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1 Introduction

We study a homogenization problem for a parabolic reaction dif-
fusion equation with a rapidly oscillating nonlinear potential, of

the form







































∂

∂t
uε(x, t) = div

[

a
(x

ε
,
t

εα

)

∇uε(x, t)

]

+
1

ε1∧α
2

g
(x

ε
,
t

εα
, uε(x, t)

)

+ h
(x

ε
,
t

εα
, uε(x, t)

)

, t > 0, x ∈ R
n

uε(0, x) = u0(x), x ∈ R
n.

We assume that the microscopic structure is periodic in space
and that the dynamics of the system is stationary and uniformly

mixing. Our methods mix probabilistic arguments together with
some PDE and SPDE techniques.

The same type of equation was treated in [14] and [5], under the

assumptions that the coefficients depend on chance through a fi-
nite dimensional ergodic Markov process. Some of the techniques

used there do not longer apply in the more general case consid-
ered here. Results similar to those of the present paper, but for

a linear parabolic PDE, were obtained in [4].

In the same way as in [14], the hypothesis of centering for the

nonlinear term g allows us to decompose it into the sum of the
spatial average of g over the torus Tn := R

n/Zn, denoted ḡ, and
a process g̃ of zero spatial average on the torus. The unbounded

term 1
ε
ḡ requires the construction of a corrector Ḡ of a new type

and this is related to the semigroup of conditioned shifts and its

associated full generator (see for details [6], chapter 2, section 7
and in particular Lemma 2.7.5). In order to define Ḡ in a rigor-

ous way and to derive some useful estimates for Ḡ and its first
and second derivatives with respect to the solution, we impose

an appropriate integrability condition for the uniform mixing co-
efficient. One of the key technical steps of this work is to obtain a
rule of differentiation for the process Ḡ(t, uε(t)), where uε is the

unique solution of our family of equations.
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Our main result consists in proving that the limiting law of the
solutions of the studied family of equations in a certain function

space is the solution of a martingale problem, in the case α ≤ 2,
and a Dirac measure concentrated at the solution of the Cauchy

problem for some deterministic parabolic equation with constant
coefficients, if α > 2. In order to prove the uniqueness of the mar-

tingale problem, when α ≤ 2, we need to construct a Lipchitzian
square root of the limiting diffusion operator, while the driving

Brownian motion takes values in some properly chosen Hilbert
space.

While the proof of tightness is the same in the three cases which

we consider, the correctors which are needed in order to take
the limit are different in the three situations. When α < 2, the

time scale is slower than the natural diffusive scale, and some
of the correctors are solutions of elliptic equations where time is

”frozen”. In that case, essentially only the ”stochastic” part ḡ of
the potential g has a real contribution to the limiting covariance
operator. When α > 2, the time scale is faster than the diffusive

one, and the correctors solve elliptic PDEs with averaged in time
coefficients. In this case, essentially only the g̃ part of g remains

in the limit. Finally, in the situation α = 2, the correctors are
stationnary solutions of parabolic equations. Both ḡ and g̃ appear

in the limiting equation.

The paper is organized as follows. The assumptions are stated in

section 2. The statements of our three results are stated in section
3. Tightness of the collection {uε, 0 < ε ≤ 1} is established in
section 4. Finally the convergence is proved in section 5, in the

three cases α = 2, α < 2 and finally α > 2.
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2 Set up and assumptions

We investigate the limiting behaviour of a solution to the follow-
ing Cauchy problem







































∂

∂t
uε(x, t) = div

[

a
(x

ε
,
t

εα

)

∇uε(x, t)

]

+
1

ε1∧α
2

g
(x

ε
,
t

εα
, uε(x, t)

)

+ h
(x

ε
,
t

εα
, uε(x, t)

)

, x ∈ R
n, t > 0;

uε(x, 0) = u0(x), x ∈ R
n

(1)

as ε↘ 0. We assume that u0 ∈ L2(Rn). The assumptions on the
coefficients of the equation (1) are as follows.

• (A.1) (Periodicity). All the coefficients aij(z, s) , g(z, s, u) and
h(z, s, u) are periodic in z with period 1 in each coordinate

direction.
• (A.2) (Randomness). For each u ∈ R the coefficients aij(s, ·)

, g(·, s, u) and h(·, s, u) are stationary random processes with

values in C(Tn), defined on a probability space (Ω,F ,P).
• (A.3) (Smoothness and growth conditions). Uniformly in s ∈

R, z ∈ Tn and ω ∈ Ω the following bounds hold































































|a(z, s)| ≤ C,

|g(z, s, u)| ≤ C|u|, |g′u(z, s, u)| ≤ C,

(1 + |u|)|g′′uu(z, s, u)| ≤ C, |h(z, s, u)| ≤ C(1 + |u|),

|h(z, s, u1) − h(z, s, u2)| ≤ C|u1 − u2|,
(2)

for any u, u1, u2 ∈ R; here and afterwardsC stands for a generic

positive nonrandom constant.
• (A.4) (Uniform ellipticity). For some c > 0,

aij(z, s)ηiηj ≥ c|η|2, ∀η ∈ R
n.
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• (A.5) (Centering condition). We assume that

E
∫

Tn
g(z, s, u)dz = 0, ∀u ∈ R.

