Branching processes

Etienne Pardoux

Aix-Marseille Université

• Consider an ancestor (at generation 0) who has X_0 children, such that

$$\mathbb{P}(X_0=k)=q_k,\;k\geq 0 \quad ext{et}\;\sum_{k\geq 0}q_k=1.$$

- Each child of the ancestor belongs to generation 1. The *i*-th of those children has himself X_{1,i} children, where the r.v.'s {X_{k,i}, k ≥ 0, i ≥ 1} are i.i.d., all having the same law as X₀.
- If we define Z_n as the number of individuals in generation n, we have

$$Z_{n+1}=\sum_{i=1}^{Z_n}X_{n,i}.$$

• Consider an ancestor (at generation 0) who has X_0 children, such that

$$\mathbb{P}(X_0=k)=q_k,\;k\geq 0 \quad ext{et}\;\sum_{k\geq 0}q_k=1.$$

- Each child of the ancestor belongs to generation 1. The *i*-th of those children has himself X_{1,i} children, where the r.v.'s {X_{k,i}, k ≥ 0, i ≥ 1} are i.i.d., all having the same law as X₀.
- If we define Z_n as the number of individuals in generation n, we have

$$Z_{n+1}=\sum_{i=1}^{Z_n}X_{n,i}.$$

• Consider an ancestor (at generation 0) who has X_0 children, such that

$$\mathbb{P}(X_0=k)=q_k,\;k\geq 0 \quad ext{et}\;\sum_{k\geq 0}q_k=1.$$

- Each child of the ancestor belongs to generation 1. The *i*-th of those children has himself X_{1,i} children, where the r.v.'s {X_{k,i}, k ≥ 0, i ≥ 1} are i.i.d., all having the same law as X₀.
- If we define Z_n as the number of individuals in generation n, we have

$$Z_{n+1}=\sum_{i=1}^{Z_n}X_{n,i}.$$

• If we define Z_n as the number of individuals in generation n, we have

$$Z_{n+1}=\sum_{i=1}^{Z_n}X_{n,i}.$$

• We have $g(0) = q_0$, g(1) = 1, $g'(1) = m = \mathbb{E}(X_0)$, g'(s) > 0, g''(s) > 0, for all $0 \le s \le 1$ (we assume that $q_0 > 0$ and $q_0 + q_1 < 1$). • If we define Z_n as the number of individuals in generation n, we have

$$Z_{n+1}=\sum_{i=1}^{Z_n}X_{n,i}.$$

• We have $g(0) = q_0$, g(1) = 1, $g'(1) = m = \mathbb{E}(X_0)$, g'(s) > 0, g''(s) > 0, for all $0 \le s \le 1$ (we assume that $q_0 > 0$ and $q_0 + q_1 < 1$). Let us compute the generating function of Z_n : g_n(s) = E[s^{Z_n}].
We obtain

$$g_n(s) = g \circ \cdots \circ g(s).$$

Now

$$\mathbb{P}(Z_n = 0) = g^{\circ n}(0)$$
$$= g\left[g^{\circ (n-1)}(0)\right].$$

• Hence if $z_n = \mathbb{P}(Z_n = 0)$, $z_n = g(z_{n-1})$, and $z_1 = q_0$. We have $z_n \uparrow z_\infty$, where $z_\infty = \mathbb{P}(Z_n = 0$ from some *n* on).

Let us compute the generating function of Z_n : g_n(s) = E[s^{Z_n}].
We obtain

$$g_n(s) = g \circ \cdots \circ g(s).$$

Now

$$\mathbb{P}(Z_n = 0) = g^{\circ n}(0)$$
$$= g\left[g^{\circ (n-1)}(0)\right].$$

• Hence if $z_n = \mathbb{P}(Z_n = 0)$, $z_n = g(z_{n-1})$, and $z_1 = q_0$. We have $z_n \uparrow z_{\infty}$, where $z_{\infty} = \mathbb{P}(Z_n = 0$ from some *n* on).

Let us compute the generating function of Z_n : g_n(s) = E[s^{Z_n}].
We obtain

$$g_n(s) = g \circ \cdots \circ g(s).$$

Now

$$\mathbb{P}(Z_n = 0) = g^{\circ n}(0)$$
$$= g\left[g^{\circ (n-1)}(0)\right].$$

• Hence if $z_n = \mathbb{P}(Z_n = 0)$, $z_n = g(z_{n-1})$, and $z_1 = q_0$. We have $z_n \uparrow z_\infty$, where $z_\infty = \mathbb{P}(Z_n = 0 \text{ from some } n \text{ on})$.

Figure: Graphs of g in case m > 1 (left) and in case $m \le 1$ (right).

Extinction and non-extinction

We have

Proposition

If
$$m \leq 1$$
, then $\mathbb{P}(Z_n = 0) \to 1$ as $n \to \infty$, and $z_{\infty} = 1$.
If $m > 1$, $\mathbb{P}(Z_n = 0) \to z_{\infty}$ as $n \to \infty$, where z_{∞} is the smallest solution of the equation $z = g(z)$.

• $W_n = m^{-n} Z_n$ is a martingale.

$$\mathbb{E}(W_{n+1}|Z_n) = m^{-n} \mathbb{E}\left(m^{-1} \sum_{1}^{Z_n} X_{n,i} | Z_n\right)$$
$$= m^{-n} Z_n$$
$$= W_n.$$

One can show that W_n → W a.s. as n → ∞, and moreover
 {W > 0} = {the branching process does not go extinct

Extinction and non-extinction

We have

Proposition

If
$$m \leq 1$$
, then $\mathbb{P}(Z_n = 0) \to 1$ as $n \to \infty$, and $z_{\infty} = 1$.
If $m > 1$, $\mathbb{P}(Z_n = 0) \to z_{\infty}$ as $n \to \infty$, where z_{∞} is the smallest solution of the equation $z = g(z)$.

• $W_n = m^{-n} Z_n$ is a martingale.

$$\mathbb{E}(W_{n+1}|Z_n) = m^{-n} \mathbb{E}\left(m^{-1} \sum_{1}^{Z_n} X_{n,i} | Z_n\right)$$
$$= m^{-n} Z_n$$
$$= W_n.$$

One can show that W_n → W a.s. as n → ∞, and moreover
 {W > 0} = {the branching process does not go extinct

Extinction and non-extinction

We have

Proposition

If
$$m \leq 1$$
, then $\mathbb{P}(Z_n = 0) \to 1$ as $n \to \infty$, and $z_{\infty} = 1$.
If $m > 1$, $\mathbb{P}(Z_n = 0) \to z_{\infty}$ as $n \to \infty$, where z_{∞} is the smallest solution of the equation $z = g(z)$.

• $W_n = m^{-n} Z_n$ is a martingale.

$$\mathbb{E}(W_{n+1}|Z_n) = m^{-n} \mathbb{E}\left(m^{-1} \sum_{1}^{Z_n} X_{n,i}|Z_n\right)$$
$$= m^{-n} Z_n$$
$$= W_n.$$

• One can show that $W_n \to W$ a.s. as $n \to \infty$, and moreover $\{W > 0\} = \{\text{the branching process does not go extinct}\}.$ If $E = \bigcup_{n \ge 1} \{Z_n = 0\}$, we have just shown that on E^c , $Z_n \to +\infty$, in fact at exponential speed.