation (2.5) as :

ut+ Kf(u)=Kg+ KW

Let us denote by || -|| and (-, ) the usual norm and scalar ﬁ.z.omcnﬁ in L2(D).
The existence and uniqueness proof will rely on the following :
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Lemma 2.4. There ezists a constanta > 0 such that for any € LY(D),

(Kp,p) > a||K ||

Proof: For ¢ € L*(D), Ky is the unique element of the Sobolev space
H} (D) which solves the equation :

—Av(z) =p(z),z€ D
v|lap =0

Multiplying the above equation by v and integrating by parts, we obtain :

k
0
Dl = (e,0)
i=1

However, from Poincaré’s inequality, see Gilbarg, Trudinger [3, p. 157], there
exists a constant @ > 0 such that for any v € H}(D) :

k

S llg ol > alfl?

1=1

The result follows. D
We are now in a position to establish the main result of this section :

Theorem 2.5. Let D be a bounded domain of R*, 1 < k<3, with
a regular boundary, let f satisfy (2.2) and (2.3), and g € L?(D). Then
equation (2.5) possesses a unique solution which is a.s. continuvous on D.

Proof: Unigueness. Let u,v be two solutions. Then
(2.6) . u—v+ K[f(u)— f(v)] =0
Multiplying that equation by f(u) — f ?v“. we obtain :

(u—v, f(u) = £(2)) + (K[f(u) = ()], () = f(v)) =0
It follows from Lemma 2.4, (2.2) and (2.6) that
affu—v|* <0

from which uniqueness follows. Moreover, the argument clearly implies the
following stronger uniqueness statement : if 4 and v satisfy (2.5) on a mea-

surable subset © of €, then

u(z) =v(z) ae on DxQ.
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Ezistence. Step 1. We suppose in this first step that f satisfies (2.2) and
is bounded. Let {W", n € N} be a sequence of processes with trajectories in
L?(D), which is such that :

KW" — KW in L}t x D), as n — o0
For each n € N, we consider the elliptic PDE:

. ) |>::+%ﬁﬁuv“n+ﬂ\u
@7 uw*lap =0

The existence of a unique solution u* € H{(D) for equation (2.7) follows
from Lions [4, Theorem 2.1 p. 171]. Clearly,

(2.8) u + K f(u®) = Kg + KW™

and

am — u™ + K[f(u") — f@™)] = K™ = W™
Multiplying by f(u") — f(u™), we get :
(" =™, (") = (™) + (K[F(") = FT)] F™) = f(w™)
= (KW" = W™, f(") - f(u™))
By (2.2) and Lemma 2.4, we obtain :
alu® — u™||? < (K[W™ — W™, f(u”) = f(u™) + 20(u” — ™))

Since E[||K(W™ — W™)||*] tends to 0 as n,m — oo and f is bounded, {u"}
is a Cauchy sequence in LZ(Q2 x D). Define u = limp ™. Since f is bounded,
f(u™) — f(u) in L2(Q x D) as n — oo. Existence follows by taking the limit
in (2.8).

Exzistence. Step 2. We now suppose that f satisfies (2.2) and (2.3) and
is bounded from below. Let.

falz, ) = f(z,7) An.

For each n € N, let 4" denote the unique solution (constructed in the
above step) of the equation

w4 K fa(u®) = Kg+ KW,

It follows from Lemma 2.6 below that the sequence {up(z), n € N} is de-
creasing for any z € D, hence converges in RU {—o0}. Let

Q, = ?wv f(z,4%(z)) < n}
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On Q,, f(u™) < f(u%) < n, hence fm(u™) = f(u™) on Qy, for any m > n.
Then for any m > n, u™ is the unique solution on Q,, to our equation

u+ Kf(u)= Kg+ KW.

L1 —
Ooﬁmmmzmws.ﬁ u™ = u" on {2y, for m > n, and clearly 4™ — u where u solves
our equation.

