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Summary. We study reflected solutions of a nonlinear heat equation on the spatial 
interval [0, 1] with Dirichlet boundary conditions, driven by space-time white 
noise. The nonlinearity appears both in the drift and in the diffusion coefficient. 
Roughly speaking, at any point (t, x) where the solution u(t, x) is strictly positive it 
obeys the equation, and at a point (t, x) where u(t, x) is zero we add a force in order 
to prevent it from becoming negative. This can be viewed as an extension both of 
one-dimensional SDEs reflected at 0, and of deterministic variational inequalities. 
Existence of a minimal solution is proved. The construction uses a penalization 
argument, a new existence theorem for SPDEs whose coefficients depend on the 
past of the solution, and a comparison theorem for solutions of white-noise driven 
SPDEs. 
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0 Introduction 

We want to study reflected solutions of parabolic SPDEs driven by a space time 
white noise. More precisely, we are looking for a continuous random field 
{u(x, t), 0 _< x -< 1, t > 0} which is a solution of an SPDE at any point (x, t) where 
u(x, t) is strictly positive and which is constrained to be non negative everywhere. 
Furthermore, we require that the force needed to keep u non negative is minimal. 

There is a vast literature both on reflected solutions of (deterministic) PDEs, 
which are usually called "variational inequalities" and are motivated by applica- 
tions in stochastic optimal stopping time problems (see Bensoussan and Lions [1]) 
and in mechanics (see Duvaut  and Lions [2]), and on reflected solutions of finite 
dimensional SDEs (see e.g. Saisho [11]). The problem we are interested in in this 
paper may be considered as a combination of the two above ones. In a sense, it is 

* Partially supported by DRET under contract 901636/A000/DRET/DS/SR 
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a variational inequality where one of the coefficients is taken to be a space-time 
white noise. 

The same problem has been studied by Haussmann and Pardoux [4] in 
the case of a SPDE driven by a Wiener process with nuclear covariance. On the 
other hand, in the particular case of a constant diffusion coefficient, Nualart and 
Pardoux [8] proved the existence and uniqueness of a solution to a reflected 
SPDE driven by a white noise. 

As in [4] and [8], we shall construct a solution as the limit of a sequence {u ~ } of 
solutions to penalized equations. In order to establish the monoticity of the 
approximating sequence, we use a comparison theorem for solutions of parabolic 
SPDEs with different drift functions. 

Let us explain our problem. Let (f2, ~-, P) be a complete probability space and 
W a space-time white noise on [0, 1] x lR+ i.e. { W ( A ) , A ~ ( [ O ,  1] x IR+)} is 
a centered gaussian process defined on (f2, ~ ,  P) whose covariance function is 
given by E[W(A)W(B)] = ).(A c~ B) where 2 denotes the Lebesgue measure on 
[0, 11 x IR+ and N(R) denotes the Borel field of subsets of the topological space R. 

f and a are coefficients satisfying assumptions to be specified in Sect. 1. Set 
= a { W ( A ) , A ~ ( [ O ,  11 x [0, t])} v Y ,  where sV" is the class of P-null sets 

of ~ .  
Suppose that Uo is a positive continuous function on [0, 11 which vanishes at 0 and 
1. We are looking for a pair (u,)/) such that: 

(i) u is a continuous process on [0 ,1]xIR+;  u(x,t) is -~t measurable and 
u(x, t) > 0 a.s. 

(ii) ~ is a random measure on (0, 1)x IR+ such that 

a) r/((O, 1)x{t})=O,  V t>O;  

b) fo fo ~ x(1 - x)~l(dx, as) < 0% t > O. 
c) t/ is adapted in the sense that for any measurable mapping ~: 

[0, 1] x IR+ ~ IR+, 

t 1 

f f ~,(x, s)e(dx, ds) is ~ measurable. 
0 0 

(iii) (u, t/) solves the parabolic SPDE: 

au(x, t) c32u(x, t) +f(u(x, t)) = a(u(x, t)) I~(x, t) + r/(x, t) 1 
at ,~x ~ (1) 

u ( . ,  0) = Uo; u(0,  t) = u(1,  t) = 0 

in the following sense ( ( ' , ' )  denotes the scalar product in LZ[O, 1]): 

VtelR+,  ~o~C2([0, 1]) with q~(0) = q~(1) = 0, 

t t 

(u(t), ,p) - f (u(s), ,p")ds + f (f(u(s)), ~o)ds = (Uo, qO 
0 0 

+ / /cp(x)a(u(x,s))W(dx, ds)+ / /cp(x)q(dx, ds) a.s. (2) 
0 0 0 0 

(iv) fe  udtt = O, 

where Q = (0, 1) x IR+. 
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Note that C2( [ -0 ,  1]) denotes the restriction to [0, 1] of functionsf~ C 2 (IR). The 
stochastic integral in (2) is an It6 type integral (it is a particular case of an integral 
with respect to a martingale measure developed in Walsh [13]). 

We say that the reflected parabolic equation (RPE) has a solution (u, t/) if the 
pair (u, ~/) satisfies (i), (ii), (iii) and (iv). 

The organization of this paper is as follows: our assumptions are stated in 
Sect. 1; in Sect. 2, we prove a comparison theorem for solutions of parabolic SPDEs 
driven by a space-time white noise, which is analogous to results obtained indepen- 
dently by other authors. Kotelenez 1 [5] and Shiga [12] prove a similar result using 
different approximations. By a discretization procedure, Mueller [7] obtains 
a comparison theorem for a slightly different SPDE when the initial condition 
varies. We nevertheless include a complete proof, since the result we need is not 
exactly contained in these references, and we believe that our proof, which uses an 
approximation by an SPDE driven by a finite dimensional Wiener process and 
some techniques from [-91 is interesting in itself. Indeed, comparison theorems are 
rather easily proved for SPDEs driven by a Wiener process with nuclear 
covariance, since we can use It6 calculus to analyse the solutions of such equations, 
see [9, 10]. In Sect. 3, we prove an existence and uniqueness theorem for an SPDE 
whose coefficients depend on the whole past of the solution, which is needed in 
Sect. 4, which is devoted to the construction of a solution (u, t/) by a penalization 
procedure using the results of Sect. 2. In Sect. 5, we prove the minimality of the 
above solution. The uniqueness problem remains open; classical methods based on 
the It6 formula to prove uniqueness of reflection problems seem to be useless in our 
context. Finally, an Appendix is devoted to the proof of some technical lemmas 
which are needed in Sect. 4. 

