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Abstract

It is well-known since the work of Pardoux and Peng [12] that Backward Stochastic
Differential Equations provide probabilistic formulae for the solution of (systems of) sec-
ond order elliptic and parabolic equations, thus providing an extension of the Feynman-—
Kac formula to semilinear PDEs, see also Pardoux and Réascanu [14]. This method was
applied to the class of PDEs with a nonlinear Neumann boundary condition first by Par-
doux and Zhang [15]. However, the proof of continuity of the extended Feynman-Kac
formula with respect to z (resp. to (¢, x)) is not correct in that paper.

Here we consider a more general situation, where both the equation and the bound-
ary condition involve the (possibly multivalued) gradient of a convex function. We
prove the required continuity. The result for the class of equations studied in [15] is
a Corollary of our main results.
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1 Introduction

The 1998 paper of Pardoux and Zhang [15] has initiated the topics of the probabilistic study
of semilinear parabolic and elliptic systems of second order partial differential equations
with nonlinear Neumann boundary condition. The idea is to prove that an associated Back-
ward Stochastic Differential Equation allows to define a certain function of (¢, z) (or in the
elliptic case of = alone), which is continuous, and is a viscosity solution of a certain system
of parabolic or elliptic PDEs. Several papers, see [15, 19, 2, 16, 17, 1], have used the above
results

However, the continuity is not really proved in [15]. It is claimed that it follows from
several estimates given in earlier sections of the paper, but this is not really fair. In [10] Mati-
ciuc and Rascanu give a proof of the continuity result under some additional assumption.
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n [6] the continuity is shown in the case where all coefficients are Lipschitz continuous.
The difficulty is that not only the solution of forward SDE depends upon its starting point x
(resp. (¢, x)), but also its local time on the boundary, which regulates the reflection.

In this paper, we will give the proof of continuity for a class of problems which is more
general than the one considered in [15], and deduce the continuity statements from that
paper as a Corollary.

More precisely, the aim of this paper is to prove the continuity of the function (¢, z) —
Y;* “f (t,z) = (w1 (t,2),...,um (t,2))" : [0,T] x D — R™, candidate for being the
viscosity solution of the following system of partial differential equations with a generalized
nonlinear Robin boundary condition and involving multivalued subdifferential operators of
some lower semicontinuous convex functions ¢, : R” —] — 0o, +00]

( _8ugt, ) Lou(t,x) + dp(ult,z)) 3 F(t,2,ult, x), (Vu(t, )" g(t, z)),
€(0,T), x € D,
Ju(t, ) )

+ 0y (u(t,z)) 2 G(t, z, u(t, x)),

on _
te(0,7), x € Bd(D),

w(T,z) = k(x), = €D,

where Liv, with v € C? (Rd, Rm) , is a column vector with the coordinates (£v), ,7 € 1,m,
given by

(Lw)s (@) = 5Tr[glt2)g" (6, 0)Dui(a)] + {7 (1, 2), Vur(e)
: : " @
=33 o)+ S ) O

7,l=1

8
Vu is the matrix d x m with the columns Vu; = (g;i . g;‘;

) i € 1,m, and D is an open
connected bounded subset of R? of the form
(i) D={zeR?:¢(z) <0}, where ¢ € C} (R?),
(i)  Bd(D)={zeR?:¢(z)=0} and ©)
V¢ (z)]=1Vz € Bd(D).

The outward normal derivative of u (,-) at the point # € Bd (D) is the column vector

8ué§7;ac) _ <8ug(£,w)’ o 8uTg£Lt,x))
given by
8u, t,x) r) Ou; (t,x) —
Z 81'] ain - (v ( )) V(b( ) Z € 17m7
hence Du (¢, 2)
u(t,r) %
5 = (Vu(t.a)" Vo(a).



2 Assumptions and formulation of the problem

Consider the stochastic basis (Q, F,P, (]-' ;) s>0) , Where the filtration is generated by a k—di-
mensional Brownian motion (B;),.~ as follows: F; = N'if 0 < s <t and

Fl=0{B, —By:t<r<s}VN, ifs>t,

where N is the family of P—negligible subsets of €.
Denote S% [0, T], p > 0, the space of (equivalence classes of) progressively measurable
continuous stochastic processes X : Q x [0, T] — R? such that :

E sup X! < +o0o, ifp > 0.
te[0,7)

By AL (0,T), p > 0, denote the space of (equivalent classes of) progressively measurable
stochastic processes X : Q x |0, T[ — R? such that

T
/]Xt|2dt<+oo, P—as wef, ifp=0,
0

and
T p/2
E (/ |Xt|2dt> < 400, ifp>0.
0

Let f(-,-) : Ry x R - R¥and g(-,-) : Ry x R? — R¥** are continuous functions and
satisfy: there exist 1y € Rand ¢, > 0 such that for all u,v € R?

(@) (u—v, f(tu) = f(t,v) < pplu—of,
(i) lg(t,u) = g(t,v)| < Lglu —vl.

By Theorem 4.54 and Corollary 4.56 from Pardoux & Rascanu [14] we infer that for any
(t,z) € [0,T] x D fixed, there exists a unique pair (X", A%®) : Q x [0,00[ = R? x R of
continuous progressively measurable stochastic processes such that, P — a.s. :

(4)

([ (j) X{"eDand X5, =z forall s >0,
(i) 0=A" <A <A forall0<u<t<s<w,
t,x B t,x t,x s t.x
Jij) XS +/ Vo | X" ) dAy :x+/ fr, X)) dr
—i—/g(r,X}f’x) dB,, Vs >t,
t

(v) AL = / ) (X)) dalr vzt
t
Moreover by (4.112) from [14]
A= /t Loo(XE)dr + /t {(Vo(xt), glr, Xi)aB, )
— ot =9 ()],



with £, defined by (2).
For every p > 1, by Proposition 4.55 and Corollary 4.56 from [14],

G) () (XW, AW) :[0,T) x D — S7[0,T] x S [0,T]
is a continuous mapping, (6)

(JJ) sup ( sup EGAA?I) <exp(C+CN),
(t,z)€[0,T]xD  s€[0,T]

for some C' > 0 and every A > 0. Moreover for every pair of continuous functions A1, hs :
[0,T] x D — R the mapping

