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Summary. We study reflected solutions of a nonlinear heat equation on the spatial
interval [0, 1] with Dirichlet boundary conditions, driven by space-time white
noise. The nonlinearity appears both in the drift and in the diffusion coefficient.
Roughly speaking, at any point (¢, x) where the solution u(t, x) is strictly positive it
obeys the equation, and at a point (¢, x) where u(t, x) is zero we add a force in order
to prevent it from becoming negative. This can be viewed as an extension both of
one-dimensional SDEs reflected at 0, and of deterministic variational inequalities.
Existence of a minimal solution is proved. The construction uses a penalization
argument, a new existence theorem for SPDEs whose coefficients depend on the
past of the solution, and a comparison theorem for solutions of white-noise driven
SPDE:s.

Mathematics Subject Classification: 60 H 15, 35R 60, 35R 45

0 Introduction

We want to study reflected solutions of parabolic SPDEs driven by a space time
white noise. More precisely, we are looking for a continuous random field
{u(x, 1),0 < x < 1,¢ = 0} which is a solution of an SPDE at any point (x, t) where
u(x, t) is strictly positive and which is constrained to be non negative everywhere.
Furthermore, we require that the force needed to keep u non negative is minimal.

There is a vast literature both on reflected solutions of (deterministic) PDEs,
which are usually called “variational inequalities” and are motivated by applica-
tions in stochastic optimal stopping time problems (see Bensoussan and Lions [1])
and in mechanics (see Duvaut and Lions [21), and on reflected solutions of finite
dimensional SDEs (see e.g. Saisho [11]). The problem we are interested in in this
paper may be considered as a combination of the two above ones. In a sens, it is
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2 C. Donati-Martin and E. Pardoux

a variational inequality where one of the coefficients is taken to be a space-time
white noise.

The same problem has been studied by Haussmann and Pardoux [4] in
the case of a SPDE driven by a Wiener process with nuclear covariance. On the
other hand, in the particular case of a constant diffusion coefficient, Nualart and
Pardoux [8] proved the existence and uniqueness of a solution to a reflected
SPDE driven by a white noise.

As in [4] and [8], we shall construct a solution as the limit of a sequence {u*} of
solutions to penalized equations. In order to establish the monoticity of the
approximating sequence, we use a comparison theorem for solutions of parabolic
SPDEs with different drift functions.

Let us explain our problem. Let (€2, #, P) be a complete probability space and
W a space-time white noise on [0, 1] xR, ie. {W(4), AeZ([0,1]xR )} is
a centered gaussian process defined on (@, #, P) whose covariance function is
given by E[W(A)W(B)] = 1(A n B) where A denotes the Lebesgue measure on
[0, 17x R, and Z(R) denotes the Borel field of subsets of the topological space R.
f and o are coefficients satisfying assumptions to be specified in Sect. 1. Set
Fi=0{W(A), Ac ([0, 1] x[0,£])} v A", where A" is the class of P-null sets
of #.

Suppose that u, is a positive continuous function on [0, 1] which vanishes at 0 and
1. We are looking for a pair (u, 1) such that:

(i) u is a continuous process on [0, 1JxR,; u(x,t) is &, measurable and
u(x,t) = 0 as.

(ii) # is a random measure on (0, 1) x R ; such that
a) n((0, )x{t})=0, V=0

b) fo fo x(1 = x)n(dx, ds) < a0, 1 2 0.
c) n is adapted in the sense that for any measurable mapping i:
[0,1]xR, > R,,

t 1
[ [ ¥(x, s)n(dx, ds) is &, measurable .
00

(ili) (u, n) solves the parabolic SPDE:

dulx,t)  *ulx, 1) + f(ulx, 8) = a(ulx, ) W(x, ) + 5(x, )
ot ox? (1)

u(*, 0 =uy; u0,)=u(l,t)=0
in the following sense ((-,) denotes the scalar product in L2[0, 1]):
VieR ., peC*([0,1]) with ¢(0) = o(1) = 0,

(u(®), @) - f w(s), ¢")ds + [ (f((s), @)ds = (uo, @)
0

t 1

+ ft flqo(x)a(u(x s)) Wdx, ds) + f f @(x)n(dx, ds) a.s. 2)

@v) Jf. o Udn =0,
where @ = (0, 1) xR .
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Note that C2([0, 1]) denotes the restriction to [0, 1] of functions fe C*(IR). The
stochastic integral in (2) is an It6 type integral (it is a particular case of an integral
with respect to a martingale measure developed in Walsh [13]).

We say that the reflected parabolic equation (RPE) has a solution (u, #) if the
pair (u, n) satisfies (i), (ii), (1ii) and (iv).

The organization of this paper is as follows: our assumptions are stated in
Sect. 1; in Sect. 2, we prove a comparison theorem for solutions of parabolic SPDEs
driven by a space—time white noise, which is analogous to results obtained indepen-
dently by other authors. Kotelenez® [5] and Shiga [12] prove a similar result using
different approximations. By a discretization procedure, Mueller [7] obtains
a comparison theorem for a slightly different SPDE when the initial condition
varies. We nevertheless include a complete proof, since the result we need is not
exactly contained in these references, and we believe that our proof, which uses an
approximation by an SPDE driven by a finite dimensional Wiener process and
some techniques from [9], is interesting in itself. Indeed, comparison theorems are
rather easily proved for SPDEs driven by a Wiener process with nuclear
covariance, since we can use Itd calculus to analyse the solutions of such equations,
see [9, 10]. In Sect. 3, we prove an existence and uniqueness theorem for an SPDE
whose coefficients depend on the whole past of the solution, which is needed in
Sect. 4, which is devoted to the construction of a solution (u, ) by a penalization
procedure using the results of Sect. 2. In Sect. 5, we prove the minimality of the
above solution. The uniqueness problem remains open; classical methods based on
the It6 formula to prove uniqueness of reflection problems seem to be useless in our
context. Finally, an Appendix is devoted to the proof of some technical lemmas
which are needed in Sect. 4.