Notations. Let Q = ( 0 , 1 )  xlR+ and for any T > 0  Q r = ( O ,  1) x (O ,T) ,  
0 r = [ 0 , 1 ] x [ 0 ,  T], H = L 2 ( 0 , 1 ) ,  V = { u e H l ( 0 , 1 ) , u ( 0 ) = u ( 1 ) = 0 }  where 
HI(0, 1) denotes the usual Sobolev space of absolutely continuous functions 

0 2 
defined on (0, 1) whose derivative belongs to L2(O, 1), and A - 

~X 2 " 

1 Assumptions on the coefficients 

The coefficients f and a will be ~([0,  1]) | N | ~(IR) measurable functions from 
[0, 1] x f2xlR+ x lR into IR, where ~ denotes the a-field of o~-progressively 
measurable subsets of I2 x IR +. When we shall say t ha t f and  a are locally Lipschitz, 
we shall mean that 

f ( x ,  co, t; z) = f t ( x ,  co, t) + f2(x,  co, t; z) 

with f l  e ("]r>oL2((0, 1) x f2 x (0, T); dx x dP x dt), f z (x ,  co, t; 0) - 0; for each 
T, M > 0, there exists c(T, M) such that 

Ifz(x, co, t; z) - f z ( x ,  co, t; r)l + la(x, co, t; z) - o-(x, co, t; r)[ < c(T, M ) l z  - rl 

1 As far as we know, this author was the first one to circulate a preprint containing such 
a comparison result 
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for all (x, co, t) ~ (0, 1) x f2 x (0, T), z, r e [ -  M, M];  and moreover for each T > 0 
there exists g(T) such that 

]f2(x, co, t; z)l + [a(x, co, t; z)] -<_ g(T)(1 + ]zl) 

for all (x, co, t, z) ~ (0, 1) x ~2 x (0, T) x IR. Note that locally Lipschitz really means 
locally Lipschitz with at most linear growth. 

When we shall say that f and a are globally Lipschitz, we shall mean that the 
above assumption is satisfied with a constant c(T, M) depending only on T, and 
not on M. 

We shall omit the variable co and moreover we shall write f (u(x,  t)) (resp. 
a(u(x, t))) instead off(x,  t; u(x, t)) (resp. a(x, t; u(x, t))). f(u,)  (resp. ~r(u,)) will stand 
for the mapping x ~ f (x ,  t; u(x, t)) (resp. x ~ a(x, t; u(x, t))). 

L e t f a n d  a be globally Lipschitz, Uo be a continuous function on [0, lJ which 
vanishes at 0 and 1. We consider the parabolic equation: 

au(x, t) c~2u(x, t) + f(u(x,  t)) = a(u(x, t))W(x, t) ) 
~t ~X2 } (3) 

u ( - ,  0) = u0; u(0,  t) = u(1,  t) = 0 .  

Several authors, including Walsh [13], have shown that (3) has a unique continu- 
ous solution, in the sense that u is the unique continuous adapted process which 
satisfies: 

Vt ~ lR+,q0 ~ C2([0, 1]) with cp(0) = q0(1) = 0, 

t t 

(u(t), q9) + f (u(s), Aqo)ds + f (f(u(s)), q))ds = (Uo, (p) 
0 0 

t 1 

+ f f (p(x)G(u(x, s)) W(dx, ds) 
0 0 

a.s. , 

or equivalently u(x, t) satisfies the integral equation 

1 

u(x, t) = r uo(y)Gt(x, y)dy - ] f f (u(y ,  s))Gt-~(x, y)dyds 
0 0 0 

+ ] f a(u(y, s))Gt_+(x, y)W(dy, ds), 
0 0 

~2 
where G is the Green's function associated to the operator ~ 5  with Dirichlet 
boundary conditions. 

It follows from standard localization arguments that the same existence and 
uniqueness result holds in the case of locally Lipschitz coefficients. 

We shall prove our results under the locally Lipschitz assumption. Using 
a localization argument, it will be sufficient to do some of the proofs under the 
globally Lipschitz assumption. Note that, using the results in Gy6ngy and Pardoux 
[3], the results of this paper can be extended to more general drift coefficients f, 
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which could be the sum of a locally Lipschitz and an increasing function of its third 
argument z. 

Proof. 
denote 

2 A comparison theorem for solutions of parabolic SPDEs 

The aim of this section is to prove a comparison theorem for white noise driven 
SPDEs, which will be used in Sect. 4. 

Theorem 2.1 Let the two pairs of coefficients f cr and 9, a be 9lobally Lipschitz, with 
f >= 9. We denote by u (resp, v) the solution of(3) correspondin9 tof(resp, g) with the 
same initial condition. Then, a.s.,for all (x, t)e [0, 1] x IR+, u(x, t) < v(x, t). 

Let (ek) be an orthonormal basis of H such that II ek [I ~ < C for all k e N .  We 

t 1 

W~ = f f ek(x) W(dx, ds) . 
0 0 

(Wk)k~N is a family of mutually independent Brownian motions. For n _-> 1, let B n 
be the H-valued Wiener process defined by 

B~= ~ W[ek. 
k = l  

Let u" be the unique adapted solution in L2(y2 x (0, T); V) of the evolution equa- 
tion 

du; + Au; dt + f(ut)dt = Z(u~)dB~ ~ (4) 

u ( ' ,  O) = Uo J 

where Z is the operator of multiplication by o- i.e. for any u e H, Z(u) is the element 
of A~ 1); H) defined by: 

Z(u)(h)(x) = a(u(x))h(x) , h e l l .  

For existence, uniqueness and properties of the solution of (4), see for example 
Pardoux [9] or [10]. 

Step 1 Comparison of solutions of (4). 

We denote by v" the solution of (4) with f replaced by g, and co" = u" - v". Let 
peN* ,  

~p: IR-~ IR 

x ~ p x  x e O, 

1 

P 

cpv(x) = 1{~ >__ 0} f dy ) dz~bp(Z). 
0 0 
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Then 

�9 ~0p is a C 2 function on IR, 

�9 0 =< opt(x) =< 2x+;0  =< q)~(x) =< 2.1x > o,= 
�9 ~op(x).z(x+) 2, x e l R ,  as p --, oo. 