T T
(t,z) — E/ hi(s, XE%)ds + E/ ha(s, XE*)dAL® :[0,T] x D — R
t t

is a.s. continuous.
By the Kolmogorov criterion (choosing a proper version)

t,x, X5 (w), AL 210, 7T] x D x [0,T] - R x R
(t,s) o (XE7 (@), AL (@)) : [0,T] x D x [0,T] - R? x -

is continuous, P — a.s. w € ()

and consequently if (t,,z,) — (t,x), then (based also on (54), the boundedness of D and
(64jj)) we infer that for all ¢ > 0, as n — oo,

tn,Tn tn,Tn
th - Xt

tn,Tn tn,Tn
+ ‘Atn _ Al

—0, P—as.andin L?(Q,F,P). (8)
Moreover for all ¢ > 0 :

%i{%E [sup {| X" — XL7|" + |AL* — AL |" i r s €[0,T7, |r—s| <6}] =0

Let T > 0 be fixed. We now consider (Kf’x,Zﬁ’x,Uf’x,Wt’w) . the R™ x R™*k x
rejt,

R™xR™-valued stochastic process solution of the backward stochastic variational inequality
(BSVI):
—dYET 4 9y (Y””) ds + O (Y”) dAY 5 F (s, XL yhe, Z§’$> ds
+G (57 xb, YJ’I) dAY — Zb%aB,, s e [t,T), dP-as.,

it =n (X)),



that is

T T
+/ G (7‘, Xf’7$7 Y;'t’x) quth - / th"’der, Vse [t, T] 5 d]P'a.S.,
S

S

/v <U£,m7 S, — Y;t,x> dr -+ /Ugo (YTt,m> dr < /U¢ (Sy)dr, dP-as.on (),

for all u,v € [t,T], u < v, for all continuous stochastic process S;

forall u,v € [t,T], u < w, for all continuous stochastic process S.

¢ T T
v 4 / (U dr+ v aay) = w (X57) + / F (r, XY, 207 dr,

/<V:””5— “>dA“” /w Yi® dA” /w S,)dAL",  dP-a:s. on ©,

©)

where F : R, x D x R™ x R™*  R™ G : R, x D xR™ — R™and s : D — R™ are
continuous. Assume that there exist bp, bg,{r > 0 and pp, pg € R (which can depend on

T) such that V¢ € [0,7],Vz € D, y,§ € R™, 2,7 € R™*F:

(i) (y—9.Ftayz)—Ftag,2) < prly— g,
) |F(ta,y,2) = F(ta,y,2)] < lplz — 2],
(i5)  |F(t,2,y,0)] <br(1+1y]),

) (y—9,G(t,z,y) - Gt,2,9)) < pely — 5,
(v) |Gt z,y)| < be (1+|y]).

We also assume that
(i) 0,1 : R™ — (—o0,+00| are proper convex L.s.c. functions
(13)  Fup € int (Dom (v)) Nint (Dom (1)) such that
v (y) = ¢ (uo) and ¢ (y) > ¢ (uo), Vy € R.

where Dom (¢) = {y € R™ : ¢ (y) < oo} and similarly for Dom (v) .
We also introduce some compatibility conditions :
there exists M > 0 such that

(@) suplp (r())] + sup [ (k)| = M < o0
€D zeD

and there exists ¢ > 0 such that foralle > 0,t € [0,7],z € D,y € R™, z € R™*F,

0) (Ve (), Ve (y)) 2 0,

(d) (Ve (), Gt ,y) < c[Vie (Y1 +1G @ 2, 9)],

(e) (Ve (y), F(t,2,y,2)) < c|Vee (W) [1+|F (12,9, 2)]],
() = (Ve (), G (t,2,u0)) < c|Ve (y)| [1+ (G (£ 2,u0)],
(9) =V (y), F (t,7,u0,0)) < c|[Vee (y)| [1 + [F (¢, 2, uo, 0)]]

5

(10)

(11)

(12)

(13)



where V. (y), Vi), (y) are the unique solutions u and v, respectively, of equations
do(y —eu)du and OY(y —ev) D v.

(the Moreau-Yosida approximations: see the Annex below).
We remark that the compatibility assumptions are satisfied if, for example,

(a) v =1,

or in the one dimensional case (i.e. m = 1)

(b) If p,9 : R — (—o00, +00] are the convex indicator functions

B 0, ify € [a,00), B 0, ifye (—o0,bl,
‘P(y)_{ oo, ify ¢ [a,00), andw(y)_{ oo, ify ¢ (—00,0],

where —oco < a < b < +00, then

)+

—(a — _p)T
Ve (y) = (ey and Vi, (y) = u

€
In this case the compatibility assumptions (13) are satisfied in particular if there exists
ug € (a,b) such that for all (t,z) € [0,T] x D and for all z € R1** :

G (t,x,y) >0, forally < a,

F(t,x,y,z) <0, forally > b,

G(t,z,u9) <0 and F (t,z,up,0) >0,

Remark that the backward stochastic variational inequality (9) satisfies the assumptions
of Theorem 5.69 from [14] Therefore (9) has a unique progressively measurable solution
(vte, zte Uhe vihe) | with Y5 having continuous trajectories, such that for all A > 0,
(t,xz) € [0,T] x D,

T

t,x 2 t,x 2

E sup e Yo"+ E </ M P dr> < 0.
rel¢,T] t

We extend the stochastic processes from (9) on [0, t| by the deterministic solution of the
following backward “stochastic” variational inequality (' = 0, G = 0) (which again has a
unique solution)

AT =0,20" =0,V s e0,],

t t
YT+ / UL®dr + / Vitdr =Y, ¥ s € [0,1], (14)

s

Ur* e dp (YPE) and V;"* € 9y (Yrt’z) a.e.on [0,t].