Notations. Let Q@ =(0,1)xR,; and for any 7>0 Qr=(0,1)x(0,7),

Or=[0,11x[0,T], H=L?0,1), V={uecH(0,1),u(0)=u(l)=0} where

H'(0, 1) denotes the usual Sobolev space of absolutely continuous functions
02

defined on (0, 1) whose derivative belongs to L%(0, 1), and 4 = — Ft
X

1 Assumptions on the coefficients

The coefficients f and ¢ will be Z([0, 1]) ® 2 ® #(IR) measurable functions from
[0, 11x 2 xR, xR into R, where & denotes the o-field of Z,-progressively
measurable subsets of @ x R .. When we shall say that fand ¢ are locally Lipschitz,
we shall mean that

fx 0,6 2) = fi(x, 0, 1) + f2(x, ©, 1; 2)

with f1€()1>0L2((0, 1)x 2% (0, T); dx x dP xdt), fr(x,w,£;0)=0; for each
T, M > 0, there exists ¢(7, M) such that

|f2('x5 a, ta Z) _fZ(xa , t; r)l + |O-(xa w, t9 Z) - O'(X, , t’ r)| § C(T> M)IZ - r|

! As far as we know, this author was the first one to circulate a preprint containing such
a comparison result
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for all (x, w, )e(0, 1)x 2 x (0, T), z,re[— M, MJ; and moreover for each 7> 0
there exists ¢(7") such that

|f20x, 0, 5 2) + [o(x, 0, 1 2)] £ 6(T)(1 + |z)

for all (x, w, t, z)e(0, 1) x @ x (0, T) x R. Note that locally Lipschitz really means
locally Lipschitz with at most linear growth.

When we shall say that f and ¢ are globally Lipschitz, we shall mean that the
above assumption is satisfied with a constant ¢(7, M) depending only on 7, and
not on M.

We shall omit the variable w and moreover we shall write f(u(x, £)) (resp.
6(u(x, t))) instead of f(x, t; u(x, t)) (resp. o(x, t; u(x, £))). f (u,) (resp. o(u,)) will stand
for the mapping x — f(x, t; u(x, £}) (resp. x — a(x, t; u(x, t))).

Let fand o be globally Lipschitz, u, be a continuous function on [0, 1] which
vanishes at 0 and 1. We consider the parabolic equation:

ou(x, t) 0%u(x, t)
ot ox?

+ £ (u(x, 1) = o (u(x, ) Wix, 1

3)
u(+,0) =uy; u0,t)=u(l,t)=0

Several authors, including Walsh [13], have shown that (3) has a unique continu-
ous solution, in the sense that u is the unique continuous adapted process which
satisfies:

VieR.,p e C*([0, 1]) with ¢(0) = ¢(1) =0,

(u(@), @) + 0f(M(S), A@)ds + [ (f(u(s)), ¢)ds = (uo, @)

+ ft fl o(x)o(u(x, sy) Widx, ds) as.

or equivalently u(x, t) satisfies the integral equation

1

t 1
“(xa t) = f uO(y)Gt(x: J’)dy - f ff(u(% S))Gt—s(xa y)dde
00

Y

+f 0f o @(y, 9))G,—y(x, ) W(dy, ds) ,

2
where G is the Green’s function associated to the operator p with Dirichlet
boundary conditions. x
It follows from standard localization arguments that the same existence and
uniqueness result holds in the case of locally Lipschitz coefficients.
We shall prove our results under the locally Lipschitz assumption. Using
a localization argument, it will be sufficient to do some of the proofs under the
globally Lipschitz assumption. Note that, using the results in Gyéngy and Pardoux
[3], the results of this paper can be extended to more general drift coefficients f,
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which could be the sum of a locally Lipschitz and an increasing function of its third
argument z.

2 A comparison theorem for solutions of parabolic SPDEs

The aim of this section is to prove a comparison theorem for white noise driven
SPDEs, which will be used in Sect. 4.

Theorem 2.1 Let the two pairs of coefficients f, o and g, o be globally Lipschitz, with
f = g. We denote by u (resp. v) the solution of (3) corresponding to f (resp. g) with the
same initial condition. Then, a.s., for all (x, )e [0, 11 x R 1, u(x, t) < v(x, t).

Proof. Let (e,) be an orthonormal basis of H such that || ¢, ||, < C for all ke N. We
denote

Wk = j fl e, (x) W(dx, ds) .
00

(W*)te is a family of mutually independent Brownian motions. For n = 1, let B”
be the H-valued Wicner process defined by

n
Bl =Y Wke,.
k=1

Let u” be the unique adapted solution in L*(Q x (0, T'); V) of the evolution equa-
tion

du? + Autdt + f(ur)dt = X (ur)dB! } @

“('aO)zuo

where 2 is the operator of multiplication by o i.e. for any ue H, 2(u) is the element
of #(L*(0, 1); H) defined by:

Zw)(h)(x) = o(u(x)}h(x), heH.

For existence, uniqueness and properties of the solution of (4), see for example
Pardoux [9] or [10].

Step 1 Comparison of solutions of (4).

We denote by v” the solution of (4) with f replaced by g, and w" = u" — v". Let
peNN*,

¥, R-R
0 for x£0
1
N 2px xe[O, 1_7]
1
2 xz_a
p

(Pp(x) = l{ng} f dy dele(Z).
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Then

® ¢,is a C? function on R,
® 05 0,(x) S2x™50 S 9p(x) £ 2120,

® ¢,(x) 7 (xT)* xeR, as p—> .

We define
?,.H-R
1
h> [ o, (h(x))dx .
0
@, is twice Fréchet differentiable; @,(h)e £(H, R) is given by
1
(@p(h), k) = [ @p(h(x))k(x)dx
0
&, (h) is a symmetric continuous bilinear form on H x H given by
Pp(h)(ky, kz) = f @p(h(x))ky (x)ka(x)dx .