Ezistence. Step 3. We now assume that f satisfies (2.2) and (2.3). Let
fa(z,r) = f(z,7) V (=n).
Q.S\m can proceed as in the proof of the second step, constructing this time an
increasing sequence {u"}, and defining Q,, = {inf, f(z,u%(z)) > —-n}. O
Lemma 2.6. Let f and h both satisfy (2.2) and (2.3), and moreover :
h(z,7) < f(z,r), z€ D,r €R.
Let u and v be a.s. continuous random fields on D, solutions of respectively :
u+ Kf(u)=Kg+ KW
v+ Kh(v) =Kg+ KW

Then
u(z) < v(z), z € D.

Proof: From our assumptions,
u—v+ E(f(u) — h(v)) = 0.
Consequently, u — v € Hj(D) and
—A(u —v) + f(u) — h(v) = 0.

H,ﬁiﬂw_ﬁum the above identity by (u — v)* and integrating by parts, we
obtain :

IV (u = 0)* 12 + (£(w) = h(v),(u = v)*) = 0
But on the set (u —v)* > 0, f(u) > f(v) > h(v). Hence (u—v)t =0. D

Remark 2.7. Note that the Theorem is still true if f, instead of being
nondecreasing, satisfies :

(f(&,) = f(,2))(r ~ 2) > —alr— 2, ¥z € D, 1,z € R

provided o < a, a being the constant appearing in Lemma 2.4, i.e. f could
vm. the sum of an increasing function satisfying (2.3) and a Lipschitz function
with a Lipschitz constant strictly smaller than a. m|
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3. Parabolic equations

We now want to study the equation:
(3.1)
O*wW

B t,0)— Tn(t,2) 4 Pt 7) = S (1,2) 4 9(t,2); 20,0 < 2 < 1
u(0,2) = up(z), 0 <z < L;u(t,0) =u(t,1)=0

where w”ma denotes the “space-time white noise”, g € L (R4 x (0,1)),

up € C([0, 1]} vanishes at the two endpoints, and
.\.T\&Q. Hu = Hwﬁﬂu Z; ﬁﬁﬁavv + -w.mﬁn_ ; :Q.va

satisfies properties which we now state. First note that because of the forcing
term g, we can and shall assume w.l.o.g. that

fi(t,z;0) = fa(t,2,0) = 0.

fi(t,z;r), fa(t,z;r) are measurable functions of (t,z,r) € Ry x [0,1] x R
satisfying :

(3.2)

r — fi(t,z;r) is continuous and non decreasing, for any (¢,z) € Ry x [0, 1],

(3.3) f1 is locally bounded,
and there exists a constant ¢ s.t. for any (¢,z,7,2z) ER; x [0,1] x R x R,
(3-4) |22, 2;7) = falt, z52)| < elr — 2]

We shall write f1(u), fa(u) for fi(:, u(")), f2(,u(-))-

It is shown in Walsh [9] that the two following formulations of equation
(3.1) are equivalent (at least under the assumption that u — and then also
f(u) — is locally bounded) :

(3.5)

\ u(t, z)é(z) dz — \ \ u(s, z) maM?Eai \ \ F(u)(s, 2)p(z) dzds

u\c §E%Ka+\\ %Eﬁl\\ g(s, 2)(s) dzds,
, vt > 0, ¢ € C([0,1]) N Ca([0,1])

(Co([0,1]) denotes the set of continuous functions from [0, 1] into R which
‘vanish at 0 and 1.)

