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Adaptive dynamics (AD)

Adaptive dynamics (Hofbauer and Sigmund 1990, Marrow et al. 1992,
Metz et al. 1992):
• describe the evolution of a population by putting emphasis on the

ecological interactions
• heredity (in a first approach) is simplified as much as possible:

asexual (clonal) reproduction
The basic idea is to describe the evolution of the population as a
succession of mutant invasions (Metz et al., 1996). Starting from an
individual-based, stochastic model, this approach corresponds to the
assumptions of
• large population
• rare mutations
• small mutation steps

No fitness is given. It has to be deduced from the model.
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AD: trait substitution sequence (TSS)

The trait substitution sequence (TSS, Metz et al., 1996, C, 2006)
proceeds from two assumptions.
• Assumption of rare mutations

• sufficient time is given to selection and genetic drift to eliminate
unlucky types between two mutations

• only one trait survives at a time on the mutation timescale
• evolution proceeds through a sequence of mutant invasions and

fixations: jump process over the trait space

• Assumption of large population
• only advantageous mutants can invade and fixate
• direction of evolution is deterministic (no genetic drift).
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TSS: Two figures
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AD: canonical equation of adaptive dynamics

The canonical equation of adaptive dynamics (Dieckmann and Law,
1996) proceeds from an extra assumption of small mutations applied
to the TSS.
• Deterministic ODE (without genetic drift)

dx
dt

=
1
2
σ(x )2µ(x )n̄(x )

∂

∂y
f (x , x )

• σ2 variance of the mutation steps
• µ probability of mutation at each birth event
• n̄(x ) equilibrium size of a pure x -type population
• f (x , y) growth rate of a mutant type y in an equilibrium x -type

resident population (fitness)



Introduction Microscopic model TSS Limit of small jumps: CDAD Computation of χ(x, x) and ∇2χ(x, x) Conclusion

AD: canonical equation of adaptive dynamics

The canonical equation of adaptive dynamics (Dieckmann and Law,
1996) proceeds from an extra assumption of small mutations applied
to the TSS.
• Deterministic ODE (without genetic drift)

dx
dt

=
1
2
σ(x )2µ(x )n̄(x )

∂

∂y
f (x , x )

• σ2 variance of the mutation steps
• µ probability of mutation at each birth event
• n̄(x ) equilibrium size of a pure x -type population
• f (x , y) growth rate of a mutant type y in an equilibrium x -type

resident population (fitness)



Introduction Microscopic model TSS Limit of small jumps: CDAD Computation of χ(x, x) and ∇2χ(x, x) Conclusion

AD: canonical equation of adaptive dynamics

The canonical equation of adaptive dynamics (Dieckmann and Law,
1996) proceeds from an extra assumption of small mutations applied
to the TSS.
• Deterministic ODE (without genetic drift)

dx
dt

=
1
2
σ(x )2µ(x )n̄(x )

∂

∂y
f (x , x )

• σ2 variance of the mutation steps
• µ probability of mutation at each birth event
• n̄(x ) equilibrium size of a pure x -type population
• f (x , y) growth rate of a mutant type y in an equilibrium x -type

resident population (fitness)



Introduction Microscopic model TSS Limit of small jumps: CDAD Computation of χ(x, x) and ∇2χ(x, x) Conclusion

AD: canonical equation of adaptive dynamics

The canonical equation of adaptive dynamics (Dieckmann and Law,
1996) proceeds from an extra assumption of small mutations applied
to the TSS.
• Deterministic ODE (without genetic drift)

dx
dt

=
1
2
σ(x )2µ(x )n̄(x )

∂

∂y
f (x , x )

• σ2 variance of the mutation steps
• µ probability of mutation at each birth event
• n̄(x ) equilibrium size of a pure x -type population
• f (x , y) growth rate of a mutant type y in an equilibrium x -type

resident population (fitness)



Introduction Microscopic model TSS Limit of small jumps: CDAD Computation of χ(x, x) and ∇2χ(x, x) Conclusion

AD: canonical equation of adaptive dynamics

The canonical equation of adaptive dynamics (Dieckmann and Law,
1996) proceeds from an extra assumption of small mutations applied
to the TSS.
• Deterministic ODE (without genetic drift)

dx
dt

=
1
2
σ(x )2µ(x )n̄(x )