The 1t6 formula (cf. [9, p. 62] or [10, Part 1, Theorem 3.2]) implies

Dwi) + [ CAWE, @pwi) > ds + [ (@p(w)), £ (u5) — g(v)) ds
0 0

= Z [ (@p(wi), [o(u?) — o(vs)]e)dWs
0

k=0

1 t
+3 J TE@ Y, )

Where {*,*> denotes the pairing between V and V' =~ 1(0 1),
fo (Z(u}) — Z(v2))dB? is an H valued martingale and {M"} is the unique

contlnuous process with values in the space of nuclear operators such that
(M}, B))(M}, k) — ({M",h, k) is a martingale for all h, ke H.

S Tr(P5(w5)d KM™ ;)
0

= Z 0f (0w o) — o) ex, [o(uf) — o(vy)]ex)ds

k=0
(@p(ws), Awg) = f ®p (W")< wi(x, S))de 20

(@p(w3),f (u5) — g(v5) = (@p(w3 ),.f (U5) — f(5)) + (@p(W), £ (v3) — 9(v5)) -
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The last term in the right-hand side of the above equation is positive by assumption
(f 2 g). Taking expectation in (5) yields:

E[®,(wi)] + E[ S (@p(w5), f(ul) —f(vs"))dS]

0

A

||M=

% [/ [ 03w, 9) [0 (x, 9) — 0 (0" (x, )] %2 () dxds:I.
0 0

Using properties of ¢, ¢, and e, we obtain

E[®,wi)] £ 2K + nKZCz)E[ft((Wé’)+a (W?)+)d5] (6)
0

where K is a LlpSChltZ constant for fand o.
Let ®(h) = [} (h*(x))*dx; then @,(w}) 7 P(w]') a.s., as p — oo,
From (6), E[@(w,")] < K'E[ f; ®(wy)ds].
Hence from Gronwall’s Iemma E[@ow)]=0fort=0.
By continuity of w”,

as, V(x,0)el0, 1JxR,,w"(x,)<0
ie.
as, V(x,t)el0, ITxR,,u*(x, 1) L0"(x, 1) . (7

Step 2 Convergence of u” (resp. v") to u (resp. v).
The solution u” of (4) satisfies the integral equation

1

w'x = [ uo())Gix, Yy — [ [ fW"(y,5)Gi—(x, y)dyds

n

1/ 01
+ ) f( S o"(y,9)G,(x, y)ek(y)dy>dWs"-
o \o

k=0

Lemma 2.1 Let p = 1, u (resp. u®) be the solution of (3) (resp. (4)), for any T > 0,

sup E[|u(x, 1) — u"(x, t)|"] — O ®)
(x. e 0y
Proof.
u(x, 1) — u'(x, 1) = A,(x, 1) + Bu(x, 1) + Cy(x, 1)
where

A, (x, 1)

Of J Lf @™y, 9) — F(y, 9)]1Gi—(x, y)dyds

n

B,(x,t) =} f< S [o@u(y, 8)) — o@(y, ))1G-s(x, y)ek(y)dy>dWs"
0 0

k=0

t 1
Cn(x t f)f f (Tx,t(ya S) - ‘P;’c,t(ya S)) W(dy dS)
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with
Py, ) = o(u(y, ) Ge—s(x, )
H 1
lP;,t(ya S) = z ( f O'(M(Z, S))Gt—s(xa z)ek(z)dz> ek(y) .
k=0 0
We use the following estimate on the Green’s function (see [13]):let 0 < r < 3, then
t 1

sup [ [ Gilx, y)dyds < oo . 9)

(x,)eQ@r 0 0

Letp>6,q=pp1 and set F (1) = sup E[|u(x, t) — u"(x, )|”].

xe[0, 1]

e E[l4,(x,0)"] £ C(ft fl Gi_,(x, y)dyds>_ [ft fl lu(x, t) — u™(x, t)|pdyds}
0 0 0 0
By (9).
E[|4,(x, 7] = Cft F,(s)ds . (10)
0

o E[|B,(x, 0)i"]

t n 1 2 pl2
= GE Hf > <f Lo(u(y, s)) — a(u"(y, )]G, —s(x, y)ek(y)dy> dS} ]
0k 0

=0

MM=

1 2
{ J [o(y, 9)) — o"(y, 9)1Gi—(x, y)ek(y)dy}
0

k

Z (lo(*,9)) = o@"(", )1G—s(x."), el

II

_-<: “:(T(M(', S)) - O-(un(.a S))] Gt—*s(xa .)IIZJ
E[|B,(x, 1)I7]

lIA

t 1 p/2
CpEHf [ [o@(y, 5)) — o "(y, $)1> G- (x, y)dde} }
00

IIA

Cp<f [ GH(x, y)dyds)zq'E[f [ low(y, s)) — o@"(y, s))|"dyds:|
00 o0

2
where ¢’ = P/ , 2q" < 3 since p > 6. By (9),
p/2—1

ELIB,(x, 01F1 = C [ Fy(s)ds (1)
0
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r 1 p/2
. E[1Cux, )7 = CPEH S [ (P, 5) — P53, 9)? dyds} ]
o 0

n

'I]Jr::,t( ) S) = z (lPx,t(' s S): ek)Hek

k=0

1
f ('Px,t(ya S) - T;,t(.% S))Zdy = |'Px,t(.7 S) - l173';,t(.7 S)|12{ N 0 a.s. .
0 n— o0

Moreover, | ¥y (+,s) — P, 9k < |P,..(*, )i, and

t pi2
E[{fm,t(-,s)@} }< 0 .