• (A.6) (Mixing condition). Let φ(t) be the uniform mixing co-
efficient defined by

φ(t) := sup |P (A|B) − P (A)|,

where the supremum is taken over all A ∈ F0 and B ∈ F t, and

Fs and F t denote

Fs := σ{aij(z, r), g(z, r, u), h(z, r, u) | r ≤ s}

and
F t := σ{aij(z, r), g(z, r, u), h(z, r, u) | r ≥ t}.

We assume that
∫ ∞
0
φ(t)dt <∞.

The filtration of σ-algebras {Fs} is supposed to be right con-
tinuous.

• (A.7) The partial derivative ∂a
∂s

(z, s) a.s. belongs to Lp
loc((T

n×
(−∞,+∞)), for some p > n.

• (A. 8)

|∇zg(z, s, u)| ≤ C|u|, |∇za(z, s)| ≤ C

uniformly in z, s, u.

3 Statements of the main results

We study problem (1) on a time interval (0, T ), where T > 0 is
an arbitrary fixed number. Clearly, under the assumptions (A.3),

(A.4) this problem has a unique solution uε, which is an element
of the space

VT = L2(0, T ;H1(Rn)) ∩ C([0, T ];L2(Rn)).

Denote by ṼT the space VT endowed with the sup of the weak

topology of the space L2(0, T ;H1(Rn)) and the strong topology of
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the space C([0, T ];L2
w(Rn)), where the index w indicates that the

corresponding space is equipped with its weak topology. Denote

by Qε the law of uε on the space ṼT .

For brevity, for a generic function f(x
ε
, t

εα , u
ε(t, x)) or f( t

εα , u
ε(t, x))

we use the notation f ε(t). Also we denote aε(t) := a(x
ε
, t

εα ) and
Aεuε(t) := div[a(x

ε
, t

εα )∇uε(x, t)]. Let A := A1.

It is convenient to decompose g(z, s, u) as follows

g(z, s, u) = ḡ(s, u) + g̃(z, s, u),

with
ḡ(s, u) :=

∫

Tn
g(z, s, u)dz.

The asymptotic behaviour of the solution uε(t), as ε → 0, de-
pends crucially on whether α < 2, α = 2 or α > 2.

3.1 The case α = 2

We first introduce two correctors. To this end, we define (see
Lemma 3 below) χ and G̃ as stationary solutions of the following

PDEs with random coefficients:

∂

∂s
χi(z, s)+div [a(z, s)∇χi(z, s)] = − ∂

∂zk

aik(z, s), (z, s) ∈ Tn×R
1

(3)
and

∂

∂s
G̃(z, s, u)+div

[

a(z, s)∇G̃(z, s, u)
]

= −g̃(z, s, u), (z, s) ∈ Tn×R
1;

(4)

here u ∈ R is a parameter. Consider also the process Ḡ(t, u),
defined as

Ḡ(t, u) =
∫ ∞
0

E[ḡ(s+ t, u)|Ft]ds =
∫ ∞
t

E[ḡ(s, u)|Ft]ds, (5)

for t ≥ 0 and u ∈ R. Notice that Ḡ(t, u) is a stationary process
for each u ∈ R.

Theorem 1 Let α = 2. Under the assumptions A1-A6, for

all T > 0 the solutions {uε} of problem (1) converges in law,

6



as ε → 0, in the space ṼT , towards the unique solution of the
martingale problem with drift Â(u(t)) and covariance operator
R(u(t)), where

Â(u) := div(ā∇u) − divF(u) + H(u), (6)

ā := E
∫

Tn

a(z, s)(I + ∇zχ(z, s))dz,

F(u) := E
∫

Tn

(

a(z, s)∇zG̃(z, s, u) + g(z, s, u)χ(z, s)
)

dz,

H(u) := E
∫

Tn

(

g(z, s, u)(G̃′
u(z, s, u) + Ḡ′

u(s, u)) + h(z, s, u)
)

dz,

and

(R(u)ϕ, ϕ) :=2E[(Ḡ(s, u(·))ϕ)(ḡ(s, u(·)), ϕ)]

= 2E
∫

Rn

∫

Rn
(Ḡ(s, u(x))ϕ(x)ḡ(s, u(y))ϕ(y)dxdy.

3.2 The case α < 2

Theorem 2 Let α < 2. Under the assumptions A.1-A.7, for all
T > 0 uε converges in law, as ε → 0, in the space ṼT , to the

unique solution of the martingale problem with drift Ã(u(s)) and
covariance operator R(u(t)), where R(u) has been defined in the

preceding statement, and

Ã(u) := div(â∇u) + ĝ(u),

â := E
∫

Tn

a(z, s)(I + ∇zχ
−(z, s))dz,

ĝ(u) := E
∫

Tn

(

Ḡ′
u(s, u)g(z, s, u) + h(z, s, u)

)

dz;

here χ−
i (z, s), 1 ≤ i ≤ n, stands for a solution of elliptic equation

Aχ−
i (z, s) = − ∂

∂zk

aki(z, s),

which satisfies
∫

Tn χ−(z, s)dz = 0 for each s ≥ 0, s being a pa-

rameter.
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3.3 The case α > 2

Theorem 3 Let α > 2, then under the assumptions A.1-A.6
and A.8, uε converges in probability, in the space ṼT , as ε → 0,

to a solution of the following Cauchy problem :


















∂u
∂t

(t, x) = div(ã∇u(t, x)) + h̃(u); (t, x) ∈ (0, T )× R
n;

uε(0, x) = u0(x)

where
ã = E

∫

Tn

a(z, s)(I + ∇zχ
+(z))dz,

h̃(u) = E
∫

Tn

[g(z, t, u)∂uG̃
+(z, u) + h(z, s, u)]dz,

and the functions χ+(z) and G̃+(z, u) are defined as solutions of
the elliptic equations

Āχ+(z) = −divāi(z),

ĀG̃+(z, u) = −(g̃)(z, u),

(7)

where Ā stands for the operator A ”averaged in time”, i.e.

