Approximation of epidemic models by diffusion processes and their statistical inferences

Catherine Larédo 1,2

¹UR 341, MaIAGE, INRA, Jouy-en-Josas
² UMR 7599, LPMA, Université Paris Diderot

21/11/2015 CIMPA 2015

TALK 3-Part 3, CIMPA 2015

Recap on MLE asymptotics

MLE asymptotics

 θ_0 : True value of the parameter.

 Θ : Parameter set included in \mathbb{R}^q ; $\theta_0 \in Int(\Theta)$ $\ell_n(\theta)$: log-likelihood of the parameter θ given the first n observations

$$\nabla_{\theta} g(\theta) = \frac{\partial g}{\partial \theta_i} \bullet \text{Rely on tree basic results}$$

- a law of large numbers for the log-likelihood $\ell_n(\theta)$,
- a central limit theorem for the score function
- a law of large numbers for the observed information.

More precisely,

- (i) For all $\theta \in \Theta$, $n^{-1}\ell_n(\theta) \to J(\theta_0, \theta)$ $P_{\theta_0}-$ a.s. uniformly w.r. t. Θ , $\theta \to J(\theta_0, \theta)$ continuous function with a global unique maximum at θ_0 .
- (ii) $n^{-1/2}\nabla_{\theta}\ell_n(\theta_0) \to \mathcal{N}(0,\mathcal{I}(\theta_0))$ in distribution under P_{θ_0} , where $\mathcal{I}(\theta)$): Fisher information matrix at θ .

(iii)
$$\lim_{n\to\infty} \sup_{|\theta-\theta_0|\leq \delta} \|-\frac{1}{n} \nabla^2_{\theta} \ell_n(\theta) - \mathcal{I}(\theta_0)\| \to 0 \text{ as } \delta \to 0 \text{ } P_{\theta_0}-\text{ a.s.}$$