Now we can write (9) as follows

T T
yie 4 / (UF*ar + viraar) = (X57) + / Vor () F (r, X075, 20 ) dr
S S

T T
+ / 1y (r) G <1“, Xb*, Yﬁ’x) dAL* — / ZLdB,, ¥ s € [0,T],

/UU}f"” (Sr - Y”) dr + /

u u
forall u,v € [0,T], u < v, for any R™-valued continuous stochastic process S;

/UVTt,x (Sr _ Yth,x) dA;Sq,ac +/

u
for any u,v € [0,7], u < v, for all R™-valued continuous stochastic process S;

v

® (Yrtx> dr < / ¢ (S,)dr, dP-a.sonf,

(0 (Y;’x) dA® < / ¥ (S,)dAR",  dP-a.son (),

(15)
(since in particular it is plain that AT =0,Vs € [0, t]).
If we denote s
Kbt = / (UF*dr + VE*dAL"), Vs €10,T],
0

then as measures on [0, 7] we have
dKY" = Ub dr + VPP dALYT € 0p (Y,20) dr + 0y (Y,07) dAL®
and from the monotonicity of the subdifferential operators we have for all (¢,z), (7,y) €

[0,T] x D,
(Yo =YY dKE® — dKTY) > 0, as measure on [0, 7. (16)

We hiahlight (see[11], or [14] Proposition 5.46) that for every p > 27there exists a positive
constant C), depending only upon p such that for all t € [0,7], x € D, s € [t,T] and A >

max { (ur + &), i)

t,x T t,x p/2
E sup ePA0HAT) |yt _y|P 4R (/ Q2N+ ALT) \Zﬁ’x\zdr>
rel0,77] 0

T - p/2
+E </ 62)\(T‘+Ar’ ) [90 (Y;t,:p) — (UO)] d’f’)
0

T ' p/2
+E </ e2A(r+A7") [w (}/rt,x) — (UO)] dAf,’x>
0

t.x p
H(XT’ ) —uo‘

(17)

T
+ </ AT+AT) ‘F (7", X}f’“”,uo,O)‘ dr)p

0

T A(r+ALT) t,x t,x
—i—(/o e r ‘G(r,X;,u@‘dA;)]



Since [0,7] x D is bounded, X}* € D for all r € [0,T] and the functions x, F and G are
continuous, there exists a constant C; independent of (t,x) such that for all » € [0, T

< (x7)
Taking in account the estimate (6-jj) we have that for everyA > (up + (%) V pg and p > 0
there exists a constant Cy independent of (¢, z) such that
o 9 p/2
E sup ePAr+Ar) dr)

T
p +E (/ 62A(T+A£’z)
rel0,77] 0
T . p/2
o5 ([ e (v ar) (19)

T e p/2
o ([ o (1) )
0

<Gy
Moreover for another constant Cs independent of (t,z) we have

T
o ( / QAP ALY
0

Since |G (t,z,y)| < bg (1 + |y|) and |F(t, z,y, 2)| < Lp|z|+bp (1 + |y|), then every p > 0 there
exists a positive constant Cyy independent of r,s,t,7,0 € [0,T] and x,y, z € D such that

T t,x 2 P
E (/ 62)\(7‘+AT’ ) ‘F <r7 Xq,ﬂt,iE7 nT,y’ Z;-vy>‘ d,,«)
0

+|F (r, X" u0,0)| + |G (r, XE" ug)| < C1, P —aus. (18)

W"T Zf‘vx

T
vt ar) ([ A e faar) < @
0

v N 1)
+E ( / A |G (r, X, 77TV )| dAff”) <Gy
0
It is clear that the inequalities (19), (20) and (21) are satisfied for all A > 0.
We define
u(t,z) =Y ", (t,x) €[0,T] x D, (22)

which is a deterministic quantity since Y;"* is Ff = N/—-measurable. In the next section we
shall prove that (¢, z) — u(t,z) : [0,7] x D — R™ is a continuous function
We remark that from the Markov property, we have

u(s, X;%) = Y0
Remark 1 We note that in the particular case where ¢ = 1) = 0, we are in the situation which was
studied in [15].
3 Continuity

We present here the main result of this paper. The proof will rely upon several Lemmas
which will be proved later in this section.



Theorem 2 Under the above assumptions, the mapping (t,z) — u (t,x) = Y : [0, T]xD — R™
is continuous.

Proof. Let (tn, 2n),>1 , (t, ) € [0,T] x D be such that (t,, 2,) = (t, ), as n — oc.
Denote ©7 = O and ©, = 0% = O4” for © = X, A,Y, Z,U,V, K. From (19) and the
continuity of the trajectories of Y, forall ¢ > 0,n > 0,

i i T), |r—s| < 6} =0.
lin B fsup {7 Y71 7,5 € [0.7), r = 5| < 3] =0
We have
T T
VI Y= w(X) = w )+ [ akp - [ (22— 2B,
where
dK! = d (K, — K}")
+ |:1[tn,T] (T) F(’I“, X;l7}/;'nvz;l) - 1[t,T] (T) F(T7 X’IW}/TWZT)]CZT
[Ty (1) G (X2, dAT = 1y (1) G (1, X0, Y) dA -

with dK" = Uldr + VA" € 0o (YP)dr+ 0 (Y)dA" and dK, = U,dr + V,dA, €
0¢ (Y;) dr+ 0v¢ (Y;) dA,. Remark that by (16) it holds
(" =Y, dK, —dK}') <0, asasigned measure on [0,7].
It is easy to verify that:
(V' = Yo, 1y, (r) F(r, X7V Z0) = Ly (r) F (1, Xy, Yo, Zy)) dr

<V =Y Ly, qy () [F (r, X2V 20) = F (r, XY, Z,)]) dre

+ (Y =Y Ly, () [F (r, XY Zy) = F (r, X0, Yo, Z)]) dre

+ <Y;~n - Y, 1[tn,T] (r) F (r, XY, Zy) — 1[t,T] (r) F(r,X,,Y,, Zr)> dr
<lp |V = Y,| |2} = Zo|dr + pp |V = Y, P dr

+ Y =Y |1y my (0) F (r, X Yo, Z0) = 13y (r) F (r, X, Yy, Zy)| dr
< (pr+ B Y]~V dr+ 127~ 2, dr