Ā(u)(z) = div(ā(·)∇u(·))(z),

with ā(z) := Ea(z, s) and (g̃)(z, u) := Eg̃(z, s, u) = Eg(z, s, u).

4 Auxiliary results, a priori estimates and tightness

Our first aim is to show that the family {Qε}ε>0 of the laws of
uε, is tight in ṼT . Since

g(z, t, u) = g̃(z, t, u) + ḡ(t, u),

where
ḡ(t, u) =

∫

Tn
g(z, t, u)dz,

and consequently
∫

Tn
g̃(z, t, u)dz = 0, ∀t ∈ [0, T ], u ∈ R,
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we may construct a z-periodic vector function H̃ such that

divzH̃(z, t, u) = g̃(z, t, u). (8)

Indeed, the centering condition on g̃ allows us to solve on the
torus Tn the equation

∆zv = g̃

and thus we can choose

H̃ := ∇v

Under our assumptions, H̃ satisfies the estimates

|H̃(z, t, u)| ≤ C|u|, |H̃ ′
u(z, t, u)| ≤ C, (9)

for any (z, t, u) ∈ Tn × [0, T ] × R. From (8) it follows that

divx

[

H̃(
x

ε
, t, uε(t, x))

]

=
1

ε
g̃(
x

ε
, t, uε(t, x))

+ H̃ ′
u(
x

ε
, t, uε(t, x))∇uε(t, x)

(10)

We thus get a useful representation for the term 1
ε
g̃. In order to

get rid of the big term 1
ε
ḡ, we use the process Ḡ(t, u) defined in

(5). Notice that by the assumption (A.5), we have E[ḡ(t, u)] = 0,

for all t ≥ 0 and u ∈ R. Then it follows from Proposition 7.2.6.
in [6] and from (A.3) and (A.6) that

E[ḡ(s+ t, u)|Ft] ≤ 2C|u|φ(s).

We next deduce from (A.3), (A.6) that Ḡ(t, u) is well defined.

and satisfies the estimates

|Ḡ(t, u)| ≤ C|u|, |Ḡ′
u(t, u)| ≤ C, |Ḡ′′

uu(t, u)| ≤
C

1 + |u|
(11)

It is easy to see that the process Ḡ(t, u) is stationary.

Lemma 1 For each u ∈ R, the processMt := Ḡ(t, u)+
∫ t
0 ḡ(s, u)ds

is a martingale with respect to {Ft}.
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Proof. This statement is a consequence of proposition 2.7.6. in
[6]. All we need to check is that the family {1

δ
E[Ḡ(t + δ, u) −

Ḡ(t, u)|Ft], δ > 0, t ≥ 0} is uniformly integrable, and that

P− lim
δ↘0

1

δ
E[Ḡ(t+ δ, u) − Ḡ(t, u)|Ft] = −ḡ(t, u), for a.e. t.

By the relation (5) we have

1

δ
E[Ḡ(t+ δ, u) − Ḡ(t, u)|Ft] = −1

δ

∫ t+δ

t
E[ḡ(s, u)|Ft]ds.

The integrand is uniformly bounded, for fixed u, and continuous

with respect to s, for any t. We thus deduce the a.s. convergence
of the sequence 1

δ
E[Ḡ(t+δ, u)−Ḡ(t, u)|Ft], when δ ↘ 0, for any t.

The uniform integrability follows from the uniform boundedness
of ḡ(·, u). 2

The rule of differentiation of the expression (Ḡ( t
εα , u

ε(t)), uε(t)),
where uε(t) is the solution of problem (1), is given by the following

Lemma 2 For any test function ϕ ∈ C∞
0 (Rn) and ε > 0, the

processes Mu,ε
t and Mϕ,ε

t given by

Mu,ε
t = εα−(1∧α

2
)
[(

Ḡ(
t

εα
, uε(t)), uε(t)

)

−
(

Ḡ(0, u0), u0

)]

+
1

ε(1∧α
2
)

∫ t

0

(

ḡ(
s

εα
, uε(s)), uε(s)

)

ds

+ εα−(1∧α
2
)
∫ t

0

(

aε(s)∇uε(s), Ḡ′′
uu(

s

εα
, uε(s))∇uε(s)uε(s)

+ 2Ḡ′
u(
s

εα
, uε(s))∇uε(s)

)

ds

− εα−2(1∧α
2
)
∫ t

0

(

g(
·
ε
,
s

εα
, uε(s)), Ḡ′

u(
s

εα
, uε(s))uε(s) + Ḡ(

s

εα
, uε(s))

)

ds

− εα−(1∧α
2
)
∫ t

0

(

h(
·
ε
,
s

εα
, uε(s)), Ḡ′

u(
s

εα
, uε(s))uε(s) + Ḡ(

s

εα
, uε(s))

)

ds

(12)
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and

Mϕ,ε
t := εα−(1∧α

2
)[(Ḡ(

t

εα
, uε(t)), ϕ)− (Ḡ(0, uε(0)), ϕ)]

+
1

ε(1∧α
2
)

∫ t

0
(ḡ(

s

εα
, uε(s)), ϕ)ds

+ εα−(1∧α
2
)
∫ t

0
(aε(s)∇uε(s), Ḡ′′

uu(
s

εα
, uε(s))∇uε(s)ϕ+ Ḡ′

u(
s

εα
, uε(s))∇ϕ)ds

− εα−2(1∧α
2
)
∫ t

0
(g(

.