By the dominated convergence theorem,

E[IC,(x, "] —0. (12

Set pu(x, 1) = E[{ [} [} (Ps,(, 5) — 5.1, 5))>dy ds}??]. y, is a sequence of con-
tinuous functions on the compact Q which converges pointwise to the function 0.
Moreover, 7, is a decreasing sequence; by Dini’s theorem, (7,) converges uniformly
to 0. The convergence in (12) is therefore uniform in x. Let ¢ > 0, there exists N such
that:

nz N=sup E[|C,(x,)|"] S ¢. (13)
Now, using (10), (11), (13); for n = N,
t
F,() S C, [Fy(s)ds + Cpe .
0

By Gronwall’s lemma, lim,_, ., sup; < 7 F,(t) = 0.
Step 3
By Lemma 2.1, for all (x, 1)e[0, 1] x R .., there exists a sequence #; such that

u(x, t) = lim u™(x,t) as.
k- w

v(x, t) = lim v™(x,t) as.
k— o0
By step 1, u™(x, t) < v™(x, t) a.s.,, so the same inequality holds for u and v. By
continuity of # and v, a.s.,

Vix,)e[0, 1Tx R, u(x, t) £ v(x, t) .
This ends the proof of the theorem. O

It follows from a standard localization procedure that Theorem 2.1 remains
true if we replace the global Lipschitz conditions by local Lipschitz conditions.
Indeed, if that would not be the case, then there would exist R, T > 0 such that:

P( sup u(x, t) — v(x, t) > 0; sup [u(x, 0] v |v(x, 0] < R) >0

0=x=1,05t=sT 0=x=<1,0=Zt=T
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and the result would not be true for any pair of globally Lipschitz coefficients
which agree with f, ¢ on [0,1]x[0, T]x[— R, R], which contradicts the
theorem.

3 An existence and unigueness result for SPDEs with coefficients depending
on the past of the solution

In this section, we prove an existence and uniqueness result for an SPDE whose
coefficients are allowed to depend on the whole past of the solution. Note that this
kind of equation has already been considered by Manthey and Stieve in [6], but the
assumptions there are a bit too strong for our purpose.

For any ueC([0,11xR,), t=0, we denote by u’ the element of
C(10, 11 x [0, t]) which is the restriction of u to [0, 1] x [0, £].

In this section, we are given two mappings:

Lo [0, xR, xC([0,1]xR,)->R
such that:
(i) For any u, ve C([0, 11x R ), (x,t)€[0, 1] x R, such that u' = v,
ft, x,u)=f(t, x,v)
olt, x, u) = o(t, X, v) .
(i) For any T, M > 0, there exists C(T, M) such that for any xe[0, 17, te[0, T,
u,ve C([0, 1] x R ,) satisfying sup, , < rlu(x, )] £ M, sup,, . < rlv(x, )] £ M,
|fOx, 6 u) = f(x, 6 0)| + |o(x, &, u) — olx, £, v)| < C(T, M) sup |u(y,s) — v(y,s)| .

»s=t

(1) For any T >0, there exists a constant C(T) such that for any xe[0, 1],
te[0, T], ue C([0, 11x R ),

|f 0 6wl + lolx, , u)| < C(T)<1 + sup fu(y, S)|> -

ysSt
We consider the SPDE

2

%—z(x, £) — %}C—Z(x, ) +f(x, t,w) = olx, W, X)

(14)
u(0, x) = uo(x); u(t, 0) = u(t, 1) = 0
which again must be interpreted as
t 1
u(x t) - f G (xa )uO(y dy f f Gt N X, y)f(ya S, u)dde
[ (15)

t 1

+ [ [ Gi_y(x, Y)a(y, s, y W(dy, ds) .

Theorem 3.1 Let uge Cy([0, 1]), and suppose that f, o satisfy conditions (i), (ii)
and (iii). Then Eq. (15) has a unique continuous and F-adapted solution
{u(x, 1, 0= x = 1,12 0}.
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The proof of the theorem will rely on some estimates from Walsh [13], and in
particular on the following version of the famous Kolmogorov Lemma which is
a consequence of a result of Garsia—Rodemich-Rumsey (see Coroltary 1.2, p. 273 in
Walsh [13] for example).

Lemma 3.1 Let R be a cube in R" and {X,, « € R} be a real valued stochastic process.
Suppose there exist constants k > 1, K > 0, y > 0 such that

E[1X, — Xp/*1 < Ko — pI**"

then
(i) X has a continuous version,

(ii) there exist constants a,y depending only on n, k and n, and a r.v. Y such that
a.s., for all (o, B)e R?,

2/k
1 X, — X4 £ Y] — B|"* (log (Iaz—ﬁi» (16)

and
E(Y*)<aK . (17)

Proof of Theorem 3.1 The proof is divided in three steps.

Step 1 Non explosion

Suppose 7 is a stopping time such that t > 0 a.s. and {u(x, t); xe [0, 11, ¢ [0, 7] } is
a continuous and adapted solution of equation (15) on the random interval [0, z].

We show that this implies that for any ¢ > 0, p = 1, there exists a constant c(t, p)
such that:

E( sup  u(x, S)I”)édt,p)- (18)

Xx,sZtAT
1 1
Letp>6,-+-=1
P 4

p

E(lu(x, ¢ A 9J7) < c{

J Gilx, y)uo(y)dy
0

tant 1

: 1 plg
+( S fo_s(x,y)dyds) E [ [1f(suldxds
0 0 0o 0

tAT

r 1 (p—2)/2 1
+< / fG:_s(x,ymyds) E f f|a(x,s,u)|l’dyds},
0 0 0 4]

where r = 2p/(p — 2} < 3, hence the integrals of powers of G above converge, see
(9). We deduce, with the help of the assumption (iii), that for t < T,

E(lu(x,t A 7)]7) < C(T)(l +E th sup |u(y, r)l"dr) .

0 yr=<s
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From the above inequalities and the computations made in Walsh [13, Corollary
3.4], we can show the following estimate, again with p > 6, s, ¢t < T.
E(lu(x,t A7) — u(y, s A 7))
_ P
S CDIx, 0 = (y, S)IZ"3<1 +E fEVI7 sup |uz, oc)l”dr> -
Za<r

Now choose p > 20. By the Kolmogorov Lemma 3.2, there exists a random

variable X, such that:

u(x, t A T) — u(y, s A DIP S X2|(x, £) — (3, 9
v Y
X(“’g(i(x, D~ s>|)> ’ (19)

E[XF]< ac<1 + Efo(‘”)” sup |u(z, oc)l"dr) ) (20)

zZo ST

and

We now choose s =0 in (19), and deduce from (19), (20) that there exists
Cr such that for any t £ T,

tAT
E( sup )u(x,SAt)|">§CT<1+E [ sup |u(y, r)lpds>

x,s<t 0 yr=s
t
< CT(l +E [ sup |u(y,r A r)|"ds>

0 yr<s
(18) now follows from Gronwall’s lemma. It now remains to prove the rest of the
Theorem under a globally Lipschitz assumption on fand ¢ (i.e. C(T, M) in (ii) does
not depend on M), which we assume from now on.
Step 2 Uniqueness
Let {u(x, t); xe[0, 1], te R } and {v(x, ¢); xe[0, 1], te R, } denote two continu-
ous and adapted solutions, and define # = u — v.