(3.6)
u(t,z) + \ \ Gr-s(2,1) £ ()5, y) dyds = \ Gz, yyuo(y) dy

t ol t 1
+.\. \ Gi—s(z,y) dW,y + \. .\ Gi—s(z,y)g(s,y}dtds, 1 > 0,0<z <1
o Jo 0 Jo
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where (W;z; 1 > 0, 0 < z < 1) denotes the standard Brownian sheet, defined
on a probability space (2, F,P), and Gy(z,y) is the fundamental solution
of the heat equation with Dirichlet boundary conditions, i.e. for any ¢ €

Qc:ou H:, L
vt,2) = [ Giles)e)dy
is the unique solution of

v d%v
Mﬁ_&v mﬁmﬁau =0,t>0,0<z<1

v(0,z) = p(z), 0 <z < L; v(t,0) =0(,1)=0,t >0

It is shown in Walsh [8] that the random field

t 1
(] Gunale, ) Wy 12 0,0 2 < 1
4] 0

possesses an a.s. continuous version.

We shall rewrite (3.6) as follows:
(3.7) u+ Gf(u) = Hug+ GW + Gg
Note that for ¢ € h_mo%m+ x (0,1)), v = Gy is the unique solution of :

Wlw?.av 522 Q z) =p(t,2),t>0,0<z <1
v(0,z) = 0, v(,0) =v(t,1) =0 :

(3.8)

Let (-,-) and | - | denote the usual scalar product and norm on L?(0, 1),
((-,))e and || - || the usual scalar product and norm on L*((0,t) x (0,1)),
and ||| - |||: denote the norm on C([0,1]; L%(0,1)) defined by :

1
ol = 5ot ) + Il
We shall make repeated use of the following:

Lemma 3.1. For any ¢ € L%((0,t) x (0,1)),

(G, 0))e = 1IGllIE

Proof : Gy is the unique v € L?(0,¢; H3(0,1)) which solves (3.8).
Multiplying (3.8) by v(t,z) and integrating by parts, we obtain:

Lot P+ 1221 = (o)
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But elementary inequalities yield:

du

ﬁmmﬁxcv”& = _Q_ m M

The result follows. o

We can now establish the

Theorem 3.2. Under conditions (3.2), (3.3), and (3.4), equation (3.6)

has a inique solution
u€e C(Ry x [0,1]) as.

Proof : Uniqueness Let u and v be two solutions. Then the difference

satisfies :
u—v+Gf(u)= f(v)]=0

Multiplying by f(u) — f(v), and using the monotonicity of f; and Lemma
3.1, we obtain :

((u =, fa(u) = £2(0)))e + |llu = 2|lf < 0
from which we deduce, with the help of (3.3),

t

S RO v@P <k [ Jue) @)l ds

0

The result follows from Gronwall’s Lemma. As in the elliptic case, we note
that the same proof shows that whenever u and v are two solutions of the
equation on [0,t] x [0,1] x €, then u = v a.e. on [0,7] x [0,1] x €. :

Existence. Step 1. We suppose, in addition to the above assumptions,
that f; is bounded. Let {W,, n € N} denote a sequence of smooth random
fields which are such that

t pl t rl
\ \ Gi—s(z,y) dW], — \ \ Gis(z,y) dWyy
0o Jo 0 Jo

&
in L2(§2 x (0,1)) for each t > 0 and in L*(Q x (0,T) x (0, 1)) for any T > 0,
as n — co. If we replace W by W™, equation (3.1) has a.s. a unique solution
u™ in L2 _(Ry; H'(0,1)), see Lions [4, Theorem 1.2, page 162], which satisfies

g loc
in particular :

(3.7n) u® + Gf(u") = Huo + GW™ + Gy.

Let us show that {u"} is a Cauchy sequence in L*(Q x (0,t) x (0,1)).
We clearly have :
(™ = w™, f(u™) = F™)))e + (GUF(u") = Fu™)], F(™) = F(™)))e
= ((GIW™ — W™, f(u") = f(u™))):
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We deduce from Lemma 3.1, the monotonicity of f; and (3.4) :

lu® —w™||f <(u"(t) — u™ (1), GIV™ — W™](2))
+ ((GIW™ — W™, f(u™) — F(u™) + 2(u" — w™)))
+ef|u” — um|f?