ε
,
s

εα
, uε(s)), Ḡ′

u(
s

εα
, uε(s))ϕ)ds

− εα−(1∧α
2
)
∫ t

0
(h(

.

ε
,
s

εα
, uε(s)), Ḡ′

u(
s

εα
, uε(s))ϕ)ds

(13)

are martingales with respect to the filtration {F t
εα
, t ≥ 0}.

Proof Let [t1, t2] be an arbitrary subinterval of [0, T ], ∆ = {s0, s1, ..., sm}
a deterministic partition of the interval [t1, t2], and denote h =
max1≤k≤m{(sk − sk−1)}. Considering the progressive measura-

bility of all the random functions involved, we have, for each
k = 1, . . . , m,

E
[(

Ḡ(
sk

εα
, uε(sk)), u

ε(sk)
)

−
(

Ḡ(
sk

εα
, uε(sk−1)), u

ε(sk−1)
)

|F sk−1

εα

]

=E
[

∫ sk

sk−1

d

ds

(

Ḡ(
sk

εα
, uε(s)), uε(s)

)

ds|F sk−1

εα

]

=E
{

∫ sk

sk−1

[

〈Ḡ′
u(
sk

εα
, uε(s))

∂uε

∂s
(s), uε(s)〉

+ 〈Ḡ(
sk

εα
, uε(s)),

∂uε

∂s
(s)〉

]

ds|F sk−1

εα

}

=E
{

∫ sk

sk−1

[

−
(

aε(s)∇uε(s), Ḡ′′
uu(

sk

εα
, uε(s))∇uε(s)uε(s)

+ 2Ḡ′
u(
sk

εα
, uε(s))∇uε(s)

)

+
1

ε1∧α
2

(

g(
·
ε
,
s

εα
, uε(s)), Ḡ′

u(
sk

εα
, uε(s))uε(s) + Ḡ(

sk

εα
, uε(s))

)

+
(

h(
·
ε
,
s

εα
, uε(s)), Ḡ′

u(
sk

εα
, uε(s))uε(s) + Ḡ(

sk

εα
, uε(s))

)]

ds|F sk−1

εα

}
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and

E
[(

Ḡ(
sk

εα
, uε(sk−1)), u

ε(sk−1)
)

−
(

Ḡ(
sk−1

εα
, uε(sk−1)), u

ε(sk−1)
)

|F sk−1

εα

]

= − 1

εα
E
[

∫ sk

sk−1

(

ḡ(
s

εα
, uε(sk−1)), u

ε(sk−1)
)

ds|F sk−1

εα

]

;

here 〈·, ·〉 denotes the duality pairing betweenH1(Rn) andH−1(Rn).

Summing up over k gives

E
{[(

Ḡ(
t2
εα
, uε(t2)), u

ε(t2)
)

−
(

Ḡ(
t1
εα
, uε(t1)), u

ε(t1)
)

+
∫ t2

t1

(

aε(s)∇uε(s), Ḡ′′
uu(

s

εα
, uε(s))∇uε(s)uε(s)

+ 2Ḡ′
u(
s

εα
, uε(s))∇uε(s)

)

ds

− 1

ε1∧α
2

∫ t2

t1

(

g(
·
ε
,
s

εα
, uε(s)), Ḡ′

u(
s

εα
, uε(s))uε(s) + Ḡ(

s

εα
, uε(s)

)

ds

−
∫ t2

t1

(

h(
·
ε
,
s

εα
, uε(s)), Ḡ′

u(
s

εα
, uε(s))uε(s) + Ḡ(

s

εα
, uε(s)

)

ds

12



+
1

εα

∫ t2

t1

(

ḡ(
s

εα
, uε(s)), uε(s)

)

ds
]

|F t1
εα

}

=E
{

m
∑

k=1

∫ sk

sk−1

(

− aε(s)∇uε(s),∇uε(s)uε(s)

E[Ḡ′′
uu(

sk

εα
, uε(s)) − Ḡ′′

uu(
s

εα
, uε(s))|F s

εα
]
)

ds|F t1
εα

}

+ E
{

m
∑

k=1

∫ sk

sk−1

−2
(

aε(s)∇uε(s),∇uε(s)

E[Ḡ′
u(
sk

εα
, uε(s)) − Ḡ′

u(
s

εα
, uε(s))|F s

εα
]
)

ds|F t1
εα

}

+
1

ε1∧α
2

E
{

m
∑

k=1

∫ sk

sk−1

(

g(
·
ε
,
s

εα
, uε(s)), uε(s)