IZ(X, t) = f f G-,y [f(y,s U) f(ys S, u)]dyds
0 0

+ f f Gt—s(xs y) [U(ya S, u) - 0'(Y= S, U)] W(dy9 dS) .
0 0
Soif t £ T, p > 6, we deduce from (ii) that there exists Cr such that

Ela(x, )" £ CrE [ sup |a(y,r)|"ds .

0 yr=s

Moreover, similarly as above,

E(la(x, 1) — u(y, 9)I°) = Crl(x, 1) — (v, S)Ig_sEfot” sup |i(z, ®)|Pdr .

a7
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The same arguments as in step 1 now yield, for p > 20,
t
E< sup [u(x, S)I") < CrE [ sup |a(y,7)|%ds,
x,sst 0 yrEs

hence # = 0 from Gronwall’s lemma.

Step 3 Existence

Consider the following mapping S, which maps continuous adapted random fields
into continuous adapted random fields:

1 t 1
SWen )2 [ Glx, Yuo(Wdy — [ [ Goy(x, (3, 5, udyds
0 g 0

t 1
- 0f [ Gi_i(x, y)a(p, s, uyW(dy, ds) .
0

From the arguments in step 2, there exists p > 20 and a constant ¢(T") such that for
any te[0, T7:

E< sup |S(u)(x, s) — S()(x, s)|"> <ce(T) f1E< sup |u(x, ry — v(x, r)]") ds .
0

x5t x,r<s

Now we construct the solution by successive approximations. Define u"*!(x, t)=
S(u™)(x, t); u®(x, t) = uo(x). Then, using the above equation, we can prove that the
sequence u”(x, t) converges in L?(2), locally uniformly with respect to (x, t). Then,
u = limu" is a solution of (15) (see Walsh [13] for details).

4 Existence of a solution

In this section, we suppose that f, o are locally Lipschitz, u, is a positive continuous
function on [0, 1] such that u(0) = uy(1) = 0.
We consider the penalized SPDE:
out(x,t)  0%uf(x, 1)
ot ox*

+ /(W (x, 1))

= a(u®(x, 1)) W(x, t) + —i:(ua(x, )~ (21)

u?(+,0) = up; u®(0, 1) = u?(1,¢) = 0.
For each ¢ > 0, (21) admits a unique continuous solution u® which satisfies

sup E[|u®(x, )P ]< o0, Vpz=1,T>0.
(x,t)eQ_T

Moreover, according to Theorem 2.1, if ¢ < &/, then u® < u® as. .

Theorem 4.1 The solution u® of (21) converges a.s. to a continuous process u on
[0,1]xR,, as e—0.
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Proof. u®is an increasing sequence as ¢ — 0, set 4 = lim,_, o u® = sup,_ o u’.
Step I u < w as.

We shall compare u® with two other quantities v* and w® to be defined below. From
a standard localization procedure, it is sufficient to prove the comparison results
under the assumption that fis globally Lipschitz, which we assume for most of
step 1.

Let v® be the unique continuous solution of

Ot t 82 g Lt .
PO _TID et ) = ot ) s, 0
ot Ox (22)
vg(. ’ 0) = Ug, UE(Oa t) = ve(la t) = 0
For any T > 0, z° = v* — u® is a.s. the unique solution in L2((0, T) x (0, 1)) of
8 4

1
5, + Az =)~ ff) - —(w) (23)

25(+,0) = 0;2°0, £) = z°(1, £) = 0

which satisfies z®e L?(0, T'; V). According to Bensoussan and Lions [1, Lemma 6.1,
p. 132], z)* € L?(0, T; V)" C([0, T]; H) as.,

- a & A% _l gyt |2
{(é;zsa(zs) >dS—2l(Z,) |H

and similarly

a e+ 2
&(Zs)

f(;;zs,—(zs) )ds=oft

0
We can multiply Eq. (23) by (z)" to obtain

F&aten Jas+ (st L s+ [t eas

= (W) ) )ds £0.
0
Since
(69 = G2 s = = ¢ [ 160 s,

we deduce from Gronwall’s lemma that |(zf)*|? = 0 a.s., and by continuity, a.s.
Vix,)el[0, ITxR., ul(x, )= v(x,1). (24)
From Theorem 3.1, the following equation has a unique solution {wé(x, t);
xe[0,1], ¢t = 0}:

owt(x, 1)  9*wi(x, 1) . _
= et s ()
= g(u®(x, 1)) W(x, t)

wi(+, 0) = 1ig; wi(0, t) = wi(l, ) =0

(25)
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We set

wix, ) = wix, 1) +  sup  (W(y, )
s=t,yel0,1]

2 wi(x, t) + D5

wei(x, t) = 0 as., #°1s an increasing process.
For any T > 0, z* = £ yf — * is the unique solution in L*(0, T; H*(0, 1)) of

ad;

Dy a4 S~ 090 + S =)

éa(., 0) = O, Z—E(O) t) = Z_s(la t) = - ¢f

(since A(u? — wt) = Az?). Multiplying that equation by (z%)* e L*(0, T; V) as., we
obtain by the same arguments as above:

(2o ) (22

t 1 t
)~ FRENGE) s + [ [ (5, )" ded® = £ J (@) ).
[V Y]

The right-hand side of the above equality is zero because (Z)* > 0 implies
ut > w2 0. Hence we again deduce from Gronwall’s lemma

u(x, t) S wi(x, t) as.. (26)
By (24), (26),
(e, O] < |o'(x, )] + 2 Sup[0 " |w(y, s}l . 27)
s=t,yell,