We define 

�9 p: H -* IR 

1 

h ~-* f (p , (h (x ) )dx .  
0 

�9 p is twice Fr6chet differentiable; ~ ( h ) ~  L;e(H, IR) is given by 

1 

(qYv(h), k) = f ~@(h(x) )k (x )dx .  
0 

4~(h) is a symmetric continuous bilinear form on H x H given by 

1 

�9 ~(h)(kl ,  k2) = f (p~ (h (x ) ) k l ( x ) k2 (x )dx .  
0 

The It6 formula (cf. [9, p. 62] or [10, Part 1, Theorem 3.2]) implies 

t t 

�9 p(w?) + f (AwL ~o;(w';))ds + f (q@(w~'),f(u'~) - g(v'~))ds 
0 0 

t 

= f ((p~(w2), [a(u2) - a(v2)]ek )dW~ 
k = 0 0  

1 t 

+ ~ f Tr(q~(w2)d( (M") )~)  
0 

(s) 

V' - H - l (0 ,  1), 

t 

f Tr (O~(w~')d ((M"))~) 
0 

t 

= f (~o~(w2) [a(Us") - ~(v2)] ek, [cr(u2) -- ~(v2)] ek)dS 
k = O 0  

. . . . .  w2(x, s dx  > O (q~p(ws), Aw~)  = ~op(ws = 
0 

(~@(w~'),f (u'~) -- g(v'~) ) = (~o'p(w'~ ) , f  (u'~) - f (v'~) ) + ((p~(w'~),f (v'~) -- g(v'2) ) . 

where ( ' , ' )  denotes the pairing between V and 
M~' = fo  (S.(u~) - S(v2))dB2 is an H valued martingale and ((M")) is the unique 
continuous process with values in the space of nuclear operators such that 
(M~, h)(M'~, k) - ( ( (M")) th ,  k) is a martingale for all h, k ~  H. 
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The last term in the right-hand side of the above equation is positive by assumption 
( f  > g). Taking expectation in (5) yields: 

! n n E[~ , (wD]  + E f f f%(w~),f(u~)-f(v2))ds 
0 

(Pet (x, s))[a(u"(x, s)) - a(v"(x, s))]Ze~(x)dxds 
=2k=O 0 0 

tt Using properties of cp~,, (pp and ek, we obtain 

[o;,( ] E [~,(w~)] < (2K + nK2CE)E w2) +, (w2)+)ds (6) 

where K is a Lipschitz constant for f and o-. 
Let (b(h) = f~ (h+(x))Zdx; then ~p(w~) z q)(w~) a.s., as p ~ oo. 

From (6), E[q~(w~)] < K'E[fo {b(w2)ds]. 
Hence from Gronwall's lemma, E[qS(w~)] = 0 for t > 0. 
By continuity of w ~, 

i.e. 

a.s., V(x,t)e[O, 1]xlR+,w"(x,t)<O 

a.s., V(x, t)e[0, 1] • IR+, u"(x, t) <= v"(x, t) . (7) 

Step 2 Convergence of u" (resp. v") to u (resp. v). 
The solution u" of (4) satisfies the integral equation 

1 t 1 

u"(x, t) = f uo(y)G,(x, y)ay - f f f(u"(y,  s))G,_~(x, y)dyas 
0 0 0 

+ f a(u"(y, s))Gt_s(X , y)e,(y)dy dW~. 
k = O  0 0 

Lemma 2.1 Let p > 1, u (resp. u") be the solution of(3) (resp. (4)),for any T>  0, 

Proof 

where 

sup e [ [ u ( x ,  t) - u"(x, t)] p] , 0 .  (8) 
(x, t) e ~ n-~ oo 

u(x, t) - u"(x, t) = A.(x, t) + B.(x, t) + Cn(X, t) 

t 1 

A,(x, t) = f f [f(u"(y, s)) --f(u(y, s))] Gt-s (x, y)dy ds 
0 o 

B.(x, t) = f [a(u(y, s)) - a(u"(y, s))] Gt-~(x, y)ek(y)dy dW~ 
k = O  0 

t 1 

C.(x, t) = f f (~ , , (y ,  s) - 7~",~(y, s))W(dyds) 
0 o 
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with 
~ , , ( y ,  s) = ~(u(y,  s))G,_~(x, y) 

We use the following estimate on the Green's function (see [133): let 0 < r < 3, then 

t 1 

sup f f G~(x, y)dyds < oe . (9) 
(~, t) e O~ o o 

P 
L e t p > 6 ,  q p - l ' a n d s e t F " ( t ) =  sup 

x~  [0, 1] 

E[lu(x ,  t) - u"(x, t)lP]. 

p 

(i; [i; 1 �9 E[[A~(x, t)l p] <= C Gqt-~(x, y)dyds E lu(x, t ) -  u"(x, t)lPdyds . 
0 0 

By (9), 

t 

E[IA,(x,  t)l p] _<-- CfF.(s)ds. 
0 

(lO) 

�9 E[IB,(x,  t)t p] 

< CpE [a(u(y, s)) - a(u"(y, s))]G,_s(x, y)ek(y)dy ds 
0 k = O  0 

[a(u(y, s)) - a(u"(y, s))]Gt-s(x, y)ek(y)dy 
k = O  0 

= ~ ( [ a (u ( ' ,  s)) - o'(u~( ", s))]Gt-~(x, "), ek)~ 
k = O  

<= I [ ~ ( u ( ' ,  s)) - ~(u"( ", s))]%_s(x, ') l  g 

where q' - - -  

E[]Bn(x, t)] v] 

1 

p/2 
p/2 --  1' 2q' < 3 s ince  p > 6. B y  (9), 

g[[B,(x,  t)] p] <-_ C f F~(s)ds . (11) 
0 
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�9 E[lC,(x,  t)l p] < CpE Wx, t(Y, s) - 7J"~,t(y, s)) 2 dyds 
0 

~"~,t(', s) = ~ (~P~,t(', s), ek)aek 
k = 0  

1 

f Wx, t(y, s) - ~t'~,,(y, s))Zdy = I~x,t( ' ,  s) - ~" , , ( ' ,  s)l~ ~ 0 a.s.. 
0 n---~ ~x) 

Moreover, [ Tx,,( ' ,  s) - T~",,(', s)l 2 < [ 7'x,,(', s)[z], and 

By the dominated convergence theorem, 

E[lC,(x, t)l p] , 0 .  (12) 
n--~ oo 

Set 7,(x, t ) =  E[{ fo fo  ~ (g~,,(y, s ) -  7J~,t(y, s))Zdyds}p/2]. 7, is a sequence of con- 
tinuous functions on the compact QT which converges pointwise to the function 0. 
Moreover, 7, is a decreasing sequence; by Dini's theorem, (7,) converges uniformly 
to 0. The convergence in (12) is therefore uniform in x. Let e > 0, there exists N such 
that: 

n => N ~ s u p E [ l C , ( x ,  t)[ v] < e.  (13) 
x 

Now, using (10), (11), (13); for n > N, 

t 

F,(t) < Cp f F,(s)ds + Cve. 
0 

By Gronwall's lemma, lim,.~o supt __< r F,,(t) = 0. 

Step 3 

By Lemma 2.1, for all (x, t)s [0, 1] x IR+, there exists a sequence nk such that 

u(x, t) = lira u"*(x, t) a.s. 
k--* ao 

v(x, t) = lira v"~(x, t) a.s. 

By step 1, un*(x, t)< vn*(x, t) a.s., so the same inequality holds for u and v. By 
continuity of u and v, a.s., 

V(x, t)e [0, 1] x IR+, u(x, t) < v(x, t). 