E[[Ḡ′
u(
sk

εα
, uε(s)) − Ḡ′

u(
s

εα
, uε(s))|F s

εα
]
)

ds|F t1
εα

}

+
1

ε1∧α
2

E
{

m
∑

k=1

∫ sk

sk−1

(

g(
·
ε
,
s

εα
, uε(s)),E[Ḡ(

sk

εα
, uε(s)) (14)

− Ḡ(
s

εα
, uε(s))|F s

εα
]
)

ds|F t1
εα

}

+ E
{

m
∑

k=1

∫ sk

sk−1

(

h(
·
ε
,
s

εα
, uε(s)), uε(s)E[Ḡ′

u(
sk

εα
, uε(s))

− Ḡ′
u(
s

εα
, uε(s))|F s

εα
]
)

ds|F t1
εα

}

+ E
{

m
∑

k=1

∫ sk

sk−1

(

h(
·
ε
,
s

εα
, uε(s)),E[Ḡ(

sk

εα
, uε(s))

− Ḡ(
s

εα
, uε(s))|F s

εα
]
)

ds|F t1
εα

}

− 1

εα
E
{

m
∑

k=1

∫ sk

sk−1

[(

ḡ(
s

εα
, uε(sk−1)), u

ε(sk−1)
)

−
(

ḡ(
s

εα
, uε(s)), uε(s)

)]

ds|F t1
εα

}

For any δ > 0, using the bounds (2) and the definition (5) we

derive the following estimates, for each x ∈ R
n

E
[

|Ḡ(t+ δ, uε(t, x))− Ḡ(t, uε(t, x))|/Ft

]

≤ Cδ|uε(t, x)|,

E
[

|Ḡ′
u(t+ δ, uε(t, x))− Ḡ′

u(t, u
ε(t, x))|/Ft

]

≤ Cδ,

E
[

|Ḡ′′
uu(t+ δ, uε(t, x)) − Ḡ′′

uu(t, u
ε(t, x))|/Ft

]

≤ Cδ
1

1 + |uε(t, x)|.
(15)
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The last term on the right hand side of (14) can be estimated as
follows

|
(

ḡ(
s

εα
, uε(sk−1)), u

ε(sk−1)
)

−
(

ḡ(
s

εα
, uε(s)), uε(s)

)

|

≤ ‖ḡ( s
εα
, uε(sk−1)) − ḡ(

s

εα
, uε(s))‖‖uε(sk−1)‖

+ ‖ḡ( s
εα
, uε(s))‖‖uε(sk−1) − uε(s)‖

≤ (1 + C) sup
0≤t≤T

‖uε(t)‖‖uε(sk−1) − uε(s)‖.

Writing down the energy estimate for equation (1) and using

Gronwall’s lemma, we get, for each ε > 0

sup
0≤t≤T

‖uε(t)‖2 +
∫ T

0
‖∇uε(t)‖2dt ≤ βε, (16)

where βε is a deterministic constant which depends on u0, T and
the ellipticity constants and satisfies, for all ε0 > 0, the inequality

sup
ε0≤ε≤1

βε <∞. Since the solution uε(·) is continuous on [0, T ] with

values in L2(Rn), the Lebesgue dominated convergence theorem

yields

lim
h↘0

E
{

m
∑

k=1

∫ sk

sk−1

[(

ḡ(
s

εα
, uε(sk−1)), u

ε(sk−1)
)

−
(

ḡ(
s

εα
, uε(s)), uε(s)

)]

ds|F t1
εα

}

= 0.

Using estimates (15) and a Jensen type inequality for conditional
expectations, one can show that the expectation of the absolute

value of all other terms on the r.h.s. of (14) is not greater than:

hCE
[

T sup
0≤t≤T

‖uε(t)‖2 +
∫ T

0
‖∇uε(s)‖2ds

]

.

This expression is finite, for each ε > 0, in view of (16). Passing

to the limit as h↘ 0, we obtain the first statement of the lemma.
The second one can be proved in a similar way. 2

We now proceed with a priori estimates.
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Proposition 1 The following bounds hold

E



sup
t≤T

‖uε(t)‖2 +
∫ T

0
‖∇uε(s)‖2ds



 ≤ C,

E



 sup
t≤T

‖uε(t)‖4 +





∫ T

0
‖∇uε(s)‖2ds





2

 ≤ C.

(17)

uniformly in ε > 0.

Proof Denote Ḡε(t) = Ḡ
(

t
εα , u

ε(t)
)

and ρ := α − (1 ∧ α
2
). By

formula (12), considering (10) we get, after integration by parts:

d

[

1

2

(

uε(t), uε(t)
)

+ ερ
(

Ḡε(t), uε(t)
)

]

= −
(

aε(t)∇uε(t),∇uε(t)
)

dt+
(

hε(t), uε(t)
)

dt− ε1−(1∧α
2
)
(

H̃ε(t),∇uε(t)
)

dt

− ε1−(1∧α
2
)
(

H̃ ′,ε
u ∇uε(t), uε(t)

)

dt− ερ
(

aε(t)∇uε(t), 2Ḡ′,ε
u (t)∇uε(t)

+ Ḡ′′,ε
uu (t)uε(t)∇uε(t)

)

dt+ εα−2(1∧α
2
)
(

gε(t), Ḡ′,ε
u u

ε(t) + Ḡε(t)
)

dt

+ dMu,ε
t + ερ

(

hε(t), Ḡ′,ε
u (t)uε(t) + Ḡε(t)

