Martingales

Etienne Pardoux

Aix-Marseille Université

Martingales in discrete time

We equip the probability space (Ω, F, P) with an increasing sequence {F_n, n ≥ 0} of sub-σ-algebras of F. We have

Definition

A sequence $\{X_n, n \ge 0\}$ of r.v.'s is a called a martingale if

- For all $n \ge 0$, X_n is \mathcal{F}_n -measurable and integrable,
- 2 For all $n \ge 0$, $\mathbb{E}(X_{n+1}|\mathcal{F}_n) = X_n$ a. s.

A sub-martingale is a sequence which satisfies the first condition and $\mathbb{E}(X_{n+1}|\mathcal{F}_n) \ge X_n$. A super-martingale is a sequence which satisfies the first condition and $\mathbb{E}(X_{n+1}|\mathcal{F}_n) \le X_n$.

We deduce from Jensen's inequality for conditional expectation

Proposition

If $\{X_n, n \ge 0\}$ is a martingale, $\varphi : \mathbb{R} \to \mathbb{R}$ a convex function such that $\varphi(X_n)$ is integrable for all $n \ge 0$, then $\{\varphi(X_n), n \ge 0\}$ is a sub-martingale.

Martingales in discrete time

We equip the probability space (Ω, F, P) with an increasing sequence {F_n, n ≥ 0} of sub-σ-algebras of F. We have

Definition

A sequence $\{X_n, n \ge 0\}$ of r.v.'s is a called a martingale if

- For all $n \ge 0$, X_n is \mathcal{F}_n -measurable and integrable,
- 2 For all $n \ge 0$, $\mathbb{E}(X_{n+1}|\mathcal{F}_n) = X_n$ a. s.

A sub-martingale is a sequence which satisfies the first condition and $\mathbb{E}(X_{n+1}|\mathcal{F}_n) \geq X_n$. A super-martingale is a sequence which satisfies the first condition and $\mathbb{E}(X_{n+1}|\mathcal{F}_n) \leq X_n$.

• We deduce from Jensen's inequality for conditional expectation

Proposition

If $\{X_n, n \ge 0\}$ is a martingale, $\varphi : \mathbb{R} \to \mathbb{R}$ a convex function such that $\varphi(X_n)$ is integrable for all $n \ge 0$, then $\{\varphi(X_n), n \ge 0\}$ is a sub–martingale.

We need the notion

Definition

A stopping time τ is an $\mathbb{N} \cup \{+\infty\}$ -valued r.v. which satisfies $\{\tau = n\} \in \mathcal{F}_n$, for all $n \ge 0$. Moreover

$$\mathcal{F}_T = \{B \in \mathcal{F}, B \cap \{T = n\} \in \mathcal{F}_n, \forall n\}.$$

• We have Doob's optional sampling theorem :

Theorem

If $\{X_n, n \ge 0\}$ is a martingale (resp. a sub–martingale), and τ_1, τ_2 two stopping times s.t. $\tau_1 \le \tau_2 \le N$ a. s., then X_{τ_i} is \mathcal{F}_{τ_i} measurable and integrable, i = 1, 2 and moreover

$\mathbb{E}(X_{\tau_2}|\mathcal{F}_{\tau_1}) = X_{\tau_1}$ (resp. $\mathbb{E}(X_{\tau_2}|\mathcal{F}_{\tau_1}) \ge X_{\tau_1}$).

We need the notion

Definition

A stopping time τ is an $\mathbb{N} \cup \{+\infty\}$ -valued r.v. which satisfies $\{\tau = n\} \in \mathcal{F}_n$, for all $n \ge 0$. Moreover

$$\mathcal{F}_T = \{B \in \mathcal{F}, B \cap \{T = n\} \in \mathcal{F}_n, \forall n\}.$$

• We have Doob's optional sampling theorem :

Theorem

If $\{X_n, n \ge 0\}$ is a martingale (resp. a sub–martingale), and τ_1, τ_2 two stopping times s.t. $\tau_1 \le \tau_2 \le N$ a. s., then X_{τ_i} is \mathcal{F}_{τ_i} measurable and integrable, i = 1, 2 and moreover

$$\mathbb{E}(X_{ au_2}|\mathcal{F}_{ au_1}) = X_{ au_1}$$

(resp. $\mathbb{E}(X_{ au_2}|\mathcal{F}_{ au_1}) \ge X_{ au_1}).$

• Let $A \in \mathcal{F}_{\tau_1}$.