∂

∂y
f (x , x )

• σ2 variance of the mutation steps
• µ probability of mutation at each birth event
• n̄(x ) equilibrium size of a pure x -type population
• f (x , y) growth rate of a mutant type y in an equilibrium x -type

resident population (fitness)



Introduction Microscopic model TSS Limit of small jumps: CDAD Computation of χ(x, x) and ∇2χ(x, x) Conclusion

AD: canonical equation of adaptive dynamics

The canonical equation of adaptive dynamics (Dieckmann and Law,
1996) proceeds from an extra assumption of small mutations applied
to the TSS.
• Deterministic ODE (without genetic drift)

dx
dt

=
1
2
σ(x )2µ(x )n̄(x )

∂

∂y
f (x , x )

• σ2 variance of the mutation steps
• µ probability of mutation at each birth event
• n̄(x ) equilibrium size of a pure x -type population
• f (x , y) growth rate of a mutant type y in an equilibrium x -type

resident population (fitness)



Introduction Microscopic model TSS Limit of small jumps: CDAD Computation of χ(x, x) and ∇2χ(x, x) Conclusion

Our goal

• Use the same approach from microscopic models to macroscopic
ones

• Keep the population finite and stochastic to include genetic drift
• first in the TSS (limit of rare mutations alone)
• next in the canonical equation of adaptive dynamics (limit of

small mutations)
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Preliminaries

Monotype finite logistic branching process

Finite population Xt ∈ N.
Each individual:
• gives birth to a new individual at rate b
• dies at rate d + c(Xt − 1)

c represents the competitive pressure exerted by other individuals on
the focal individual.

• If d > 0, the process goes a.s. extinct in finite time
• If d = 0, the process is positive recurrent, with stationary Poisson

distribution of parameter b/c conditioned on being nonzero.
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Preliminaries

2-types finite logistic branching process

Two finite populations (X 1
t ,X 2

t ) ∈ N2.
Each individual of type i :
• gives birth to a new individual at rate bi
• dies at rate di + cii(X i

t − 1) + cijX
j
t , j 6= i

The dynamics is characterized by:

B =
(

b1

b2

)
, C =

(
c11 c12

c21 c22

)
, D =

(
d1

d2

)

• The process is absorbed in N× {0} and {0} × N.
• If d1 = d2 = 0, the process does not go extinct.
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The model

Microscopic model

A general multitype logistic model with mutation (Bolker and Pacala
1997, Dieckmann and Law 2000, Fournier and Méléard 2004,...)

• each individual is characterized by a phenotypic trait x
(individual size, age at maturity,. . . ) in a closed subset X of Rk

• a population of N (t) individuals holding traits x1, . . . , xN (t) ∈ X

is represented by νt =
N (t)∑
i=1

δxi
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The model

Transitions

• Each individual with trait x gives birth at rate b(x) to a single
individual of trait x

• Each individual of trait x dies from competition from any other
individual of trait y at rate c(x,y)
 an individual with trait x dies at rate

Nt∑
i=1

c(x , xi)− c(x , x ) =
∫
X

c(x , y)(νt(dy)− δx (dy))

• At each birth from an individual with type x
• µ(x) mutation probability
• x + h mutant trait, where h ∼ m(x , dh)
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The model

Assumptions

(A) 0 < c ≤ c(·, ·) ≤ c̄ < +∞

(A)

0 ≤ b(·) ≤ b̄ < +∞

Observe that such a population cannot go extinct, so that taking the
limit of rare mutation will not lead to the extinction of the population
before the first mutation.
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Limit of rare mutations

• µ(x )  γµ(x ), γ → 0 (timescales separation)
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Preliminary results

Before the first mutation

• As already said, when µ ≡ 0 and ν0 = nδx , the population size
converges in distribution to a r.v. ξ(x ) with

P(ξ(x ) = i) =
e−θ(x)

1− e−θ(x)

θ(x )i

i !
, i ≥ 1.