)

dt,

or, in the integral form

1

2
‖uε(t)‖2 +

∫ t
0

(

aε(s)∇uε(s),∇uε(s)
)

ds =

=
1

2
‖u0‖2 − ερ

(

Ḡε(t), uε(t)
)

+ ερ
(

Ḡε(0), u0

)

+
∫ t

0

(

hε(s), uε(s)
)

−ε1−(1∧α
2
)
∫ t

0

[(

H̃ε(s),∇uε(s)
)

+
(

H̃ ′,ε
u (s)∇uε(s), uε(s)

)]

ds

−ερ
∫ t

0

(

aε(s)∇uε(s), 2Ḡ′,ε
u (s)∇uε(s) + Ḡ′′,ε

uu (s)uε(s)∇uε(s)
)

ds

+εα−2(1∧α
2
)
∫ t

0

(

gε(s), Ḡ′,ε
u (s)uε(s) + Ḡε(s)

)

ds+Mu,ε
t

(18)

+ ερ
∫ t

0

(

hε(s), Ḡ′,ε
u (s)uε(s) + Ḡε(s)

)

ds

15



The following estimates are straightforward

E
∫ t

0

[(

H̃ε(s),∇uε(s)
)

| + |
(

H̃ ′,ε
u (s)∇uε(s), uε(s)

)

|
]

ds

≤ 2CE
∫ t

0
‖uε(s)‖‖∇uε(s)‖ds

≤ C

γ
E
∫ t

0
‖uε(s)‖2ds+ CγE

∫ t

0
‖∇uε(s)‖2ds,

with arbitrary γ > 0. Also, by (10) we have

E
∫ t

0
|
(

aε(s)∇uε(s), 2Ḡ′,ε
u (s)∇uε(s) + Ḡ′′,ε

uu (s)uε(s)∇uε(s)
)

|ds

≤ CE
∫ t

0
‖∇uε(s)‖2ds,

E
∫ t

0
|
(

gε(s), Ḡ′,ε
u (s)uε(s) + Ḡε(s)

)

|ds ≤ CE
∫ t

0
‖uε(s)‖2ds.

and

E
∫ t

0
|
(

hε(s), Ḡ′,ε
u (s)uε(s) + Ḡε(s)

)

|ds ≤ C
(

1 + E
∫ t

0
‖uε(s)‖2ds

)

.

Choosing now ε and γ small enough, and taking the expectation
in the relation (18), with the help of Gronwall’s lemma we obtain

sup
t≤T

E‖uε(t)‖2 + E
∫ T

0
‖∇uε(s)‖2ds ≤ C. (19)

It is easy to see, considering the bounds (2), (10) and (16) that
Mu,ε

t is a square integrable martingale. In order to obtain an
upper bound for the term E(sup0≤t≤T |Mu,ε

t |) we estimate the

quadratic variation of the martingale Mu,ε
t , as well as the expec-
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tation E(‖uε(t)‖4). To this end we consider the expression

d
[1

4
‖uε(t)‖4 + ερ

(

Ḡε(t), uε(t))(uε(t), uε(t)
)]

=
1

2

(

uε(t), uε(t)
)

d[
(

uε(t), uε(t)
)

] + d
[

ερ
(

Ḡε(t), uε(t)
)](

uε(t), uε(t)
)

+ ερ
(

Ḡε(t), uε(t)
)

d
[(

uε(t), uε(t)
)]

= ‖uε(t)‖2
[

−
(

aε(t)∇uε(t),∇uε(t)
)

+ (hε(t), uε(t))

− ε1−(1∧α
2
)
(

H̃ε(t),∇uε(t)
)

− ε1−(1∧α
2
)
(

H̃ ′,ε
u (t)∇uε(t), uε(t)

)

− ερ
(

aε(t)∇uε(t), Ḡ′′,ε
uu (t)∇uε(t)uε(t) + 2Ḡ′,ε

u (t)∇uε(t)
)

+ εα−2(1∧α
2
)
(

gε(t), Ḡ′,ε
u (t)uε(t) + Ḡε(t)

)

+ ερ
(

hε(t), Ḡ′,ε
u (t)uε(t) + Ḡε(t)

)]

dt

+ ‖uε(t)‖2dMu,ε
t + ερ

(

Ḡε(t), uε(t)
)[

− 2
(

aε(t)∇uε(t),∇uε(t)
)

+ 2
1

ε1∧α
2

(

gε(t), uε(t)
)

+ 2
(

hε(t), uε(t)
)]

dt,

(20)

where the formula of integration by parts for semimartingales has

also been used. It is easy to see that the process
∫ t
0 ‖uε(s)‖2dMu,ε

s

is a square integrable martingale with respect to the filtration Ft.

Indeed, considering formulae (12) and (16), we have:

E
∫ t

0
‖uε(s)‖4d〈Mu,ε〉s ≤ β2

εE (〈Mu,ε〉t) = β2
εE (Mu,ε

t )
2 ≤ Cε.