+ Y =Y |1y (7) F (1, X2, Y0, Z0) = Ly (7) F (1, X, Yy, Z,) | dr

and

T~

Y =Y, 1y, 1) (r) G (r, X7 Y") AT — 1y 7y (r) G (r, X, ;) dA;)
<Y =Yy A, (r) [G(r, XL Y) = G (r, X], Y, dAY)

+ (=Y (1,11 () G (r, X7 Y2) = Ly gy (1) G (r, X, V)] dAT)
(Y =Y 1y (1) G (r, X, V) (AT — dA))

< e [V =Y, [* dA}

IV =Yl [, (0) G (1, X7 Y2) = 11y (1) G (r, Xy, V)| dAT

+ (V" =Y, Ay (r) G (r, X, Yy) (dA} — dA,))



Hence for \ > (MF + ﬁ%) V oug

1
Y =Y, dky) < 2127~ Zo[Pdr + [V = Yo P A (dr + dAY)
+ Y =Y, dLM™ + dR™,

T

with
AL\ = (1, 11 () F (r, X2 Yo, Z0) = Loy () F (r, X, Yo, Z,)| dr )
+ |1, 1 (r) G (r, X2 Y) — L1y (1) G (r, X, Yy )| AT
and
dR™ = (Y =Y, 1,71 (r) G (r, X, Y;) (A" — dA,)) (24)
Then by Lemma 15 below with a = 1/2, we have
T
E sup e2A(r+A7) |Y;n _ }/T|2 +E </ e2A(r+A7) |Z;1 _ Zr|2 d’l")
€[0T 0
T 2
< Cu B[4 | (X7) — (X + ( / eA<T+Af>dL£">)
0
T
+/ 62’\(T+A:“L)dR$n):|.
0
and consequently by Lemma 3, Lemma 4 and Lemma 6 below, we have
limsupE sup Y — Y, > <limsupE sup e2+49) |yn —y,|2 = 0.
n—00 rel0,77] n—00 rel0,77]
We now deduce
tn,T t,x 2 tn,T t,x 2 t,x t,x 2
AR A IS AR A IR A A
n 2 [2%4 t,x 2
<IE sup V7 -V + 2B [y - v
rel0,T]
— 0, asn — oo;
hence the result. ]

Recall that the constants C;, C3, C3 and C4 appearing in (18), (19), (20) and (21) are
uniform w.r.t. (¢,z). Consequently those estimates are valid for (X", A", Y™, Z", U", V")
for all n > 0, with the same constants, which are independent of n. This fact will be used
repeatedly in the proofs below.

Lemma 3 We have
lim E (e”(ﬂf*’%) Ik (X7) — H(XT)12> =0

n—oo

10



Proof. By Lebesgue’s dominated convergence theorem and (7) (also taking in account the

boundedness (6-jj) and (18)), we have
E (249 | (X7) — 1 (X1)]?)

< (B (T+4) s (Bl (X5) — (XT)|4>1/ ’

<0y (Els(xp) - n(xp)l) "

— 0, asn — oo.

Lemma 4 Let L™ defined by (23). Then
T
/ AN gL
0

in mean square, as n — oo.

Proof. By (6-jj) we get

2

T
AHAT) g1, (1)
E (/0 AL > <3 [E(An) +ETy) +E(An)],

where

=

T 2
T, = </ |G (r, X, Y;) —G(r,XT,Yr)|2dAQ> ,
0

4 2
An = /0 ‘G(T, Xv"aYT)F }1[tn,T] (7“) - 1[t,T] (T)‘sz;L) .

1y, 1 (r)F(r, X", Y, Zy) — 1y.1 (r)F(r, X/, Yo, Zy) -0 ae.rel0,7T],

and )
|17y (7) F (r, X2, Y, Z2) = Ly (r) F (r, X0, Yy, Zy) |

<c (1+1%P2+12.),

then by Lebesgue’s dominated convergence theorem EA,, — 0.
Step2. E(I';,) > 0:

11

T
n = <A ‘l[tn,T] (T) F (Ta X;La}/ra Zr) - 1[t,T] (T) F (Ta X, Yo, ZT)‘QdT>

2

I

(25)



We haveI',, =+ 0, P — a.s., because

T 2
r, — (/ G (r, X", Y,) — G(T,X,,,m\?dA;}>
0

< (A%)? sup |G (r, X, Y,) — G (r, X, Yo)|*.
re[0,T]

Since forall ¢ > 1
ET: <CE|[(1+|Y]3) |43

<O (1+E|YII +E|43/)

< 027

then the sequence of random variables I';, is uniformly integrable and therefore E (I',) — 0.
Step3.E(A,) —0:
We have

g 2
An = </; |G(T‘7 XT'7YI“)|2 ‘l[tn,T] (74) — 1[t7T] (7’)‘2 dA:?‘)

2

T
< (s 160X Y1) ([ e () = 1m0 day)

r€[0,T]

= (sup 1G (X, V)t ) A7, — A7
r€[0,T]

-0, P-—a.s.,

where we have used (8) on the last line. Moreover for ¢ > 1,

EAL<E| sup |G(r, X, Y,)[" |47, — Ap[*

rel0,T7]

<C |E sup |G(r, X, Y,)* +E sup |A7|"
rel0,T7] rel0,T7]

<Cy

Consequently, by uniformly integrability, we conclude that E (A,,) — 0.
n

Consider N € N, N > T'and the partition7y : 0 =rp <r < ... <r <...<ry=T

with r; = ££. We denote |r|N | = max {r; : r; <r} = [2] L, where [z] is the integer part of

z. Given a continuous stochastic process (Ht)te[o 7] we define

N—-1
H7]’V - Z Hr i) (r) + Hr 1y (r) = Hyy Ny -
1=0

12



Lemma5 Let 1 < g < 2. There exists a positive constant C' independent of (t,z), (tn,xn) €
[0,T] x D and N € N such that

n—oo

T
limsup E (/ ‘nn—K"’N‘q(dAQ—i—dAr))
0

S ax (ATZ _ Ari,l)Qq/(Z_Q)

i=1,N

(2—q)/4
e [E ] |

Na/2

Proof. Since

Ve [ vedAn = Yo+ [ L () P XY 20 dr
Ls|V] Ls|V]
+f  tnGExLYaar - [ (zpaB), vse o),
LIV LIV

then

q/2
C S
S e [ /L | (122 + 17 (X7, v, Z0) ) dr]

s|N
q/2 8 a/z
vO(ar - A [ (e rie e x ) aay
s q
e / (Z", dB,)
Ls|V]
Hence -
E (/ |an - Yvrn’qu (dAZ} + dAT)) < Qp N + /Bn,N + Yn,N -
0
We have first

c g ° n|2 n yn 7n\|2 a/2 n
i = 3B [ ([ U 1P (X272 20 P @47+ 0,

¢ e ! n|2 noyvn ony |2 a/2
< JaE| (4F + A7) (/0 (U2 2 +|F (r, X, Y, 2 P)dr) ]