where θ(x ) := b(x )/c(x , x )
• Let τ be the first mutation time

Lemma

If ν0 = nδx , (γτ, 〈νγ
τ−,1〉) converges in distribution to (T ,N ) where T

and N are independent, T ∼ Exp(β(x )) with

β(x ) := µ(x )b(x )E(ξ(x )) = µ(x )b(x )θ(x )/(1− e−θ(x))

and N is the size-biaised distribution of ξ(x )

P(N = k) =
kP(ξ(x ) = k)

E(ξ(x ))
= e−θ(x) θ(x )i−1

(i − 1)!
.
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Preliminary results

After the first mutation

Assume that µ ≡ 0 and ν0 = nδx + mδy , where x is the resident trait
and y the mutant one. Then νt = Xtδx + Ytδy , where (Xt ,Yt)t is a
two-types logistic branching process.

Let T = inf{t ≥ 0 : Xt = 0 or Yt = 0}. Then T < ∞ a.s.

• The event {XT = 0} is called fixation of the mutant y
• We denote by un,m(x , y) the fixation probability
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Preliminary results

Convergence of the support to the TSS

Let ρk be the first time after the k -th mutation time τk when the
population gets monomorphic, and Vk the then surviving type.

Theorem

Assume ν0 = nδx . The support process (Sγ
t ; t ≥ 0) defined as

Sγ
t =

∞∑
k=0

Vk1{ρk≤t/γ<ρk+1}

converges in distribution as γ → 0 on D(R+,X ) to the Markov
process (Zt ; t ≥ 0) whose jumping rates q(x , dh) from x to x + h are
given by q(x , dh) = β(x )χ(x , x + h)M (x , dh), where

χ(x , y) =
∑
n≥1

e−θ(x) θ(x )n−1

(n − 1)!
un,1(x , y).
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Preliminary results

Interpretation

• Population is monomorphic at all times
• Evolution proceeds by jumps (TSS) that are possible in any

direction of space

q(x , dh) = β(x )χ(x , x + h)M (x , dh),

where
β(x ) = µ(x )b(x )E(ξ(x ))

is the total production rate of mutants (on the mutation timescale
t/γ) in a stationary x -type population, and

χ(x , y) =
∑
n≥1

e−θ(x) θ(x )n−1

(n − 1)!
un,1(x , y).

is the fixation probability of a y-type mutant in a size-biased
stationary x -type population (invasion fitness, Metz et al., 1992).
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Result

Limit of small jumps

Let us assume that M (x , ·) has 0 expectation, i.e.
∫

Rk hM (x , dh) = 0.

We are going to apply a limit of small jumps to the TSS.

• Replace the mutation law M (x , dh) with its image by h 7→ εh
(ε > 0)

• Rescale time as t/ε2

•  rescaled process Z ε
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Result

The canonical diffusion of adaptive dynamics

Let σ(x ) be the square root of the covariance matrix of M (x , ·).

Theorem

As ε → 0, Z ε converges in distribution on D(R+, Rk ) to the diffusion
process solution to the SDE

dZt = β(Zt)σ2(Zt)∇2χ(Zt ,Zt)dt +
√

β(Zt)χ(Zt ,Zt)σ(Zt)dBt

where B is a standard k-dimensional Brownian motion.
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Discussion

Discussion

• We obtain a diffusion model of evolution grounded on a
microscopic population dynamics

• Genetic drift proportional to the square root of β(x ), the neutral
fixation probability χ(x , x ) and the covariance matrix of M (x , ·).

• Directional selection similar to the one of the canonical ODE

dx
dt

=
1
2
σ(x )2µ(x )n̄(x )

∂

∂y
f (x , x )

Proportional to

• the covariance matrix of M (x , ·)
• the total mutant production rate β(x)
• the gradient of the fixation probability χ(x , y) of a y-type mutant

in a stationary x -type resident population.