$A \cap \{\tau_1 < k \le \tau_2\} = A \cap \{\tau_1 \le k - 1\} \cap \{\tau_2 \le k - 1\}^c \in \mathcal{F}_{k-1}.$

• Let $\Delta_k = X_k - X_{k-1}$. We have

$$\int_{\mathcal{A}} (X_{\tau_2} - X_{\tau_1}) d\mathbb{P} = \int_{\mathcal{A}} \sum_{k=1}^{n} \mathbf{1}_{\{\tau_1 < k \le \tau_2\}} \Delta_k d\mathbb{P}$$
$$= \sum_{k=1}^{n} \int_{\mathcal{A} \cap \{\tau_1 < k \le \tau_2\}} \Delta_k d\mathbb{P}$$
$$= 0$$

or ≥ 0 in case $\{X_n, n \geq 0\}$ is a sub-martingale. We have a first Doob's inequality

Proposition

If X_1, \ldots, X_n is a sub-martingale, then for all $\alpha > 0$,

$$\mathbb{P}(\max_{1\leq i\leq n} X_i \geq \alpha) \leq \frac{1}{\alpha} \mathbb{E}(X_n^+).$$

• Let $A \in \mathcal{F}_{\tau_1}$.

$$A \cap \{\tau_1 < k \le \tau_2\} = A \cap \{\tau_1 \le k - 1\} \cap \{\tau_2 \le k - 1\}^c \in \mathcal{F}_{k-1}.$$

• Let $\Delta_k = X_k - X_{k-1}$. We have

$$\int_{A} (X_{\tau_2} - X_{\tau_1}) d\mathbb{P} = \int_{A} \sum_{k=1}^{n} \mathbf{1}_{\{\tau_1 < k \le \tau_2\}} \Delta_k d\mathbb{P}$$
$$= \sum_{k=1}^{n} \int_{A \cap \{\tau_1 < k \le \tau_2\}} \Delta_k d\mathbb{P}$$
$$= 0$$

or ≥ 0 in case $\{X_n, n \geq 0\}$ is a sub-martingale. We have a first Doob's inequality

Proposition

If X_1, \ldots, X_n is a sub-martingale, then for all $\alpha > 0$,

$$\mathbb{P}(\max_{1\leq i\leq n} X_i \geq \alpha) \leq \frac{1}{\alpha} \mathbb{E}(X_n^+).$$

• Let $A \in \mathcal{F}_{\tau_1}$.

$$A \cap \{\tau_1 < k \le \tau_2\} = A \cap \{\tau_1 \le k - 1\} \cap \{\tau_2 \le k - 1\}^c \in \mathcal{F}_{k-1}.$$

• Let $\Delta_k = X_k - X_{k-1}$. We have

$$\int_{\mathcal{A}} (X_{ au_2} - X_{ au_1}) d\mathbb{P} = \int_{\mathcal{A}} \sum_{k=1}^n \mathbf{1}_{\{ au_1 < k \le au_2\}} \Delta_k d\mathbb{P}$$
 $= \sum_{k=1}^n \int_{\mathcal{A} \cap \{ au_1 < k \le au_2\}} \Delta_k d\mathbb{P}$
 $= 0$

or ≥ 0 in case $\{X_n, n \geq 0\}$ is a sub-martingale.

• We have a first Doob's inequality

Proposition

If X_1, \ldots, X_n is a sub-martingale, then for all $\alpha > 0$,

$$\mathbb{P}(\max_{1\leq i\leq n}X_i\geq \alpha)\leq \frac{1}{\alpha}\mathbb{E}(X_n^+).$$

• Let $\tau = \inf\{0 \le k \le n, X_k \ge \alpha\}, M_k = \max_{1 \le i \le k} X_i.$ $\{M_n \ge \alpha\} \cap \{\tau \le k\} = \{M_k \ge \alpha\} \in \mathcal{F}_k.$

• Hence $\{M_n \ge lpha\} \in \mathcal{F}_{ au}$, and from Doob's optional sampling theorem,

$$egin{aligned} & \mathrm{d}\mathbb{P}(M_n \geq lpha) \leq \int_{\{M_n \geq lpha\}} X_ au d\mathbb{P} \ & \leq \int_{\{M_n \geq lpha\}} X_n d\mathbb{P} \ & \leq \int_{\{M_n \geq lpha\}} X_n^+ d\mathbb{P} \ & \leq \mathbb{E}(X_n^+). \end{aligned}$$

• Let $\tau = \inf\{0 \le k \le n, X_k \ge \alpha\}, M_k = \max_{1 \le i \le k} X_i.$ $\{M_n \ge \alpha\} \cap \{\tau \le k\} = \{M_k \ge \alpha\} \in \mathcal{F}_k.$

• Hence $\{M_n \ge \alpha\} \in \mathcal{F}_{\tau}$, and from Doob's optional sampling theorem,

$$\begin{split} \alpha \mathbb{P}(M_n \geq \alpha) &\leq \int_{\{M_n \geq \alpha\}} X_\tau d\mathbb{P} \\ &\leq \int_{\{M_n \geq \alpha\}} X_n d\mathbb{P} \\ &\leq \int_{\{M_n \geq \alpha\}} X_n^+ d\mathbb{P} \\ &\leq \mathbb{E}(X_n^+). \end{split}$$