C ATL A ZL % T n2 T XTL Yn Zn 2d %
< o7 (B Ay + ar)7a] 7 (R UpRdr+ B P (X2, 2 dr )

C
< —.
- N4/2

Since (A7) > and (4s),>, are increasing stochastic processes,

Buw=CE [ ar- ) /L ;NJ (VP +1G (X7 Y ) dAD) 2| (dA2 + dA)

13



T qN T
<CE[([ (V2P + 16 xn YRty [ (ar - Ay )t @Ay + da)
0 .

3 2/(2—q)] (2—9)/2
S O|:]F4 (Z(A?I - A;Ll_l)q/Z(A?l —|— A’f‘l A;Ll L= Ari71)> /( CI):|

=1
Since by (6-j)

lim E sup |A}— A.|P =0, forallp >0,

N0 0,17

and

E sup [AP+sup [E sup |A7|P | < oo, forallp >0,
rel0,7] neN rel0,T]

we infer that forall N € N

N 2/(2—q)] (2-9)/2
limsup B, v < C |E (Z Ay, 1 q/2 (An — Anl)>
n—oo =1
2/(2—q)] ?=9)/
c [o (g - ar) ™
(2—q)/4
<01 [E max (4, - A, 1)2q/(2q>} .
i=1,
We finally consider
T s g
N = C]E/ / (Z1',dBy)| (dA? + dAs)
0 |/[slN]
N o, s q
=CE / / (Z7,dBy)| (dAZ + dAs)
i—17Ti—1 [s|N]
< CZE sup }/ (Zp,dBy) |" (Ap - Ap_ 4 Ay = Ay, ]
i=1 SE[ri—1,7i]
N 2 2 15!
<C sup }/ (Z",dB,) }q/ [IE (4p -4z, +4, —Am)“}
i—1 SE[ri—1,7i]
N r a/2 PR
<y Z <E/ |Z;L2d7'> I:E (A:,LZ — A;Li,l + A, - A”_l> 2—q:|
i=1 Ti—1

From the above and the following Hoélder’s inequality, for 1 < ¢ < 2,

2

a/2 , N (2—9)/
e () (8
Z 2 2
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we deduce that

[N 2/(2—q) (2—q)/2
TN S C2 ZE (A:‘Lz - A?ifl + ATz‘ - A"'i—l) ] .
Li=1
Hence forall N € N
[ N (2—q)/2
li WN<C |STE (4, — 4, (Y9
lisolipfy 7N - _; ( 2 1—1)
i N (2—q)/2
2-q)
<C |E <i:3)]$f (ATi - An‘f1)q/( ! z; (Ari - An1)>]

< C |E max (4, — Ari_l)Zq/(%q)

The result follows.

Lemma 6 Let R™ defined by (24). Then

T
lim sup E/ AAHADGR(M — 0.
n—o00 0

Proof. Denote G, = G (1, X, ;) and ||G||; = sup,¢[o 71 |G| - Then

(Y =Y) G (X, Yy) = (VY = YN) (G - GY) + (VY - Y,) G,

and therefore

T
o ( / Q2A(rHAT) deJ”)
0

T
=" / A (YR — Y 1y (1) G (r, Xr, ;) (A — dA,)
0

< @NTE (1Yl + 1Y ) |6 = GVl + [N = Y|l [Glly) (T4 +40)]

e (S (v 0 4 - (20

=1

r

T
+E <62A(T+A%) |yG||T/ Y, — YN (dAT + dAr)>
0

Let 1 < ¢ < 2. Using Holder’s inequality and the estimates (19) and (21), we obtain

T n
B ([ 0 ar) < 0 \fEIG - 6V + R IV - Y1
0

N
oS [e a0 ()

1/q

2:|1/2
T

+C<E/ \K"—K,”’N\q(dA,’}erAr))
0

15



By Lemma 5 we deduce that forall N € N

T
limsup]E/ Ar+AN R < ¢ \/IE |G —GN|5 + \/E YN —v|2

n—o00 0

+C

2—q)/4]1/4
LB max (4, - 4,,,)2/ o
Na/2 =TV i Ti—1

and the result follows passing to limit as N — oo in the last inequality.

Theorem 2 in the particular case ¢ = ¢ = 0 yields the following

Corollary 7 Proposition 4.1 from [15] and Corollary 14 from [9] hold true.

4 Infinite horizon BSDEs: continuity

Let us consider the forward-backward problem (5) & (9) on the interval [0, c0) with f, g, F
and G independent of time argument, kK = 0 and ¢ = ¢ = 0, ug = 0, that is:
the forward reflected SDE starting from x att = 0:

(j) X% e D forall s >0,
(jj) 0= A% < AT < AZforall 0 < s < u,

(j37) XI+ /ng dA””—x—F/f

+/ g(X)dB,, Vs> 0,
0

(jv) A;?:/Osle(D)( TYdAT ) Vs> 0.

and the BSDE on [0, co) with the final data 0 :

S

Ye :/ F(X*,Y*, Z%) dr+/ G (X", V) dA? — / Z*dB,, s >0, (26)

Denote (X%, A2 Y7 Z5") = (Xo’x APy Zo’x) n € N, the solution of the forward-
backward problem (5)&(9) on the time interval [0, n] with (Y;"", Z5") = 0, for s > n; hence