Taking the expectation in (20) and using the same arguments as

those leading to (19), one can obtain the bound

sup
0≤t≤T

E
(

‖uε(t)‖4
)

+ E

(

∫ T

0
‖uε(s)‖2‖∇uε(s)‖2ds

)

≤ C.
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Next, Ito’s formula for the square of a semimartingale gives

d
[1

2
‖uε(t)‖2 + ερ

(

Ḡε(t), uε(t)
)]2

=
[

‖uε(t)‖2 + 2ε
(

Ḡε(t), uε(t)
)]{[

−
(

aε(t)∇uε(t),∇uε(t)
)

+
(

hε(t), uε(t)
)

dt− ε1−(1∧α
2
)
(

H̃ε(t),∇uε(t)
)

− ε1−(1∧α
2
)
(

H̃ ′,ε
u (t)∇uε(t), uε(t)

)

− ερ
(

aε(t)∇uε(t), Ḡ′′,ε
uu (t)∇uε(t)uε(t)

+ 2Ḡ′,ε
u (t)∇uε(t)

)

+ εα−2(1∧α
2
)
(

gε(t), Ḡ′,ε
u (t)uε(t) + Ḡε(t)

)

+ ερ
(

hε(t), Ḡ′,ε
u (t)uε(t) + Ḡε(t)

))]

dt+ dMu,ε
t

}

+ d < Mu,ε >t

If we subtract now the last equality from (20) and integrate the
result over [0, t], we get after simple rearrangements

<Mu,ε >t= ε2ρ
(

Ḡε(t), uε(t)
)2 − ε2ρ

(

Ḡε(0), u0

)2

+ 2εα−2(1∧α
2
)
∫ t

0

(

Ḡε(s), uε(s)
)(

ḡε(s), uε(s)
)

ds

+ 2ε2ρ
∫ t

0

(

Ḡε(s), uε(s)
)(

aε(s)∇uε(s), Ḡ′′,ε
uu (s)∇uε(s)uε(s) + Ḡ′,ε

u (s)∇uε(s)
)

ds

− 2ε2α−3(1∧α
2
)
∫ t

0

(

Ḡε(s), uε(s)
)(

gε(s), Ḡ′,ε
u (s)uε(s) + Ḡε(s)

)

ds

− 2ε2ρ
∫ t

0

(

Ḡε(s), uε(s)
)(

hε(s), Ḡ′,ε
u (s)uε(s) + Ḡε(s)

)

ds

− 2ερ
∫ t

0

(

Ḡε(s), uε(s)
)

dMu,ε
s .

(21)

Hence

E
(

〈Mu,ε〉t
)

≤ CE



ε2ρ‖uε(t)‖4 + ε2ρ‖u0‖4

+ (2εα−2(1∧α
2
) + 2ε2α−3(1∧α

2
) + 2ε2ρ)

∫ t

0
‖uε(s)‖4ds

+ ε2ρ
∫ t

0
‖uε(s)‖2ds+ 2ε2ρ

∫ t

0
‖uε(s)‖2‖∇uε(s)‖2ds





≤ C



ε2ρ + (εα−2(1∧α
2
) + ε2α−3(1∧α

2
) + ε2ρ)t



.

(22)
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We next get by the Burkholder-Davis-Gundy inequality that

E



 sup
0≤t≤T

|Mu,ε
t |



 ≤ KTE
(

√

〈Mu,ε〉T
)

≤ KT

2
+
KT

2
E (〈Mu,ε〉T )

≤ KT

2
+
KT

2
C



ε2ρ + (εα−2(1∧α
2
) + ε2α−3(1∧α

2
) + ε2ρ)T



.

(23)

Now the first inequality of Proposition 1 follows for small ε from
the relation (18), and for all other ε from (16).

The second estimate of Proposition 1 can be obtained in a sim-

ilar way . We only show how to estimate the martingale term.
Applying the Burkholder-Davis-Gundy inequality we get

E



 sup
0≤t≤T

|
∫ t

0
‖uε(s)‖2dMu,ε

s |


 ≤ E
(

√

∫ T

0
‖uε(s)‖4d〈Mu,ε〉s

)

≤ E
(

sup
0≤t≤T

‖uε(t)‖2
√

〈Mu,ε〉T
)

≤ γE
(

sup
0≤t≤T

‖uε(t)‖4
)

+ CγE
(

〈Mu,ε〉T
)

,

where as before γ stands for an arbitrary positive constant. We
already estimated the expectation of the quadratic variation pro-

cess associated with the martingale {Mu,ε
t }. The desired estimate

for the expression E



sup
t≤T

‖uε(t)‖4



 is now straightforward. 2

The tightness of {uε} in the space ṼT also relies on an equi-
continuity result for the family of functions

{t 7→ (uε(t), ϕ)}ε>0

in C([0, T ]; R), where ϕ is an arbitrary element of L2(Rn). In view
of Proposition 1 it suffices to prove this equi-continuity for ϕ from
a dense subset of L2(Rn).

Proposition 2 Under assumptions A.1–A.6, for any ϕ in C∞
0 (Rn)
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and any δ > 0 there exist ν = ν(δ) > 0 and ε0 > 0 such that

P{ sup
|t−s|<ν

|(uε(t), ϕ)− (uε(s), ϕ)| > δ} < δ, ∀ 0 < ε ≤ ε0.