This ends the proof of the theorem. [] 

It follows from a standard localization procedure that Theorem 2.1 remains 
true if we replace the global Lipschitz conditions by local Lipschitz conditions. 
Indeed, if that would not be the case, then there would exist R, T > 0 such that: 

P (  sup u(x, t) -- v(x, t) > O; sup [ u ( x , t ) l v l v ( x , t ) l < R ) > O  
O _ < x _ <  1 ,0=<  t =< T O _ < x _ <  1 , 0 _ <  t_< T 
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and the result would not be true for any pair of globally Lipschitz coefficients 
which agree with f a on [0, 1] x [0, T] x [ - R , R ] ,  which contradicts the 
theorem. 

3 An existence and uniqueness result for SPDEs with coefficients depending 
on the past of the solution 

In this section, we prove an existence and uniqueness result for an SPDE whose 
coefficients are allowed to depend on the whole past of the solution. Note that this 
kind of equation has already been considered by Manthey and Stieve in [6], but the 
assumptions there are a bit too strong for our purpose. 

For any u~C([O, 1]xlR+),  t > O ,  we denote by u t the element of 
C([O, 1] x [0, t]) which is the restriction of u to [0, 1] x [0, t]. 

In this section, we are given two mappings: 

f, o-: [0, 1] x ]R+ x C([O, 1] x ]R+) ~ ]R 

such that: 
(i) For any u, v e C([O, 1] x IR+ ), (x, t) ~ [0, 1] x IR+ such that u t = V, 

f ( t ,  x, u) = f ( t ,  x, v) 

~(t ,  x,  u) = ~(t ,  x,  v) . 

(ii) For any T, M > O, there exists C(T, M) such that for any x ~ [0, 1], t e [0, T], 
u, ve C([O, 1] xlR+) satisfying supx, t =< flu(x, t)l _-< M, supx, t ~ rlV(x, t)l _-< M, 

If(x, t, u) - f ( x ,  t, v)l + la(x ,  t, u) - ~(x, t, v)l _-< C(T, M) sup lu(y, s) - v(y, s)l �9 
y , s  <= t 

(iii) For any T > 0, there exists a constant C(T) such that for any x~ [0, 1], 
t6[O, T], u6 C([O, 1] x IR+), 

If(x, t, u)l + I~(x, t ,u ) l< C(T)(1 + sup [u(y,s) , ) .  
y , s < _ t  

We consider the SPDE 

OU ~2U 
-~ (x, t) - ~x2(X, t) + f (x, t, u) = a(x, t, u)VV(t, x) , l (14) 

u ( 0 ,  x )  = Uo(X); u(t,  O) = u(t,  1) = 0 J 
which again must be interpreted as 

o , 1 o o (15 )  

+ f f G,_s(x, y)a(y, s, u) W(dy, ds). 
0 0 

Theorem 3.1 Let uo~Co([0, 1]), and suppose that f a satisfy conditions (i), (ii) 
and (iii). Then Eq. (15) has a unique continuous and ~t-adapted solution 
{u(x, t); 0 -< x _< 1, t >= 0}. 
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The proof of the theorem will rely on some estimates from Walsh [13], and in 
particular on the following version of the famous Kolmogorov Lemma which is 
a consequence of a result of Garsia-Rodemich-Rumsey (see Corollary 1.2, p. 273 in 
Walsh [13] for example). 

Lemma 3.1 Let  R be a cube in IR " and { X~, ~ ~ R}  be a real valued stochastic process. 
Suppose there exist constants k > 1, K > O, t f > 0 such that 

EUIX~ - Xpl k] ~ K[ .  - pl "+" 

then 
(i) X has a continuous version, 
(ii) there exist constants a, 7 depending only on n, k and tl, and a r.v. Y such that 

a.s., for all (c~, ~ ) e R  2, 

( IX, - X:l _-< Yl~ -/~1 "/~ lOg\l ~ (16) 

and 
E ( Y  k) <__ aK . (17) 

Proof  o f  Theorem 3.1 The proof is divided in three steps. 

Step 1 Non explosion 

Suppose r is a stopping time such that z > 0 a.s. and {u(x, t); x e [0, 1], t E [0, z] } is 
a continuous and adapted solution of equation (15) on the random interval [0, r]. 
We show that this implies that for any t > 0, p > 1, there exists a constant c(t, p) 
such that: 

E( sup lu (x , s ) f )<=c( t ,p ) .  
\ x , s < - t  ^ ~: 

(18) 

1 1 
Let p > 6 , -  + -  = 1 

P q 

: y)uo(y)dy v E(Iu(x,  t / x  v)l v) < c Gt(x, 
0 

E f f If(x,s,u)lPdxds 
0 0 0 0 

+ o: o: ">''') o: o: s. 
where r = 2p/(p - 2) < 3, hence the integrals of powers of G above converge, see 
(9). We deduce, with the help of the assumption (iii), that for t < T, 

t tA'C t E(lu(x,  t /x  "0f)_-< (~(T) 1 + E f sup lu(y,r)[Vdr . 
0 y , r < s  
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F rom the above inequalities and the computat ions  made in Walsh [13, Corol lary 
3.4], we can show the following estimate, again with p > 6, s, t _<_ T. 

E(lu(x, t A ~) - u(y, s A ~)l p) 

< C ( T ) l ( x , t ) - ( y , s ) [ ~  -3 I + E tvs )^~  sup [u(z,~)[Pdr . 

Now choose p > 20. By the Ko lmogorov  Lemma 3.2, there exists a r andom 
variable Xp such that: 

P 

]u(x, t /x  z) - u(y, s /x  r)] v __< X~,l(x, t) - (y, s)l ~ - s  

x log [(x, t) - (y, s)[ ' (19) 

and 

oc(1 § 0. 
We now choose s = 0 in (19), and deduce from (19), (20) that  there exists 

CT such that  for any t __< T, 

E sup lu(x, s /x  z ) f  < Cr 1 + E sup [u(y, r)lPds 
x,s<=t 0 y,r<=s 

( ' ) -_< Cr  1 + E f sup lu(y, r A ~)lVds 
0 y,r<=s 

(18) now follows from Gronwall 's  lemma. It now remains to prove the rest of the 
Theorem under  a globally Lipschitz assumption o n f a n d  a (i.e. C(T, M)  in (ii) does 
not  depend on M), which we assume from now on. 

