
Branching processes

Etienne Pardoux

Aix–Marseille Université

Etienne Pardoux (AMU) CIMPA, Ziguinchor 1 / 8



Bienaymé–Galton–Watson processes

Consider an ancestor (at generation 0) who has X0 children, such that

P(X0 = k) = qk , k ≥ 0 et
∑
k≥0

qk = 1.

Each child of the ancestor belongs to generation 1. The i–th of those
children has himself X1,i children, where the r.v.’s {Xk,i , k ≥ 0, i ≥ 1}
are i.i.d., all having the same law as X0.
If we define Zn as the number of individuals in generation n, we have

Zn+1 =
Zn∑
i=1

Xn,i .
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If we define Zn as the number of individuals in generation n, we have

Zn+1 =
Zn∑
i=1

Xn,i .

We have g(0) = q0, g(1) = 1, g ′(1) = m = E(X0), g ′(s) > 0,
g ′′(s) > 0, for all 0 ≤ s ≤ 1 (we assume that q0 > 0 and q0+ q1 < 1).
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Let us compute the generating function of Zn : gn(s) = E[sZn ].
We obtain

gn(s) = g ◦ · · · ◦ g(s).

Now

P(Zn = 0) = g◦n(0)

= g
[
g◦(n−1)(0)

]
.

Hence if zn = P(Zn = 0), zn = g(zn−1), and z1 = q0. We have
zn ↑ z∞, where z∞ = P(Zn = 0 from some n on).
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Figure: Graphs of g in case m > 1 (left) and in case m ≤ 1 (right).
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Extinction and non–extinction

We have

Proposition
If m ≤ 1, then P(Zn = 0)→ 1 as n→∞, and z∞ = 1.
If m > 1, P(Zn = 0)→ z∞ as n→∞, where z∞ is the smallest solution of
the equation z = g(z).

Wn = m−n Zn is a martingale.

E(Wn+1|Zn) = m−nE

(
m−1

Zn∑
1

Xn,i |Zn

)
= m−nZn

= Wn.

One can show that Wn →W a.s. as n→∞, and moreover

{W > 0} = {the branching process does not go extinct}.
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Extinction and non–extinction, contin’d

If E = ∪n≥1{Zn = 0}, we have just shown that on E c , Zn → +∞, in fact
at exponential speed.
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