• We have a second Doob's inequality

Proposition

If M_1, \ldots, M_n is a martingale, then

$$\mathbb{E}\left[\sup_{0\leq k\leq n}|M_k|^2\right]\leq 4\mathbb{E}\left[|M_n|^2\right].$$

• Let $X_k = |M_k|$. X_1, \ldots, X_n is a sub-martingale. It follows from the proof of the above inequality that, with the notation $X_k^* = \sup_{0 \le k \le n} X_k$,

$$\mathbb{P}(X_n^* > \lambda) \leq \frac{1}{\lambda} \mathbb{E} \left(X_n \mathbb{1}_{X_n^* > \lambda} \right).$$

• We have a second Doob's inequality

Proposition

If M_1, \ldots, M_n is a martingale, then

$$\mathbb{E}\left[\sup_{0\leq k\leq n}|M_k|^2\right]\leq 4\mathbb{E}\left[|M_n|^2\right].$$

Let X_k = |M_k|. X₁,..., X_n is a sub-martingale. It follows from the proof of the above inequality that, with the notation X^{*}_k = sup_{0≤k≤n} X_k,

$$\mathbb{P}(X_n^* > \lambda) \leq \frac{1}{\lambda} \mathbb{E}\left(X_n \mathbf{1}_{X_n^* > \lambda}\right).$$

Consequently

$$\int_0^\infty \lambda \mathbb{P}(X_n^* > \lambda) d\lambda \leq \int_0^\infty \mathbb{E} \left(X_n \mathbf{1}_{X_n^* > \lambda} \right) d\lambda$$
$$\mathbb{E} \left(\int_0^{X_n^*} \lambda d\lambda \right) \leq \mathbb{E} \left(X_n \int_0^{X_n^*} d\lambda \right)$$
$$\frac{1}{2} \mathbb{E} \left[|X_n^*|^2 \right] \leq \mathbb{E}(X_n X_n^*)$$
$$\leq \sqrt{E(|X_n|^2)} \sqrt{E(|X_n^*|^2)},$$

Continuous time martingales

We are now given an increasing collection {*F_t*, *t* ≥ 0} of sub-*σ*-algebras.

Definition

A process $\{X_t, t \ge 0\}$ of r.v.'s is a called a martingale if

1 for all $t \ge 0$, X_t is \mathcal{F}_t -measurable and integrable;

2 for all $0 \le s < t$, $\mathbb{E}(X_t | \mathcal{F}_s) = X_s$ a. s.

A sub-martingale is a sequence which satisfies the first condition and $\mathbb{E}(X_t | \mathcal{F}_s) \geq X_s$. A super-martingale is a sequence which satisfies the first condition and $\mathbb{E}(X_t | \mathcal{F}_s) \leq X_s$.

 Suppose {M_t, t ≥ 0} is a right-continuous martingale. For any n ≥ 1, 0 = t₀ < t₁ < · · · < t_n, (M_{t₀}, M_{t₁}, ..., M_{t_n}) is a discrete time martingale.

Continuous time martingales

We are now given an increasing collection {*F_t*, *t* ≥ 0} of sub-*σ*-algebras.

Definition

A process $\{X_t, t \ge 0\}$ of r.v.'s is a called a martingale if

1 for all $t \ge 0$, X_t is \mathcal{F}_t -measurable and integrable;

2) for all
$$0 \leq s < t$$
, $\mathbb{E}(X_t | \mathcal{F}_s) = X_s$ a. s.

A sub-martingale is a sequence which satisfies the first condition and $\mathbb{E}(X_t | \mathcal{F}_s) \ge X_s$. A super-martingale is a sequence which satisfies the first condition and $\mathbb{E}(X_t | \mathcal{F}_s) \le X_s$.

• Suppose $\{M_t, t \ge 0\}$ is a right-continuous martingale. For any $n \ge 1$, $0 = t_0 < t_1 < \cdots < t_n$, $(M_{t_0}, M_{t_1}, \ldots, M_{t_n})$ is a discrete time martingale.

$\sup_{0 \le s \le t} |M_s| = \sup_{\text{Partitions of } [0,t]} \sup_{1 \le k \le n} |M_{t_k}|,$

• the above result implies

Since

Proposition If $\{M_t, t \ge 0\}$ is a right–continuous martingale, $\mathbb{E}\left[\sup_{0\le s\le t} |M_s|^2\right] \le 4\mathbb{E}\left[|M_t|^2\right].$ Since

$$\sup_{0 \le s \le t} |M_s| = \sup_{\text{Partitions of } [0,t]} \sup_{1 \le k \le n} |M_{t_k}|,$$

• the above result implies

Proposition If $\{M_t, t \ge 0\}$ is a right–continuous martingale, $\mathbb{E}\left[\sup_{0\le s\le t} |M_s|^2\right] \le 4\mathbb{E}\left[|M_t|^2\right].$