We now return to the assumption of locally Lipschitz coefficients. From
Lemma 6.1 of the Appendix, for arbitrarily large p and any 7 > 0,

sup E|: sup_ [v®(x, t)|”:| <0,

€ (x3 t)EQT
and
sup El: sup |wi(, x)l”] < o
€ (x,)e0r
implying
sup E': sup [u®(x, t)l":l < 0. (28)
€ (x, t)edr

So u = sup, #° is a.s. bounded on Q7.
It follows from (27), again by a standard localization procedure, that the rest of
the proof can be done under the assumption of globally Lipschitz coefficients.
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Step 2 Continuity of u

We first note that for any real number ¢, u®¢:= e~ “uf satisfies the same equation as
u®, but with f (resp. o) replaced by f. (resp. ¢.), where

filx, z)=e “f(x, t;e"2) + cz
o.(x, t;z) = e “o(x, t;e"z).
Now, since fis assumed to be uniformly Lipschitz in z, we can choose ¢ such that
z>f(52)

is non decreasing (at least for (x, £)e [0, 1] x [0, T], T arbitrary). Hence, we can and
will assume that z — f (-, z) is non decreasing in this second part of the proof.
Let #* be the solution of

LALD) + Ab%(x, t) = o (u*(x, £)) W(x, 1)
ot (29)
7°(+, 0) = ug; 5°(0, ) = 7°(1,1) = 0

and v be the solution of

617(36, t) + AE(X, l') _ o'(u(x, t)) W(x> t)
a 0

5(+,0) = ug; 5(0,£) = (L, ) = 0 .

(29), (30) admit unique continuous solutions (continuity can be proved as in Walsh
[13]). Let z* = u® — ©°, z*® is the solution of

0zf 1

Sz + <f(zf +5) — (et + af)-> =0

z2°(+,0)=0;2°(0, 1) = z5(L, £) = 0 .
1
We denote by f, the function f,(r) = f(r) — gr_, so z°% is a solution of

%?+Azf+fg(zf+ﬁf)=0

22, 00=0;2°0,t) =2z°(1,£) = 0.
Let z° be the solution of

%2_7‘8+Az‘f+ﬁ(z‘f+ﬁ,)=0

z5-,00=0;2%(0, 1) = 2°(1,£) =0 .

Following Nualart and Pardoux [8], we deduce from the fact that f, is non
decreasing;

125 = 2%ll7,0 £ 10— 2° 1,0 (31)

where || |7, denotes the uniform norm on C(Q7) (T > 0 is arbitrary).
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The proof of (31) uses the same arguments as in step 1: if we denote
W=7z —z°— |0 — V*| 1., We can prove that w* = 0. So, z° — z° < |7 — 7°|| 1,
and by symmetry, z°¥ — 2° < || — 0°|| 1, -

a® = z* + v solves

out(x, t)

o + Aut(x, t) + f(@*(x, t)) = o(u(x, t))W(x t)+ - (us) x, 0,

or equivalently
ut(x, t) + G*f(d°)(x, t) — %G *(#°) 7 (x, 1) = v(x, ) (32)

where

t t 1
o(x, 1) = [ Gx, uo(Mdy + [ [ Ge-s(x, )o(u(y, s)) W(dy, ds) (33)
0 0 0

is a continuous process on Jr, and we have used the notation

t 1
Gro(x,t)= [ [ G_i(x, Yo(y,s)dyds .
0 0

Now, it has been shown in Nualart and Pardoux [8] that the solution of (32)
converges as ¢ tends to zero to a continuous function i on the compact set Q.

Moreover, the sequence (u°), being increasing (see [8]), the convergence is
uniform on Qr. So z° converges uniformly to a continuous function z. Using
z* = u* — 9* and (31), it will follow from the convergence [|0 — 0% 7, o — 0 as.
that v = ¥ + Z is a continuous function.

By Lemma 6.2 of the Appendix, E[ |0 — 7% r,0] — 0.

The proof of the theorem is now complete. [ °~

Theorem 4.2 Let o, f be locally Lipschitz. The reflected problem (RPE) has a solution
(u, ).

Proof. Let u® be the solution of the penalized equation and u = lim,_, o u® Let ¢ be
a C* function with compact support contained in (0, 1) xR ...

t

a t t
(uts, (Pt) - f <u:, 5;%) + /(A(psa u:)ds + of(f(u;:), (ps)ds = (an (PO)
0

0

+ ft fl o (ut(x, 5))o(x, s)W(dx, ds) + - f((u) ,@5)ds  as. . (34)
[

1
We denote by #, the random measure #,(dx, dt) = g(u‘)_ (x,)dxdton [0, 1] xR .
All the terms on the left-hand side of (34) converge a.s. when ¢ tends to 0.

2 t 1

Ofofa(ua(x, Neo(x, s)dW(x, S)E’ [ [ ou(x, s))o(x, s)dW(x, s) .
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Indeed, from a.s. convergence, (28) and linear growth of o,
t 1
E [ [lo((x,s) — o@’(x,s))|*dxds >0 .
0 0

So we may suppose that the above convergence holds a.s. (taking a subsequence).
We deduce from (34) that , converges in the distributional sense to a distribution
non(0,1)x R, a.s..nis a positive distribution and hence a measure on (0, 1) x R ..
For all T > 0 and ¢ e C*(Q) with support in (0, 1} x [0, 7], we have for all £ = O:

t

a t t
(ut: (pt) - f (usa &§03> + f (A(psy us)ds + f f(us)’ (Ps)ds = (u09 (PO)
0 0 0

t 1 t

+ f fa(u x, 5)) @ (x, s) W{dx, ds) + f fl o(x, s)y(dx, ds) as. (35
0

Multiplying (34) by ¢ and letting ¢ — 0, we obtain

t
[, 0)ds=0 as.
0o

for all C* functions ¢ with compact support in (0, 1) x [0, T ].