Step 2 Uniqueness 

Let {u(x, t); x ~ [ 0 ,  1], t~ lR+} and {v(x, t); x ~ [ 0 ,  1], t~ lR+} denote two continu- 
ous and adapted solutions, and define zi = u - v. 

t 1 

a(x, t) = f f o,_s(x, y ) [ f ( y ,  s, v) - f ( y ,  s, u)]dyds 
0 0 

+ ) ) G,_~(x, y) [~(y, s, u) - ~(y, s, ~)] W(dy, ds). 
O O 

So if t __< T, p > 6, we deduce from (ii) that  there exists CT such that  

Elfi(x, t ) f  =< CTE ? sup I~i(y, r)lPds. 
0 y , r < s  

Moreover ,  similarly as above, 
p 

E([zi(x, t) - a(y, s)[ p) =< Cr  [(x, t) -- (y, s ) l ~ - 3 E f ~  v s sup [~i(z, ~ ) f d r .  
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The same arguments as in step 1 now yield, for p > 20, 

( ) ; E sup [~7(x,s)[ e =< CrE sup l~7(y,r)lPds, 
x , s < t  0 y , r < s  

hence ~i = 0 from Gronwall 's  lemma. 

Step 3 Existence 

Consider  the following mapping S, which maps continuous adapted random fields 
into cont inuous adapted random fields: 

1 t 1 

S(u)(x, t) s f G,(x, y)uo(y)dy - f f G,-s(x, y)f(y,  s, u)dyds 
0 0 0 

t i 

- f f G,-s(x, y)a(y, s, u) W(dy, ds). 
0 0 

F r o m  the arguments in step 2, there exists p > 20 and a constant  c(T) such that  for 
any t~ [0 ,  T]:  

x , s < t  0 x , r < s  

Now we construct  the solution by successive approximations.  Define u "+ 1 (x, t )=  
S(u")(x, t); u~ t) = uo(x). Then, using the above equation, we can prove that  the 
sequence u"(x, t) converges in LP(O), locally uniformly with respect to (x, t). Then, 
u = l imu" is a solution of (15) (see Walsh [13] for details). 

4 Existence of a solution 
In this section, we suppose t h a t f  a are locally Lipsehitz, u0 is a positive cont inuous 
function on [0, 1] such that  Uo(0) = Uo(1) = 0. 

We consider the penalized SPDE:  

Out(x'ot t) ~2u~(X,ox 2 t) + f(u~(x, t)) ) 

= a(u~(x, t)) W(x, t) + ~(u~(x, t))- l (21) 
u~(" , 0) = Uo; u~(0, t) = u~(1, t) = 0 .  

For  each e > 0, (21) admits a unique cont inuous solution u ~ which satisfies 

sup E[lu~(x, t) lv]<oo, V p > l ,  T > 0 .  
(x, t)~T 

Moreover ,  according to Theorem 2.1, if e < e', then u ~' < u ~ a.s..  

Theorem 4.1 The solution u ~ of (21) converges a.s. to a continuous process u on 
[0, 1] x lR+ ,  as ~ 0 .  
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Proof. u ~ is an increasing sequence as a --* 0, set u = lim~_,o u ~ = s u p ~ o  u t  

Step 1 u < oe a.s. 

We shall compare  W with two other  quantit ies v ~ and w ~ to be defined below. F r o m  
a s tandard  localization procedure,  it is sufficient to prove  the compar i son  results 
under  the assumpt ion  that  f is globally Lipschitz, which we assume for mos t  of 
step 1. 

Let  v ~ be the unique cont inuous solution of 

Ova(x, t) 8Zv~(x, t) +f(v~(x,  t)) = ~r(u"(x, t)) l'V(x, t) 
& ax 2 

(22) 

v~( �9 , 0) = Uo; v~(0, t) = v~(1, t) = 0 .  

For  any T > 0, z e = v e - u ~ is a.s. the unique solution in L2((0, T) x (0, 1)) of 

0z~ } 
t t - A z ~ = f l u ~ ) - f ( v ~ ) - ! ( u ~ ) -  

( ' ,  9) = 0; z (0, t) = z~(1, t) : 0 

(23) 

which satisfies z ~  L 2 (0, T; V). According to Bensoussan and Lions [-1, L e m m a  6.1, 
p. 132], (z9 + ~L2(0,  T;  V)c~ C([0,  Y];  H)  a.s., 

~ z .  ( z j  Ms = ~L(z~) + I~ 

and similarly 

0 0 

We can mult iply Eq. (23) by (z0 + to obtain  

~sZ~,(z~) + d s +  z~, (z~) + d s +  f ( f ( v~) - f (u~) , ( z~ )+)ds  
0 0 

1 
- f ((u~)-, (zO+)cls <: 0 . 

,?, 5 
Since 

t t 

f (f(v~) - f (u~) ,  (z~)+)ds > - c f ~ + 2 ] ( z j  b d s ,  
0 0 

we deduce f rom Gronwal l ' s  l emma  that  [(z~) + 12 = 0 a.s., and by continuity,  a.s. 

V(x, t ) e [0 ,  1] x l R + ,  ue(x, t) > v~(x, t) . (24) 

F r o m  Theo rem 3.1, the following equat ion has a unique solution {we(x, t); 
x e [0,  1], t > 0}: 

c3w~(x, t) 32w~(x, t) +f(w~(x,  t) + sup (we(y, s))-) ] 
Ot ~x 2 s <-_ t, ye [0, 1] 

= ~(ue(x, t))W(x, t) l (25) 

w~( . ,  o) = Uo; we(0, t) = w~(1, t) = 0 .  



W h i t e  no i se  d r i v e n  S P D E s  wi th  re f lec t ion  

We set 
~(x ,  t) = w~(x, t) + sup (w'(y, s))- 

s < t, ye[0,  1] 

w~(x, t) + O~ 

15 

v~(x, t) > 0 a.s., �9 ~ is an increasing process. 
For any T > 0, ~ ~ u s - ~ '  is the unique solution in L 2 ( 0 ,  T; H~(0, 1)) of 

dS~ dO~ 1 
d-~ + Az7 +f(uD - - f (~D 4 d~ ~ (u~)- 

i f ' ( ' ,  O) = O; 5 ' ( 0 ,  t) = 5~(1,  t) = - -  O~ 

(since A(u~ - w~) = A~). Multiplying that equation by fro  + eL2(0, T; V) a.s., we 
obtain by the same arguments as above: 

o ~x ) 

+ (f(u~) - f ( ~ : } ,  (5~)+)ds + (5'(x, s)) + dx dO; = 1 f ((u')-, (i~)+)ds. 
o o o ~ 'o  

The right-hand side of the above equality is zero because ff~)+ > 0 implies 
u] > #~ > 0. Hence we again deduce from Gronwall's lemma 

uS(x, t) < ~ (x ,  t) a.s.. (26) 

By (24), (26), 
lu'(x, t)l <- IvY(x, t)[ + 2 sup 

s < t, ye  [0, 1] 
Iw'(y, s)l . (27) 

We now return to the assumption of locally Lipschitz coefficients. From 
Lemma 6.1 of the Appendix, for arbitrarily large p and any T > 0, 

supE  I sup_ [v~(x,t)[v]< oo,  
e L ( x , t ) e Q r  

and 

s u p E  I s u p  ]w"( t ,x) f]< co 
L (x, t)eQr 

implying 

sup E [  sup [u~(x, t)[Pl< ct3. (28) 
L (x, t) e ~r 

So u = sup~ u s is a.s. bounded on (~r. 
It follows from (27), again by a standard localization procedure, that the rest of 

the proof can be done under the assumption of globally Lipschitz coefficients. 
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Step 2 Continuity o f  u 

We first note  that  for any real number  c, ~,c. -~t u, .= e ut satisfies the same equat ion  as 
W, but  with f ( resp ,  a) replaced by f~ (resp. a~), where 

fi(x, t; z) = e-of f (x ,  t; e~tz) + cz 

G~(x, t; z) = e-~ta(x,  t; eC~z) . 