• y 7→ χ(x , y) defines a fitness landscape that depends on the
current state of the population
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Selection coefficients

Parameters of the two-type logistic branching process

• the two-type logistic branching process is denoted (Xt ,Yt ; t ≥ 0),
with birth vector B , competition matrix C and death vector D

B =
(

b(x )
b(y)

)
, C =

(
c(x , x ) c(x , y)
c(y , x ) c(y , y)

)
, D =

(
d(x )
d(y)

)
• where x refers to the resident type,

and y refers to the mutant type
• n = X0 is the initial number of residents
• m = Y0 is the initial number of mutants
• p = m/(n + m) denotes the initial frequency of mutants.
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Selection coefficients

Neutrality

• the case where types are exchangeable is referred to as (selective)
neutrality, that is

B =
(

b
b

)
, C =

(
c c
c c

)
, D =

(
d
d

)
• under neutrality, the fixation probability u equals the initial

frequency p of the mutant

un,m =
m

n + m
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Selection coefficients

Five fundamental selection coefficients (1)

We will express deviations from neutrality as

B −
(

b
b

)
=

(
0
λ

)
, D −

(
d
d

)
= −

(
0
σ

)
,

C −
(

c c
c c

)
= −

(
0 0
δ δ

)
+

(
0 α
0 α

)
−

(
0 ε
ε 0

)
.

The coefficients λ, δ, α, ε, σ are chosen to be positive when they
confer an advantage to the mutant, and are called the five
fundamental selection coefficients.
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Selection coefficients

Five fundamental selection coefficients (2)

1 fertility, λ : positive λ means increased mutant birth rate
2 defence capacity, δ : positive δ means reduced competition

sensitivity of mutant individuals w.r.t. the total population size
3 aggressiveness, α : positive α means raised competition

pressure exerted from any mutant individual onto the rest of the
population

4 isolation, ε : positive ε means lighter cross-competition between
different morphs, that would lead, if harsher, to the exclusion of
the less abundant one

5 survival, σ : positive σ means reduced mutant death rate.
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Result

Factorization of second-order terms

Theorem

The fixation probability u is differentiable w.r.t. s = (λ, δ, α, ε, σ)′. In
the neighbourhood of neutrality,

u = p + v′.s + o(s),

where the selection gradient v = (vλ, vδ, vα, vε, vσ)′ can be
expressed as

v ι
n,m = p (1− p) gι

n+m ι 6= ε,

vε
n,m = p (1− p) (1− 2p) gε

n+m

The g’s depend only on the resident’s characteristics b, c, d, and on
the total initial population size n + m. They are called invasibility
coefficients, and they caracterize the robustness of the resident.
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Result

Coefficients of the CDAD

• The invasibility coefficients gι
k can be explicitely computed

• χ(x , x ) =
e−θ(x) − 1 + θ(x )

θ(x )2

• ∇2χ(x , x )=e−θ(x)(aλ(x )∇b(x )−aδ(x )∇1c(x , x )+aα(x )∇2c(x , x ))
where, for ι = λ, δ, α,

aι(x ) =
∞∑

n=1

ngι
n+1(x )θ(x )n−1

(n + 1)2(n − 1)!
.
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Example

Example

Assume that
• X = R

• c(x , y) = C ((x − y)2) and C (0) = 1  
∂c
∂x

(x , x ) =
∂c
∂y

(x , x ) = 0

• σ(x ) is the standard deviation of M (x , ·)
The canonical diffusion of adaptive dynamics is given by

dZt = r(Zt)dt + σ(Zt)µ(Zt)1/2

(
b(Zt)

1− e−b(Zt )
− 1

)1/2

dBt

where

r(x ) =
µ(x )σ(x )2

2

(
1 +

4
b(x )

+
b(x )− 4

1− e−b(x)

)
b′(x ).
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Example

Numerical computation of a ι

Numerical computation of the coefficients aι(b, c) of the CDAD
related to fertility (ι = λ), aggressiveness (ι = α) and defense (ι = δ).

Figure: The functions aλ(θ, 1), aδ(θ, 1) and aα(θ, 1) as functions of θ.
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Example

Numerical computation of a ι (2)

Figure: The functions θ 7→ θaλ(θ, 1) and θ 7→ θaα(θ, 1).
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Summary

We have
• included genetic drift in the adaptive models

• diffusion process grounded on a microscopic ecological modeling
of the population

• defined and computed a precise notion of fitness in finite
populations

• as usual in adaptive dynamics, the fitness landscape depends on
the current state of the population

• characterized the robustness of a trait in a logistic population in
terms of five fundamental components
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