This implies u(x, t} = Oa.e. on (0, 1) x [0, T'], a.s.; u being continuous, u(x, t} = 0 on
0,1)x[0,7T] as. .

For ¢ £ &, u® = u® as. therefore supp#® = supp#® and supp# < suppn®.

Now, u* < 0 on supp #® therefore fQ u®dn £ 0 as. (it can be — o).

1 1
Let Q7 = [Z’ 1— ;] x [0, T1.

—ow< [ wdp=0 as.
Or.n
By monotone convergence, f, udy <0, and fp udn=0.
Letting n — oo, fQ udn = 0 by ‘monotone convergence.
The pair (u, #) 1s a solution of the reflected problem (RPE) in a weak sense that
is (2) is satisfied for any C*® function ¢ with compact support in (0, 1).
Let v be the continuous stochastic process defined by (33). v satisfics:

t 1

(v @) + f(Aco, v;)ds = (o, @o) + f f a(u(x, 5))¢(x, 5) W(dx, ds)

for ¢ a C* function with compact support in (0, 1).
(u, n) satisfies (I):
(i’) u is a continuous process on [0, 1]x R, u(x, t) = 0; n is a measure on
(0, 1) xR, such that f, 17, g, udn =0, ug = vo, (u — )0, 1) = (u — v)(1,2) = 0,
@') ve =0, (peCI‘?(]R% with supp ¢ < (0, 1),

@), ) + f (u(s), Ap)ds + f (f (u(s)), )ds

= (v(t), @) + f(v(s), Ag)ds + f f o(x)n(dx, ds) as. .
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Now, following Nualart and Pardoux [8], (I} has a unique solution for a given
ve(\r>o C(Qr). We can therefore apply the results of Nualart and Pardoux. It
follows that #((0, 1) x {t}) = 0, fQ x{1 — x)n(dx, ds) < o as. for all t > 0, and for
all p e CR(R) with ¢(0) = ¢(1) =0,

(), ) + f (u(s), Ap)ds + f (f (), @)ds = (o, @)

+ f f o(x)o(u(x, s)) W(dx ds) + j fl o(x)n(dx, ds) as.. O
00

Remarks. (i) [} [} Gi-s(x, y)n(dy, ds) < co as., and

t 1

xa t) - fG(x J’)uo()’)dy - f f Gt s(xa )f(u(y> ))dde

t 1 t 1
+ [ [ Gioy(x, y)ou(y, )Wy, ds) + [ [ G,_i(x, y)n(dy, ds) . (36)
0O 0 0 0

(i) Conversely, let (v, 7) be a solution of (RPE). The weak form (2) can be extended
to smooth functions @(x, t) which satisfy @(0, £) = ¢(1, t) = O: as.

£ a t
(@), o) + f (u(S), Ap(s) — %QD(S)) ds + [ (f(u(s), ¢(s))ds
0 0

t 1 t

= (o, (0) + [ [ o(x, s)a(u(x, s)) W(dx ds) + of [ o(x, 9)n(dx, ds). (37
0 0 0

Then, applymg (37) to @(y,s) = G,—(P,y) for PeC¢(R), we can prove that
fo fo —s(x, V)i(dy, ds) < oo as, and the integral equation (36) is true for (v, 7).

5 Minimality of the solution

The results of this section need only be proved in case of globally Lipschitz
coefficients, again from a standard localization procedure. Hence we assume below
that the coefficients are globally Lipschitz.

Theorem 5.1 The pair (u,n) constructed in the above section is minimal in the
Jfollowing sense: if (v, 77) is a solution of the reflected problem (RPE), then u < v as..

Proof. u = lim,.., u* where u® is the solution of

out(x, t)
ot

+ Aw(x, t) + fuP(x, 1) = o(u®(x, ) W(x, t) + F,u?(x, 1)) (38)

with F,(x) = —~x7; F, is a positive, Lipschitz decreasing function.
&

Let (v, 77) be a solution of (RPE). Since v = 0 a.s., F,(v(x, t)) = O a.s., and v is also
a solution of
ov(x, t)
ot

+ Av(x, ) + f(v(x, 1)) = o(v(x, D) W(x, ©) + 71 + F,(0(x, ).  (39)
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As in Sect. 2, we want to compare the two solutions of (38) and (39). Let us first
prove the:

Lemma 5.1 Given 7 satisfying (ii), there exists a unique continuous and adapted
solution v of

ov(x, )

T + Av(x, 1) + f(v(x, 1)

= o(w(x, D) W(x, 1) + 7 + F,(v(x, 1) (40)
v(*,0) = up; v(0, ) = v(1, 1) = 0

in the following sense

t t 1
U(x, t) = OfGt(x’ y)uO(y)dy - Of f Gt—s(x7 Y)f(”(ya S))dy ds
0

+ [ [ G—(x, p)o(v(y, 5)) W(dy, ds)
1]

Ot -

+

O -
O~

t 1
G,—s(x, Yii(dy, ds) + [ [ Gi—i(x, y)F,(v(y, 5))dyds .
0o 0

Proof. 1t suffices to prove uniqueness of the solution of (40), since existence will
follow from the proof of the theorem. Now uniqueness is proved exactly as in
Walsh [13], since F, is Lipschitz. O

We now return to the proof of Theorem 5.1. Let

t—1/n 1

M ty=n [ [ G—s(x, y)7(dy, ds) .
t—2/m O
Since for some c¢,, G, 4(x,y)<c, y(1—y) for 0<s<t—1/m 0Zt=T,
0=x=1,0ZyZ1,#,is a bounded function. It follows from Theorem 2.1 that
u® < v", where v" is the unique solution of

51)"(x t)

+ Av'(x, 1) + f(v"(x, 1)) = a(v"(x, 1)) W(x D)+ 7,(x, 1) + F,(v"(x, 1)) .

