Branching processes

Etienne Pardoux

Aix-Marseille Université

Bienaymé-Galton-Watson processes

- Consider an ancestor (at generation 0) who has X_{0} children, such that

$$
\mathbb{P}\left(X_{0}=k\right)=q_{k}, \quad k \geq 0 \quad \text { et } \sum_{k \geq 0} q_{k}=1
$$

Bienaymé-Galton-Watson processes

- Consider an ancestor (at generation 0) who has X_{0} children, such that

$$
\mathbb{P}\left(X_{0}=k\right)=q_{k}, \quad k \geq 0 \quad \text { et } \sum_{k \geq 0} q_{k}=1
$$

- Each child of the ancestor belongs to generation 1 . The i-th of those children has himself $X_{1, i}$ children, where the r.v.'s $\left\{X_{k, i}, k \geq 0, i \geq 1\right\}$ are i.i.d., all having the same law as X_{0}.

Bienaymé-Galton-Watson processes

- Consider an ancestor (at generation 0) who has X_{0} children, such that

$$
\mathbb{P}\left(X_{0}=k\right)=q_{k}, \quad k \geq 0 \quad \text { et } \sum_{k \geq 0} q_{k}=1
$$

- Each child of the ancestor belongs to generation 1 . The i-th of those children has himself $X_{1, i}$ children, where the r.v.'s $\left\{X_{k, i}, k \geq 0, i \geq 1\right\}$ are i.i.d., all having the same law as X_{0}.
- If we define Z_{n} as the number of individuals in generation n, we have

$$
Z_{n+1}=\sum_{i=1}^{Z_{n}} X_{n, i}
$$

- If we define Z_{n} as the number of individuals in generation n, we have

$$
Z_{n+1}=\sum_{i=1}^{Z_{n}} X_{n, i}
$$

- If we define Z_{n} as the number of individuals in generation n, we have

$$
Z_{n+1}=\sum_{i=1}^{Z_{n}} X_{n, i}
$$

- We have $g(0)=q_{0}, g(1)=1, g^{\prime}(1)=m=\mathbb{E}\left(X_{0}\right), g^{\prime}(s)>0$, $g^{\prime \prime}(s)>0$, for all $0 \leq s \leq 1$ (we assume that $q_{0}>0$ and $q_{0}+q_{1}<1$).
- Let us compute the generating function of $Z_{n}: g_{n}(s)=\mathbb{E}\left[s^{Z_{n}}\right]$.
- Let us compute the generating function of $Z_{n}: g_{n}(s)=\mathbb{E}\left[s^{Z_{n}}\right]$.
- We obtain

$$
g_{n}(s)=g \circ \cdots \circ g(s)
$$

- Let us compute the generating function of $Z_{n}: g_{n}(s)=\mathbb{E}\left[s^{Z_{n}}\right]$.
- We obtain

$$
g_{n}(s)=g \circ \cdots \circ g(s)
$$

- Now

$$
\begin{aligned}
\mathbb{P}\left(Z_{n}=0\right) & =g^{\circ n}(0) \\
& =g\left[g^{\circ(n-1)}(0)\right] .
\end{aligned}
$$

- Hence if $z_{n}=\mathbb{P}\left(Z_{n}=0\right), z_{n}=g\left(z_{n-1}\right)$, and $z_{1}=q_{0}$. We have $z_{n} \uparrow z_{\infty}$, where $z_{\infty}=\mathbb{P}\left(Z_{n}=0\right.$ from some n on $)$.

Figure: Graphs of g in case $m>1$ (left) and in case $m \leq 1$ (right).

Extinction and non-extinction

- We have

Proposition

If $m \leq 1$, then $\mathbb{P}\left(Z_{n}=0\right) \rightarrow 1$ as $n \rightarrow \infty$, and $z_{\infty}=1$.
If $m>1, \mathbb{P}\left(Z_{n}=0\right) \rightarrow z_{\infty}$ as $n \rightarrow \infty$, where z_{∞} is the smallest solution of the equation $z=g(z)$.

Extinction and non-extinction

- We have

Proposition

If $m \leq 1$, then $\mathbb{P}\left(Z_{n}=0\right) \rightarrow 1$ as $n \rightarrow \infty$, and $z_{\infty}=1$.
If $m>1, \mathbb{P}\left(Z_{n}=0\right) \rightarrow z_{\infty}$ as $n \rightarrow \infty$, where z_{∞} is the smallest solution of the equation $z=g(z)$.

- $W_{n}=m^{-n} Z_{n}$ is a martingale.

$$
\begin{aligned}
\mathbb{E}\left(W_{n+1} \mid Z_{n}\right) & =m^{-n} \mathbb{E}\left(m^{-1} \sum_{1}^{Z_{n}} X_{n, i} \mid Z_{n}\right) \\
& =m^{-n} Z_{n} \\
& =W_{n}
\end{aligned}
$$

- One can show that $W_{n} \rightarrow W$ a.s. as $n \rightarrow \infty$, and moreover

$$
\{W>0\}=\{\text { the branching process does not go extinct }\}
$$

Extinction and non-extinction

- We have

Proposition

If $m \leq 1$, then $\mathbb{P}\left(Z_{n}=0\right) \rightarrow 1$ as $n \rightarrow \infty$, and $z_{\infty}=1$.
If $m>1, \mathbb{P}\left(Z_{n}=0\right) \rightarrow z_{\infty}$ as $n \rightarrow \infty$, where z_{∞} is the smallest solution of the equation $z=g(z)$.

- $W_{n}=m^{-n} Z_{n}$ is a martingale.

$$
\begin{aligned}
\mathbb{E}\left(W_{n+1} \mid Z_{n}\right) & =m^{-n} \mathbb{E}\left(m^{-1} \sum_{1}^{Z_{n}} X_{n, i} \mid Z_{n}\right) \\
& =m^{-n} Z_{n} \\
& =W_{n}
\end{aligned}
$$

- One can show that $W_{n} \rightarrow W$ a.s. as $n \rightarrow \infty$, and moreover

$$
\{W>0\}=\{\text { the branching process does not go extinct }\}
$$

Extinction and non-extinction, contin'd

If $E=\cup_{n \geq 1}\left\{Z_{n}=0\right\}$, we have just shown that on $E^{c}, Z_{n} \rightarrow+\infty$, in fact at exponential speed.