Now,  s i nce f i s  assumed to be uniformly Lipschitz in z, we can choose c such that  

z ~ L ( ' ;  z) 

is non  decreasing (at least for (x, t) ~ [0, 1] x [0, T] ,  T arbitrary).  Hence,  we can and  
will assume tha t  z ~ f ( ' ,  z) is non  decreasing in this second par t  of the proof. 

Let ~ be the solution of 

c ~ ( x ,  t) } 
o ~  + A ~ ( x '  t) = ,~(u~(x, t)) W(x, t) 

(29) 

~5~( �9 , 0 )  = Uo; /7~(0 ,  t) = ~ ( 1 ,  t) = 0 

and O be the solution of 

,~(x,  t) 
- -  + AF(x, t) = a(u(x, t))/41(x, t) 

at (30) 

/7(', 0) = Uo;/7(0, t) = ~5(1, t) = 0 .  

(29), (30) admi t  unique cont inuous solutions (continuity can be proved  as in Watsh  
[-13]). Let  z ~ = u ~ - F~, z ~ is the solution of 

~.j + Azt + f ( z t  + v t ) - [ ( z t  + vt) = 0  

z ( . ,  0) = 0; z (0, t) = z~(1, t) : 0 .  

1 
We denote by f~ the function f~(r) = f ( r )  - - r - ,  so z ~ is a solution of 

8 

9--[ + Az~ + f~(zZ + Of) = 0 

f ( ' , 0 )  = 0 ; f ( 0 ,  t) = z~(1, t) = 0 .  

Let ~ be the solution of 

~H- + A~f +A(~,  ~ + ~)  : 0 

~ ( - ,  0) -- 0; ~(0 ,  t) = ~(1,  t) -- 0 .  

Fol lowing Nua la r t  and Pa rdoux  [8], we deduce f rom the fact that  f~ is non  
decreasing: 

I1~ ~ - Z~IIT,~o < I1~ - -  ~ I I T , ~ ,  ( 3 1 )  

where II II r, ~o denotes the uniform no rm on C(QT) (T  > 0 is arbitrary).  
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The  p r o o f  of (31) uses the same a rguments  as in step 1: if we denote  
w = ~* - z ~ - J i g -  r~llr.  Oo, we can prove  tha t  w + = 0. So, ~" - z * < I l g -  v"Ilr, oo 
and  by  symmetry ,  z ~ - ~ < II v -  v" II r, o~. 

zi ~ = ~" + g solves 

~t 

Oti"(x, t) 1 
- -  + Aft"(x, t) + f(a~(x, t)) = a(u(x, t)) lid(x, t) + -(a")-  (x, t) , 

8 

or  equiva lent ly  

~"(x, t) + G * f (~*)(x, t) - 1 G  * (a~)- (x, t) = v(x, t) 
8 

(32) 

where 
t t 1 

v(x, t) = f G,(x, y)uo(y)dy + f f Gt_s(x, y)a(u(y ,  s)) W(dy, ds) (33) 
0 0 0 

is a con t inuous  process  on (~r, and  we have used the no t a t i on  

G . q ) ( x , t ) =  / ) G~_~(x,y)~o(y,s)dyds. 
0 0 

Now,  it has been shown in N u a l a r t  and  P a r d o u x  [8] tha t  the so lu t ion  of (32) 
converges  as 8 tends to zero to a con t inuous  funct ion ~i on the c ompa c t  set (~T- 

Moreover ,  the sequence 0i")~ being increas ing (see [8]),  the convergence is 
uni form on (2T. So ~" converges uni formly  to a con t inuous  funct ion ~. Using  
z ~ = u ~ - t~ ~ and  (31), it  will follow from the convergence [1~ -  V~[lT, oo > 0 a.s. 
tha t  u = g + ~ is a con t inuous  function. ,-*o 

By L e m m a  6.2 of  the Appendix ,  E [ II ~ - ~ I/r. Oo] ,0 .  
e--*O 

The p r o o f  of the theorem is now complete.  [] 

Theorem 4.2 Let a, f b e  locally Lipschitz. The reflected problem (RPE)  has a solution 
(u, ,i). 

Proof Let  u ~ be the so lu t ion  of the penal ized equa t ion  and  u = lim,_,o u ~. Let  q~ be 
a C OO funct ion with  compac t  suppor t  con ta ined  in (0, 1) x IR+. 

(uL 9,) - us, Os ~os + f (A~os, u~)ds + f (f(u~), ~o~)ds = (Uo, q~o) 
0 0 

t 1 t 

+ f fG(u"(x,s))q~(x,s)W(dx, ds)+l-f(@)-,q~s)ds a.s . .  (34) 
0 0 8 0  

1 
We denote  by t h the r a n d o m  measure  th(dx, dt) = --(u~) - (x, t)dx dt on [0, 1] x IR+. 

8 

All the terms on the lef t -hand side of (34) converge a.s. when 8 tends to 0. 

~(u~(x, s))~o(x, s)dW(x, s) ~ ~(u(x, s))~o(x, s)dW(x, s) . 
0 0 e ~ O  O 0 
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Indeed, f rom a.s. convergence,  (28) and linear growth of o-, 

E : : ]a (u (x , s ) ) -  6(u"(x,s))12dxds-*O. 
0 0 

So we m a y  suppose that  the above  convergence holds a.s. ( taking a subsequence). 
We deduce f rom (34) that  t/~ converges in the dis tr ibut ional  sense to a distr ibution 
tt on (0, 1) x IR+ a.s.. t/is a positive distr ibution and hence a measure  on (0, 1) x IR+. 
Fo r  all T > 0 and  (pe C~(Q) with suppor t  in (0, 1) x [0, T] ,  we have for all t > 0: 

(u, ,~ot)-  us,~s~O ~ + f (A~o,,u,)ds + (f(u,),~o,)ds=(uo,~Oo) 
0 0 0 

t 1 t 1 

+ f f a(u(x, s))~o(x, s) W(dx, ds) + f f ~o(x, s)n(dx, ds) a .s . .  (35) 
0 0 0 0 

Multiplying (34) by e and letting e --. 0, we obta in  

t 

f (u2, ~os)ds = 0 a.s. 
0 

for all C ~~ functions q~ with compac t  suppor t  in (0, 1) x [0, T ] .  
This implies u(x, t) > 0 a.e. on (0, 1) x [0, T] ,  a.s.; u being continuous,  u(x, t) > 0 on 
(0, 1) x [-0, T ]  a.s . .  
Fo r  e < e', u ~ _-> u "' a.s. therefore suppq"  c s u p p q  ~' and s u p p t / c  s u p p t : .  
Now,  u ~ < 0 on supp q~ therefore fQ u" d r / <  0 a.s. (it can be - oo). 