From the assumption of the sequence {I#"} and the boundedness of fj,
1 : : . _
e(n,m) =, B(GIW™ = WIOP) + E () = :(u™), GIF™ ~ W) )
+E(|GW™ — wm|I?)

ﬁmw_mm to zero as n,m — co. But from the above estimate and (3.3), there
exists a constant ¢ such that :

t
E (lu™(®) —u™)?) < ¢ Am?u m) +\ E (Ju"(s) — u™(s)[%) &mv
0
Then from Gronwall’s lemma,
E (Ju*(t) — u™(1)]*) < ce(n, m)e
We know have that there exists u € L?(Q x (0,%) x (0,1)) for all ¢ > 0,
such that z:.lv. :.msm f(u™) — f(u) in L?(Q x (0,%) x (0,1)). It remains
to take the limit in (3.7,). Note that it is shown in Walsh [9] that u €
C(Ry x [0,1]) as.
Ezistence. Step 2 and 3. Those steps are completely analogous to the

corresponding steps in the proof of Theorem 2.5, given the following Lemma.
0

. ngﬂbm 3.3. Let p and 9 be measurable mappings : Ry x[0,1]xR — R
which satisfy (3.2) and (3.3) and such that

p(t,z,r) > ¢(t,2,r) a.e. on Ry x[0,1] x R.
Let u and v belong to C(Ry x [0,1]) a.s. and satisfy respectively :
u+ Go(u) + Gfa(u) = Hup + GW + Gg

v+ GY(v) + Gfa(v) = Hup + GW + Gy
Then u(t,z) <wv(t,z) a.e on Ry x[0,1] x Q.
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Proof : It follows from the assumptions that [5] D. Nualart, E. Pardoux : Second order stochastic differential equations
with boundary conditions, Preprint.
u — v + Glp(u) — ¥(v)] + G[f2(u) — f2(v)] = 0. [6] M. Rockner, B. Zegarlinski : The Dirichlet problem for quasi-linear

partial differential operators with boundary data given by a distribution,

Bibos preprint 188/86.

3 92 [7] Y. Rozanov : Markov Random Fields, Springer 1982.

M? —-v)— %? —v) + p(u) — Y(v) + fa(u) — fa(v) =0 [8] Y. Rozanov : Markov random fields and stochastic partial differential

) equations, Mat. Sb. 103, 590-613, 1977.

. (u—v)(0,2) =0, (u—)(¢,0) = (v—v)(t,1) =0 [9] J. Walsh : An introduction to stochastic partial differential equations,
in Ecole d’été de Probabilités de St Flour XIV, Lecture Notes in Math.

1180, Springer 1986.

Then u—v € L%(0, T; H3(0,1))NC([0, T); L2(0,1)) for any T > 0 and solves :

Multiplying this equation by (u — v)T, we deduce that :

L2 u— o) @I + Il = )P @I + (p(u(0)) = B, (s — ) (1)

+(F2(u(t) - fa(v(®)), (u — v)* (1)) = 0.

) . R. Buckdahn E. Pardoux
However, if (u — v)* # 0, p(u) > ¢(v) > ¢(v). Hence the second and third Sektion Mathematik Mathématiques, URA 225
terms in the above identity are non negative, and from the Lipschitz property Biiiabaldt Uitiersitat Université de _wno<m5na

of fa, DDR 1087 Berlin F 13331 Marseille cedex 3

L= @I <2l =) O, (- o)*0)=0.

Hence (u—v)*(t) =0,Vt > 0.
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of this paper.

Note added in proof. In a recent preprint, Dembo and Zeitouni study
an equation similar to our elliptic SPDE, under the assumption that the
nonlinear perturbation f is Lipschitz with a Lipschitz constant smaller than
the constant « of Lemma 2.4 (see Remark 2.7 above). In a forthcoming
paper by I. Gyongy and E. Pardoux, the above results will be generalized in

the parabolic case. »
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