It remains to show that v” — v in probability as n— oo, where v is the unique
solution of (40). This will follow from:

t 1
A, — [ [ G,_i(x, )7i(dy, ds) as.,
0 0

where

( Sfl/n flGr—r(x, z)i(dz, dr)> ds .
o]
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Hence
t—2/m 1 t—1/n

[ [ G- 9fdzdry s 4, < [ fle—r(x,Z)ﬁ(dz,dT),

and the above convergence follows from 7((0, 1) x {¢}) = 0, Remark (ii) at the end
of Sect. 3, and dominated convergence. O

6 Appendix

Lemma 6.1 Let v (resp. w®) be the solution of (22), (resp. of (25)) then for all p = 1,
7>0,

sup E[ sup |v*(x, t)|1’} <o, sup E< sup |wi(t, x)|”> < .
¢ (x,0€0r e t, 00y

Proof. 1In this proof, which exploits similar techniques as those used in the proof of
Theorem 3.1, ¢ will stand for a constant (independent of ¢, but depending on the
exponent p) which may vary from place to place. First choose (x,£)e[0, 1] xR ..

1 t 1
vi(x, t) = Of Gi(x, Yuo(dy — [ [ Gi—(x, ») f(v*(y, 5))dy ds
0o Q

+ [ [ Gi-slx, y)o(u®(y, s)) W(dy ds)
0

O

1
wa(x, = [ Gy(x, y)uo(y)dy
0

- Of Of Gt—s(xa y)f<wa(y9 S) + sup (WE(Z, r))_>dyds

r<s,2ze[0,1]

1
+ [ [ Gios(x, y)o@(y, 5)) W(dy ds) .
o

Cf—

11
Letp>6-+-=1,
P q

1 P
E[v*(x, 0)}7] écf{ S uo(»)Gilx, y)dyl

t 1 plg t 1
+<Of fG?—s(x,y)dyds> E[Of Of Lf(0*(, S))I”dde}

“

O ooy

1 (p—2)/2 t 1
J Gi_y(x, Y)dyds) (1 +E [ [ ey, S)l”dyds>}
0 00
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uo(y)Gi(x, y)dy

1 P o1 plq
E(Jw®(x, 1)] { f +<f [ GE_(x, ydyds)
0 00
><E|: pdyds]
t 1 {(p—2)/2 t 1
+<f [ Gi_s(x, y)dyds) <1 +E [ [|u(y, s)l%iyds)}
0 0 o 0

where r = 2p/(p — 2) < 3, hence all integrals in the above right hand side are finite,
from (9). It follows from the last inequality and (27) that

[ [ f(Wa(y, s) + sup (W(z, r))_>
0 0

zZ,r<s

ELv*(x, "] §C< +[E ( sup [v°(y, )I” + sup [w*(y, r)l”>d8> (41)

0 »Brss »rss
t

E[Iw*(x, 7] = C<1 + fE< sup [v* (v, )I” + sup [w(y, r)l">dS>- 42)
0 yrEs Whres

We now estimate the moments of the increments of v°. Let again p > 6. From the
above inequalities and the computations made in Walsh [13, Corollary 3.4], we
can show the following estimate

E[v*(x, 1) — v*(y, 9)IP] = C<1 +E th§< sup [v°(z, 0)[7

7,8y

+ sup |w(z, 0)!”>dr>><|(x, H— ()P4 3. 43)

z,0Zr

E[iw*x, 1) — w'(y, s)I"] = C<1 +E [fvs< sup [v°(z, 0)|7
0

s
+ sup [w'(z 9)|">dr>><1(x, t)—(y8)P473 . (44)
z0Zr

Now choose p > 20. By the Kolmogorov Lemma 3.1, there exists a random
variable Y, , such that:

|U£(X, t) - ve(y= S)|p é Ye’fp'(xa t) - (y: S)|p/4¢5<10g (m)) (45)

W, ) = W3, I < 28106, 0) — (3, 91743 <log (Rﬁ)f—@—s”)) (46)

and by (17),

E[(Y )] ac(l + E tfvs< sup |v°(z, )| + sup |wi(z, oc)|1'>dr> . 47)

0 z,aSr Z,aSr

-~

E[(Z. )] = ac<1 +E fvs< sup |v%(z, 0}{¥ + sup |wi(z, oc)lp> dr) . (48)
0

a7 Z, 0=
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Choosing s = 0, y = 0 in (45), (46), we deduce that for any T > 0 there exists
Cy such that
sup |v°(x, )1 S Cr(1 + YZ,), sup [wi(x,9)I” = Cr(1 +Z7,),

x, st X, 8=t

with Y, , (tesp. Z, ,) satisfying (47) (resp. (48)). The result now follows from
Gromvall’s Lemma. O

Lemma 6.2 Let o° (resp. 0) be the solution of (29) (resp. (30)), then for any T >0
E[|o* - 5“T,oo]':30 .

where | * |1, is the norm in L*(Q7).

Proof. (i) Set w* =10 — p".

t 1
1) = [ [ oW (y,9) — oy, )]G—x, ») W(dyds).
0 0

Let p> 6,

t 1 pi2q
ELIw(s, OlF] < c,,< f [ o, y)dyds)
0O 0
t 1
3 E[ [ [ 106t ) = otuty, )1Pdy ds]

with ¢ = —2— (29 < 3).
p—2

By (9)5 SI'lp(x,t)fot_/-O1 Gtzgs(x: y)dde < 0.
Since u®(y, 5) —=¢-o u(¥, 5) a.s. and ¢ has linear growth, it follows from (28) that
forany T>0

sup E[|w*(x, t)["]————>0
(x.)e 0

(ii) Following again some computations of Walsh [13, Corollary 3.4], we can find,
using (i), a constant K, , such that:

E[IwW(x, ) — w'(3, )] S K, ,l(x, 1) — (3, 5)|P* 73
with K, ,—,00. Let p > 20, by the Kolmogorov lemma, there exists a r.v.
U,,, such that:

2/p
Wix, 1) — wi(y, s} S U, ,l(x, 0) — (3, S)I”‘*‘”"(log (W))

and E[U},] £ akK, ,; thus E[U, ;] —=:-00.
Therefore, for any T > 0

E[ sup |wi(x, t)|}—>0 ,

(x, )eQr ¢0

that is E[||°* — 0|7, o] —— 0. H
=0
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