:/ F(Xr Yy zZonm) dr+/ G (Xr Y5 dAY — / Z¥"dBy, s € [0,n], (27)

S

By Theorem 2 the mapping
z+— Yy"" 1 D — R™ is continuous. (28)

Estimates on the approximating equation (27) and the continuity result (28) yield:
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Proposition 8 Under the assumptions (10) and max { (ur + (%), pa} < A < 0 there exists a
unique pair (Y, Z%) € S, [0,T] x A° . (0,T) solution of the BSDE (26) in the following sense:

mxk

T T
() y;c:yju/ F(X®,Y®, Z%) dr+/ G (X2,Y?) dAﬂC/ Z%dB,,

forall 0 < s <T,

0 o (29)
(j5) E supe Ar+A7) |y )2 4 IE/ e2ArHAY) | 7212 dr < o0,
0
(379) hm E sup e2Ar+47) |yz|2 = o,
N—o0 r>N
Moreover the mapping
rr——u(z) =Yy : D — R™ is continuous. (30)

Proof. The existence and uniqueness result for the solution of (29) was proved by Pardoux
and Zhang in [15], Theorem 2.1 (the result is also given in [14], Section 5.6.1). Proving
here the continuity property (30) we obtain, once again, the existence of the solution; the
uniqueness is a easy consequence of Lemma 15 via the assumptions (10) on F' and G.

Using (10) we also deduce by Lemma 15 with a = 1/2 (or directly from (17)) that for
0<s<n:

n
E sup e2A(r+AT) ’Y;ﬂﬂm|2 + E/ e2A(r+A7) |Z;U;”|2 dr
rels,n] s

n 2
<CE |:€2)\(n+Afl) |Yg;n|2 + (/ eMr+AT) |F (Xf,(),()” dT)

s

+(/n€A(T+A$) G (X2, 0)] dA;”?>1

<C'E ( / neMHA?)(dr + dA,ﬂf))2
< &8 F 2A(s+AD)
=] )‘J
=T
(we also used that F(X},0,0) and G(X7, 0) are uniformly bounded on the bounded domain
7 )Smce (Y5, Z$™) = 0, for s > n we infer that for all s > 0 and n € N,
£ sup (A+AT) [ymng2 | /Ooe Nr+HAT) | o 2 gy < |§| o2hs (31)
Ifn,l € Nand s € [0,n], then
ymnH _ymn =y g / "dk, - / ' (77t = zzm) aB,,

S
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where
K, = [F(Xf,wmﬂ,z,%"“) _p(xe, yen zom)| dr
_ [G(Xf,Y;f“”“) ~ G (X7, er;n)] dA.
By the assumptions (10) we have

<}/rz;n+l B }/Tx;n ,d’CT>

< L xn—i—l }/rx;n d’l” + EF J: in—+l }/Tx;n ZTa,c;n—&—l B Zf’n dr
+uc :pn+l Y;m;n 2 dAZ
T
1 . P _ 2
< |zt = zpn | ar 4 [yt - v A G+ dar)

Therefore by Lemma 15 (with a = 1/2) and (31) we get

@ . nl2 n . , 12
]:E sup 62>‘(7"+Ar) Yr‘x»n+l _ }/rxvn + E/ 62>\(T'+AT) Zf;n+l _ Z'r:*t’n d,r
rel0,n] 0
2
x ; l
< O E 2Mn+A3) |ymnt ‘
< 2An
— Al
Hence
(%)
E sup 62/\(T+Af) )/:rx;n-i-l _ }/:rx;n 2 +E/ 62/\(T+Af) ZTSF;TL-H _ Zg;,n dT < ‘CY 62)\
r>0 0 A

and consequently there exists (Y.*, Z7),-, a pair of progressively measurable stochastic pro-
cess, (Ys””)sZO having continuous trajectories, such that for all s > 0

E sup 2T +AD) mx‘QJrE/ooezx(erf)‘ZﬂQ gr < & o2
r>s s ‘)“

and

[e.e]
E Sg% e2Mr+A7) v® — nx;n‘2 + E/O e2AM(r+A7) |z¥ — Zf;n|2 dr
T_

— &2 50, asn — oo.

Al
Since forall0 < T <n:
. T T
Yf;”:Yff’"—i—/ F (X} Yysn zZum) dr—i—/ G (XI5 dAY — / Z¥"dB,, s €0,n],

then passing to limit as n — oo (possibly along a subsequence) we obtain that (Y7, Z7),-,
is a solution of (29).

18



Let y,z € D. Since
Yy = Y5 < Y = YO 4+ Y = Y+ YT - Y
< 2YC A g |y ¥m _yER| | foralln € N.

— Vi

and A < 0, the continuity property (30) follows from (28).

We finally deduce that
Remark 9 Theorem 5.1 from [15] holds true.

5 Viscosity solutions

5.1 Parabolic PDEs

We recall some results on the viscosity solutions of the PVI (1) from [13], [8], [?], [14]. At the
same time, we formulate the definition of the notion of viscosity solution of our system of
equations.

We assume that the assumptions from Section 1 and Section 2 are satisfied and we let the
dimension of the Brownian motion be £ = d.

Denote S? the set of symmetric matrices from R9*4,

Let h: [0,T] x D — R be a continuous function.

A triple (p, ¢, X) € R x R? x S? is a parabolic super-jet to h, at (¢, z) € [0,T] x D, if for all
(s,2') €10, T] x D,

h(s,z') < h(t,z) +p(s —t) + (¢, 2’ — x) + %<X(l‘/ —z),7' — ) (32)

+o(|s —t| + |z" — z|?).

The set of parabolic super—Qjets at (t, z) is denoted by P?Th(t, r); the set of parabolic sub-jets
is defined by P~ h = —Pg " (—h).

First we consider the system (1) with the functions ¢, : R™ —] — 0o, +00| decoupled
on coordinates as follows ¢ (u,...,upm) = ¢1(u1) + - + ©m (um) and ¥ (u1, ..., uy) =
1 (u1) + -+ + ¥ (um) , where p;,1; : R —] — 00, 4+00] are Ls.c. convex functions; hence
Op (U1, ..., Upy) = 0p; (u1) X -+ X p,, (uy,) and similar for Ou.