L e t Q r , , =  , 1 - n  x [0 ,  T] .  

- o o <  f u~ drl <= O a.s. .  
QT,. 

By m o n o t o n e  convergence,  fQT., udtl < O, and fQT., udtl = O. 
Lett ing n ~ o% f~ udr I = 0 by m o n o t o n e  convergence. 

q) is a solut ion of the reflected p rob lem (RPE)  in a weak sense that  The pair  (u, i 
is (2) is satisfied for any C ~ function ~o with compac t  suppor t  in (0, 1). 

Let v be the cont inuous  stochastic process defined by (33). v satisfies: 

t t 1 

(v~, ~0) + f (A~0, vs)ds = (Uo, Oo) + f f ~(u(x, s))q~(x, s) W(dx, ds) 
0 0 0 

for ~o a C | function with compac t  suppor t  in (0, 1). 
(u, t/) satisfies (I): 

(i') u is a cont inuous  process on [0, 1] x IR+, u(x, t) > 0; t/ is a measure  on 
(0, 1) x IR+ such that  fE0 13• udrl = O, Uo = Vo, (u - v)(O, t) = (u - v)(1, t) = 0, 

(ii') Vt > 0, (p e C ~ ( N )  with supp q, c (0, 1), 

t t 

(u(t), ~o) + f (u(s), A~o)ds + f (f(u(s)), ~o)ds 
0 0 

= (v(t), ~o) + (v(s), A<o)ds + f f ~o(x)~(dx, ds) a .s . .  
0 0 0 
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Now, following Nuala r t  and Pa rdoux  [8], (I) has a unique solution for a given 
v e (~r>o C(Qr). We can therefore apply the results of Nualar t  and Pardoux.  It 
follows that  0((0, 1) x {t}) = 0, re,  x(1 - x)rl(dx, ds) < oo a.s. for all t > 0, and for 
all q ~  C~~ with ~o(0) = q~(1) = 0, 

t t 

(u(t), q~) + f (u(s), A~o)ds + f (f(u(s)), ~o)ds = (Uo, ~o) 
0 0 

+ ) )q~(x)a(u(x,s))W(dxds)+ f )p(x) t l (dx,  ds) a.s..  [] 
0 0 0 0 

Remarks. (i) fo fo 1 Gt-~(x, y)tl(dy, ds) < oo a.s., and 

u(x,t) = f Gt(x, y)uo(y)dy - ) r Gt-~(x, y)f(u(y,s))dyds 
0 0 0 

t 1 t 1 

+ f f Gt-s(X, y)a(u(y, s))W(dy, ds) + f f Gt_Ax, y)tl(dy, ds). (36) 
0 0 0 0 

(ii) Conversely, let (v, tT) be a solution of (RPE). The weak form (2) can be extended 
to smooth  functions q~(x, t) which satisfy q~(0, t) = ~0(1, t) = 0: a.s. 

(u(t), ~o(t) ) + u(s), &o(s) - q~(s) ds + f ( f (u(s), q~(s) )ds 
0 

0 0 0 0 

Then, applying (37) to q~(y, s ) =  Gt_~(~P,y) for ~ e C ~ ( I R ) ,  we can prove that  
fo fo  1 G,_~(x, y)O(dy, ds) < oo a.s., and the integral equat ion (36) is true for (v, t~). 

5 Minimality of the solution 

The results of this section need only be proved in case of globally Lipschitz 
coefficients, again from a s tandard localization procedure.  Hence we assume below 
that  the coefficients are globally Lipschitz. 

Theorem 5.1 The pair (u, tl) constructed in the above section is minimal in the 
followin9 sense: if(v, gl) is a solution of the reflected problem (RPE), then u < v a.s.. 

Proof u = lim,-.o u" where u ~ is the solution of 

au~(x, t) 
- -  + Au~(x, t) +f(u~(x, t)) = a(u~(x, t))[iV(x, t) + F~(u~(x, t)) (38) 

at 

1 
with F~(x) = - x - ;  F, is a positive, Lipschitz decreasing function. 

8 

Let (v, g/) be a solution of (RPE). Since v > 0 a.s., F~(v(x, t)) - 0 a.s., and v is also 
a solution of 

av(x, t) 
- -  + Av(x, t) +f(v(x,  t)) = a(v(x, t))17V(x, t) + gl + F.(v(x, t)). (39) & 
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As in Sect. 2, we want  to compare  the two solutions of (38) and (39). Let us first 
p rove  the: 

L e m m a  5.1 Given g1 satisfying (ii), there exists a unique continuous and adapted 
solution v of 

Or(x, t) 
0----~ + Av(x, t) + f ( v ( x ,  t)) 

= a(v(x, t)) l~(x, t) + V1 + F~(v(x, t)) l (40) 

v ( ' ,  0) = Uo; v(0, t) = v(1, t) ----- 0 

in the following sense 

v(x, t) = G,(x, y)uo(y)dy - f f G,-s(x, y)f(v(y, s))dyds 
0 0 0 

t 1 

+ f f Gt_s(x, y)~(v(y, s)) W(dy, ds) 
0 0 

t 1 t 1 

+ f f G~_~(x, y)0(dy, ds) + f f G~_~(x, y)F~(v(y, s))dyds. 
0 0 0 0 

Proof I t  suffices to prove  uniqueness of  the solution of (40), since existence will 
follow f rom the p roof  of the theorem. N o w  uniqueness is p roved  exactly as in 
Walsh [-13], since F, is Lipschitz. [] 

We now return to the p roof  of Theorem 5.1. Let 

t -  1in 1 

6,(x, t) = n f f Gt-~(x, y)O(dy, ds) . 
t -  2/n 0 

Since for some c,, G~-s (x , y )<e ,  y ( 1 - y )  for O < s < t - 1 / n ,  O<_ t<T ,  
0 < x < 1, 0 < y < 1, t/, is a bounded  function. It  follows f rom Theorem 2.1 that  
u ~ < v", where v" is the unique solution of 

~v"(x, t) 
- -  + Av"(x, t) + f(v"(x, t)) = a(v"(x, t))lYg(x, t) + q,(x, t) + F~(v"(x, t)) . & 