We also assume that F; , the i—th coordinate of F', depends only on the i—th row of the
matrix Z.

Consider the system

(a) —W — Lyu; (t, ) + Oy, (ui(t, x)) > F; (t,x, u(t,x), (Vu,(t, z))* g(t,:v)),
te (0, T), zeD, i€l,m,
Ou;(t, )

te(0,T), z€ Bd(D), iel,m,

(¢) wu(T,z)=kr(z), z€D,

(33)
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where

Lyu; (t,z) =

Define ®;,T'; : [0,7] x D x R™ x R? x S* — R, i € I, m, to be the functions:

1
®; (tw,y,0,X) = 5Tr((99%)(t2)X) + (g, f(t,2)) + Fi(t, 2,9, 79 (L, )
Ifu= (ug,...,un)":[0,7] x D— R™, then for each i € 1,m we have

®; (t, 2, u(t,x), Vui(t,z), D?u(t, x)) = Leui(t, ) + F (¢, @, u (¢, z), (Vui(t,z))" g(¢,x)), and
_ Oui(t, z)
on

(34)

Li(t,z,u(t,z), Vu(t,z)) = + Gi(t,z,u (t, z)).

We put the notations a A b ““f 1nin {a,b}and a Vb “ ax {a,b}.
The following results hold.

Theorem 10 (Pardoux, Zhang [15]: Theorem 4.3; Pardoux, Riscanu [14] : Theorem 5.43) Consider
the parabolic system (33) with ¢ = 1 = 0. Then the continuous function u : [0,T] x D — R™
defined by (22) is a viscosity solution of the parabolic partial differential system (33) i.e.

u(T,z) =k (z), Vo €D,
and w is a viscosity sub-solution that is, for any i € 1,m :
(a)  forany (t,x) € (0,T) x D, any (p,q, X) € P>Tu;(t,z)
p+q)l (tvxau(tax) 7Q7X) Z 07
(b)  forany (t,z) € (0,T) x Bd (D), any (p,q, X) € P> " u;(t,z) :
[p+ (I)Z (t,:r,u(t,x) 7q7X)] \/FZ (t,x,u(t,m) 7q) Z 07
together with w is a viscosity super-solution that is, forany i € 1,m :
(¢)  forany (t,x) € (0,T) x D, any (p,q, X) € P> u;(t, ) :
p+ (I)’L (t,x,u(t,x) 7q7X) S 07
(d)  forany (t,z) € (0,T) x Bd (D), any (p,q,X) € P> u;(t, z) :
[p+q)l (t7x7u(t7$) 7q7X)] /\F”L (t,x,u(t,x) 7q) S 0.

Theorem 11 (Maticiuc, Rascanu [9]: Theorem 5, Pardoux, Riscanu [14] : Theorem 5.81) The
continuous function u : [0,T] x D — R™ defined by (22) is a viscosity solution of the parabolic
differential system (33) on D i.e.

uw(T,z) =k (z), Vz €D,
u(t,z) € Dom (p), V(t,z) € (0,T) x D,
u(t,z) € Dom (¢), V(t,z) € (0,T) x Bd (D),
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and w is a viscosity sub-solution that is, for any i € 1,m :

(a)  forany (t,x) € (0,T) x D, any (p,q, X) € P>V u;(t,z) :
p+<1>-(t vou(t ), q,X) > (i) (u; (t,2)),

(b)  forany (t,z) € (0,T) x Bd (D), any (p,q, X) € P>Tu;(t,z) :
p+‘1>(t$U( z),¢,X) = (i) (ui (t,2) ), or
Ui (2, u(t, x), q) = ( i) (ui (t,2))

together with w is a viscosity super-solution that is, for any i € 1,m :

()  forany (t,x) € (0,T) x D, any (p,q, X) € P> u;(t,x) :
(d)  forany (t,x) € (0,T) x Bd( ) any (p,q, X) € P> u;(t, x) :
p+<1> (t:cu( x),q,X) < (goi)ﬁr(ui(t,x)), or
(v (t2) ) < (0, (s (h)
Theorem 12 (Pardoux, Riscanu [13] : Theorem 4.1) Assume that D = R¢ (the system (33) is on
R? without boundary condition and in (5) and (9) A% = 0, G = 0, ¢ = 0). Then the continuous
function u : [0,T] x RY — R™ defined by (22) is a viscosity solution of the parabolic differential
system (33-(a) & (c)) on R% i.e.
uw(T,z) =k (z), Vo €RY,
u(t,x) € Dom (p), Y(t,z) € (0,T) x R%,

and for any i € T, m, any (t,x) € (0,T) x R%

p+ @itz u(t,z),q, X) > (0) (ui (t,z)), forall (p,q,X) e P> u(t,x), and
p + (pl (t7$,’U, (tvx) aQ7X) S (SDZ)I_F (ul (t,CC) )a fOT’ llll (p7 q, X) € P2’_Ui(t,x)-

We highlight that in [13] and [9] the results are given for m = 1, but with the same proof
the results hold too for the quasi-decoupled system (33).

Consider now the parabolic multivalued system (1) with D =R? and F' independent of
the last argument w that is F (¢, z,y,w) = F (t,2,y) € R™ for all (t,x,y,w) € [0,T] x R? x
R™ x RMXM .

ou(t, x)
ot

— Lyu (t,z) + Op(u(t,x)) > F(t,z,u(t, z)),
€ (0,7), z € RY, (35)
u(T,z) = k(x), =€ RY,

Letz € R™and @, : [0,7] x R x R™ x R x S — R

O, (t,r,y,q,X) = %Tr((gg*)(t,m)X) +{q, f(t,2)) + (F (t,2,y),2)
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Theorem 13 (Maticiuc, Pardoux, Riascanu, Zalinescu [8]: Theorem 6, Theorem 14) The continuous
function u : [0,T] x D — R™ defined by (22) is a viscosity solution of the parabolic differential
system (35) i.e.

uw(T,z) =k (z), Vo eRY,

u(t,x) € Dom (p), Y(t,z) € (0,T) x R%,

and
forany (t,x) € (0,T) x R, any z € R™, any (p,q, X) € P> (u(t,x),2) :

(36)
p+ @ (tz,u(tz),q,X) > ¢ (u(t,z),2).