I t  remains to show that  v" ~ v in probabi l i ty  as n ---, o% where v is the unique 
solut ion of (40). This will follow from: 

t 1 

a, --, f f G,_s(x, y)q(dy, ds) a.s., 
0 0 

where 
t 1 

A, = f f G,_s(x, Y)g,(Y, s)dyds 
0 0 

= n f Gt-r(x, z)O(dz, dr) ds. 
s - 2In 0 
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Hence 

t -  21n 1 t - 1 / n  1 

f f G,_,(x, z)O(dz, dr) < A,, ~ f f G,_,(x, z)O(dz, dr), 
0 0 0 0 

and the above convergence follows from 0((0, 1) x {t}) = O, Remark (ii) at the end 
of Sect. 3, and dominated convergence. [] 

6 Appendix 

Lemma 6.1 Let v ~ (resp. w ~) be the solution of(22), (resp. of(25)) then for all p > 1, 
T >  0, 

s pEF sup 
L (x, t) ~ (~r 

< o 0 ,  s u p E (  sup Iw~(t,x)lPt< oo. 
\ (t, x) ~ O.r 

Proof In this proof, which exploits similar techniques as those used in the proof of 
Theorem 3.1, c will stand for a constant (independent of e, but depending on the 
exponent p) which may vary from place to place. First choose (x, t)~ [0, 1] x IR+. 

i t 1 

v~(x, t) = f G,(x, y)uo(y)dy - f f Gt_s(X, y)f(v~(y, s))dyds 
0 0 0 

+ f ) G,-s(x,s).(.~(s, sllw(ayds), 
0 0 

1 

w~(x, t) = f G,(x, y)uo(y)dy 
0 

0 0 r < s ,  zs[O, 1] 

t 1 

+ f f G,_s(x, y)a(u"(y, s))W(dyds). 
0 0 

1 1 
L e t p > 6 , - + - = l ,  

P q 

) y)dy p e[lv~(x, t)l v] <= c uo(y)Gt(x, 
0 

"P/q s))l" dy ds] 

( ,<, 2,,2/ )} 
+ o ~ o ~ ~ ~ " ~ ' ~ ?  t ~ § ~ o ~ oS ~ " ~ l ' ~ ' ~  
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.,,. J o 
x E f w~(y, s) + sup (w'(z, r))- ds 

0 z,r<=s 

+ ( f  f G ~ - s ( x , y ) d y d s ) ( P - 2 ) / 2 ( l + E f  fo [u~(y,s)[Pdyds)} 

where r = 2p/(p - 2) < 3, hence all integrals in the above right hand side are finite, 
from (9). It follows from the last inequality and (27) that 

E[Iv"(x, O f ] < _ _ C ( l + f o E ( s u  p Iv~(y,r)l '+ sup [w~(y , r ) f )ds )  (41) 
\y,r<-_s y , r<s  

( i c  )) E[Iw"(x , t ) lq  < C 1 + E sup Iv~(y,r)l p + sup Iw'(y,r)l p ds . (42) 
\ y , r < s  y , r<s  

We now estimate the moments of the increments of v ~. Let again p > 6. From the 
above inequalities and the computations made in Walsh [13, Corollary 3.4], we 
can show the following estimate ( 'vsc 

E[Iv~(x,  t) - v '(y ,  s) lq  _-< c 1 + E f sup IvY(z, 0)1 p 
o \ z , O < r  

+ sup [W~(Z, 0 ) f ]  dr~x[(x ,  t ) - ( y ,  s)[ p/4-3 . (43) 
z,O<r / / 

(  vs( 
E[lw"(x ,  0 - w~(Y, s)l'] _-< c 1 + E f sup IvY(z, 0)1 p 

0 z,O<r 

-t- sup [w~(z ,O)[P~dr~x l (x , t ) - ( y , s ) f /4 -3  . (44) 
z,O<r / /  

Now choose p > 20. By the Kolmogorov Lemma 3.1, there exists a random 
variable Y,,p such that: 

Iv~(x, t) - v~(y, s)l p < YPpI(x, t) - (y, s)l p/4-5 log i(x, t) - (y, s)l (45) 

[w"(x, t) - w"(y, s ) f  < Z~,l(x,  t) - (y, s)f/4-5 log i(x, t) - (y, s)l (46) 

and by (17), 

E[(~,p)  p ] N  ac 1 + E sup IvY(z, 7)[P + sup ]w~(z, ~)l p dr . (47) 
0 \z,c~<_r z,o:<=r 

E[(Z~.p) p] < ac 1 + E sup [v'(z,cr p + sup [w"(z,cr dr . (48) 
0 \z,~<=r z,c~<__r 
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Choosing s = 0, y = 0 in (45), (46), we deduce that for any T > 0 there exists 
Cr such that 

sup Iv~(x,s)l~ < Cr(1 + Y~p), sup Iw~(x,s)[ p <  CT(1 + Z~p) ,  
X ~ S ~ t  X , S < t  

with Y~,p (resp. Z,,p) satisfying (47) (resp. (48)). The result now follows from 
Gromvall's Lemma. [] 

Lemma 6.2 Let ~ (resp. ~) be the solution of(29) (resp. (30)), then for any T > 0 

>0. 
e+O 

where I1" IIr,~ is the norm in L~~ 

Proof. (i) Set w ' = ~ -  g~. 

Let p > 6, 

t 1 

w"(x, t) = f f [a(u'(y, s)) -- a(u(y, s))] G,_s(x, y) W(dy ds) . 
0 0 

E[Iw~(x, t)l p] ~ Cp G~_qs(x, y )dyds  
0 

= P 2(2q<3)" with q P _ 

By (9), sup~x,O fofo* GZ~-s(X, y)dy ds < m. 
Since u~(y, s) --%-~o u(y, s) a.s. and a has linear growth, it follows from (28) that 

fo r any T > 0 

sup E[lw~(x,t)[  p] , 0 .  
(x, t)~O.r ~-~0 

(ii) Following again some computations of Walsh [13, Corollary 3.41, we can find, 
using (i), a constant K~,p such that: 

EEIw~(x, t) - w"(y, s)lq =< g~,pl(x, t) - (y, s)l ~/4.a 

with K~,p~-~o0. Let p > 20, by the Kolmogorov lemma, there exists a r.v. 
U~,p such that: 

[w~(x, t) -- w~(y, s)l <= U~,pl(x, t) - (y, s)l 1/4-5/p log I(x, t) - (y, s)I J,] 

and E[U~p]  <= aK~,p; thus E[U,,p]  -%-,o O. 
Therefore, for any T > 0 

E I sup ,w~(x,t)l I ,0 ,  
(x, t)~ (2r ~ 0  

that is E [ [I ~7" - g II r, ~ ] ,0. [] 
e-+O 
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