We remark that
(r1) the condition (36) is equivalent to:

forany (t,z) € (0,T) x R%, any z € R™, any (p,q, X) € P>~ (u(t,z), 2) :
p+ @ (twuta),q,X) <\ (u(t,z),2).

(re)  in one dimensional case (m = 1) condition (36) means the sub-solution for z > 0
and a super-solution for z < 0.

We highlight that in supplementary assumptions the uniqueness of the viscosity solu-
tions holds too in each case presented here above in this subsection. Moreover the unique-
ness of the viscosity solution of the parabolic variational inequality (35) holds in a larger
class of functions u (a weaker inequality (36)).

5.2 Elliptic PDEs

Assume the hypotheses from Sections 1 and 2 are satisfied and moreover f, g, F and G are
independent of time argument, x = 0, ¢ = 9 = 0, up = 0 and F; the i—th coordinate of F,
depends only on the i—th row of the matrix Z.

If h : D — R is a continuous function, then a pair (¢, X) € R? x §¢is a elliptic super-jet
toh,atxz € D,if forall 2’ € D,

M) < B(e) + (a,2" — 2) + 50X~ )0’ 2) + ol — 2):
The set of elliptic super-jets at z is denoted by P%Th(x); the set of elliptic sub-jets is defined
by Py~ h = —P5T(~h).
Consider the semi-linear elliptic partial differential system with nonlinear Robin bound-
ary condition:

. 37
3u,(x) = Gi(z,u(z)), v € Bd(D), iclm. 7

{ —Lu; () = Fy(z,u(x), (Vui(2))" g(z)), x€D, iclm,

on
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where . .
1 . 0%u;() Ou;(x)

Jil=1 Jj=

Define ®; and T'; as in (34).

Proposition 14 (E. Pardoux, S. Zhang [15]: Theorem 5.3) The continuous function v — u () :
D — R™ given by (30) is a viscosity solution of the elliptic partial differential system (37) i.e.:
and w is a viscosity sub-solution that is, for any i € 1,m :

(a) @ (z,u(z),q,X) >0, foranyx € D, any (¢, X) € P*>Fu;(z),
(b) ®; (zr,u(z),q,X) VI (z,u(z),q) >0
forany x € Bd (D), any (g, X) € P*Tu;(z),
together with w is a viscosity super-solution that is, for any i € 1,m :
()  ®i(z,u(x),q,X) <0, foranyx € D,any (q,X) € P> u;(z),

(d) O, (x,u(x),q, X) AT (z,u(x),q) <0
forany x € Bd (D), any (¢, X) € P> u;(x),

6 Annex

6.1 Convex functions

Let ¢ : R™ —] — 00, 400] be a proper convex lower semicontinuous function. We denote
Dom (p) = {y € R™ : ¢ (y) < oo} ; ¢ is a proper function if Dom () # 0.
The subdifferential (multivalued) operator 0y is defined by

2o (y) ={g eR": (J,u—y) +¢(y) <p(v), VveR™};

Oy : R™ = R™ is a maximal monotone operator. We have

Dom (9¢) “ {y € R™ : 9p (y) # 0} C Dom ().

Recall that Dom (0¢) = Dom (¢) and int (Dom (9¢)) = int (Dom (y)) .
For all y € Dom (¢) and z € R™ we have

/ def ., py+tz)—p(y) .
2| <1
©. (y,2) &%T ; < t{gi ;

py+1tz) —¢(y) des o (1,2).

¢ (y,2) = —¢/, (y,—%) . Moreover

y € 0p (y)

/

If m=1wewrite ¢’ (y) =¢" (y,1), ¢ (y) = ¢,



Let ¢ > 0. The Moreau—Yosida regularization of ¢ is the function ¢, : R™ — R

def . 1 m
ve (y) = 1nf{2€|y—z\2+go(z):z€]1§ }

We mention that ¢, is a C* convex function and (see e.g. Pardoux & Rigcanu [14], Annex B)
forall z,y € R™

(@) (@) = S Vpe(@)f + ¢ (¢ — eVee(a)).
() Vee(z) = 0p: () € 0p (x — eVipe(2)), (38)

@ Veela) - Verly) < Lo~ 3.

6.2 A backward stochastic inequality
From Proposition 6.80 (Annex C) in Pardoux & Rdscanu [14] we have

Lemma 15 Let (Y, Z) € SO, x AV, satisfying

m

T T
Yt:YT—i—/ dICr—/ Z,dB,, 0<t<T, P—a.s.,
t t

where K € SO, and K. (w) € BV ([0,T];R™), P —a.s. w € Q.

Assume be given
A L is anon-decreasing stochastic process, Ly = 0,
A Risastochastic process, Ry = 0 and R. (w) € BV ([0,T];R™), P — a.s. w € €,
AV acontinuous stochastic process, Vy = 0, V. (w) € BV ([0,T];R™),P — a.s. w € Q, and

T _
E (/ eQVTdRr> < 00
0

(Yo diy) < 512, dr + (Vo [2V; + Y, |dL, + dR,)

as measures on (0,77, (39)

Ifa < 1land

(i) E sup 27|V, < oo,

re[r,o]

then there exists a positive constant C,, , depending only a, such that

T
E | sup }eVTYT‘2 +E (/ eQVT|Zr|2dT)
r€[0,7] 0
) T 2 T
VY| +(/ eVTdLS) +/ eV dR,
0 0

We remark that the proof of Lemma 15 follows the proof of Proposition 6.80 [14], with
a single small change : in the definition of the localization stopping time, we delete the
term containing R, and therefore we do not need to restrict us to the case where R is non-
decreasing.

(40)
<C,.E
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7 Erratum

In this paper we have corrected the proofs of continuity of the function (¢,z) — u (t,z) =
Y;t’:r from the papers [9] (Proposition 13 and Corollary 14) and [15] (Proposition 4.1 and
Theorem 5.1).

Acknowledgement The work of A. R. was supported by the grant “Deterministic and
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