Proof For each ε > 0 the process Mϕ,ε,α
t , defined in (13), is a

square integrable martingale. We deduce from (1) and (13) that

d
[(

uε(t), ϕ
)

+ερ
(

Ḡε(t), ϕ
)]

=

−
(

aε(t)∇uε(t),∇ϕ
)

dt− ε1−(1∧α
2
)
(

H̃ε(t),∇ϕ
)

dt

− ε1−(1∧α
2
)
(

H̃ ′,ε
u (t)∇uε(t), ϕ

)

dt+
(

hε(t), ϕ
)

dt

− ερ
(

aε(t)∇uε(t), Ḡ′,ε
u (t)∇ϕ+ Ḡ′′,ε

uu (t)ϕ∇uε(t)
)

dt

+ εα−2(1∧α
2
)
(

gε(t), Ḡ′,ε
u (t)ϕ

)

dt

+ ερ(hε(t), Ḡ′,ε
u (t)ϕ

)

dt+ dMϕ,ε
t . (24)

In view of the inequalities

∣

∣

∣

∣

∣

∫ t

s

(

aε(r)∇uε(r),∇ϕ
)

dr

∣

∣

∣

∣

∣

≤ c
√
t− s‖uε‖L2(0,T ;H1(Rn))

and

∣

∣

∣

∣

∣

ε
∫ t

0

(

Ḡ′′,ε
uu (s)aε(s)∇uε(s), ϕ∇uε(s)

)

ds

∣

∣

∣

∣

∣

≤ cε‖uε‖2
L2(0,T ;H1(Rn)),

and Proposition 1, the integrals
∫ t
0

(

aε(s)∇uε(s),∇ϕ
)

ds and

ε
∫ t
0

(

Ḡ′′,ε
uu (s)aε(s)∇uε(s), ϕ∇uε(s)

)

ds form tight families inC([0, T ]).

Similar estimates are valid for all other absolutely continuous
terms on the right hand side of (24).

The estimate of the modulus of continuity of the martingale term

Mϕ,ε
t is based on the bound for the increment of the quadratic

20



variation < Mϕ,ε >t. By the definition of uε and Ḡε we have

d
[(

uε(t), ϕ
)2

+ 2ερ
(

Ḡε(t), ϕ
)(

uε(t), ϕ
)]

= − 2
(

aε(t)∇uε(t),∇ϕ
)(

uε(t), ϕ
)

dt− 2ε1−(1∧α
2
)
(

H̃ε(t),∇ϕ
)(

uε(t), ϕ
)

dt

− 2ε1−(1∧α
2
)
(

H̃ ′,ε
u (t)∇uε(t), ϕ

)(

uε(t), ϕ
)

dt+ 2
(

hε(t), ϕ
)(

uε(t), ϕ
)

dt

− 2ερ
(

Ḡ′,ε
u (t)aε(t)∇uε(t),∇ϕ

)(

uε(t), ϕ
)

dt

− 2ερ
(

Ḡ′′,ε
uu (t)aε(t)∇uε(t), ϕ∇uε(t)

)(

uε(t), ϕ)
)

dt

+ 2εα−2(1∧α
2
)
(

Ḡ′,ε
u (t)gε(t), ϕ

)(

uε(t), ϕ
)

dt

+ 2ερ
(

hε(t), Ḡ′,ε
u (t)ϕ

)(

uε(t), ϕ)
)

dt− 2ερ
(

Ḡε(t), ϕ
)(

aε(t)∇uε(t),∇ϕ
)

dt

+ 2εα−2(1∧α
2
)
(

Ḡε(t), ϕ
)(

gε(t), ϕ
)

dt+ 2ερ
(

Ḡε(t), ϕ
)

(hε(t), ϕ
)

dt

+ 2
(

uε(t), ϕ
)

dMϕ,ε
t ,

On the other hand, by the Ito formula we find

d
[(

uε(t), ϕ
)

+ε
(

Ḡε(t), ϕ
)]2

=2
[(

uε(t), ϕ
)

+ ε
(

Ḡε(t), ϕ
)]{

−
(

aε(t)∇uε(t),∇ϕ
)

dt

− ε1−(1∧α
2
)
(

H̃ε(t),∇ϕ
)

dt− ε1−(1∧α
2
)
(

H̃ ′,ε
u (t)∇uε(t), ϕ

)

dt

− ερ
(

Ḡ′,ε
u (t)aε(t)∇uε(t),∇ϕ

)

dt

− ερ
(

Ḡ′′,ε
uu (t)aε(t)∇uε(t), ϕ∇uε(t)

)

dt

+ εα−2(1∧α
2
)
(

Ḡ′,ε
u (t)gε(t), ϕ

)

dt+
(

hε(t), ϕ+ ερḠ′,ε
u (t)ϕ

)

dt

+ dMϕ,ε
t

}

+ d < Mϕ,ε >t .
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Opening the brackets and comparing two previous expressions
allows us to write down the formula for < Mϕ,ε >t :

< Mϕ,ε >t=ε
2ρ
(

Ḡ(
t

ε2
, uε(t)), ϕ

)2 − ε2ρ
(

Ḡ(0, u0), ϕ
)2

+ 2εα−2(1∧α
2
)
∫ t

0

(

Ḡε(s), ϕ
)(

ḡε(s), ϕ
)

ds

+ 2ε2ρ
∫ t

0

(

Ḡε(s), ϕ
)(

aε(s)∇uε(s), Ḡ′,ε
u (s)∇ϕ+ Ḡ′′,ε

uu (s)∇uε(s)ϕ
)

ds

− 2ε2α−3(1∧α
2
)
∫ t

0

(

Ḡε(s), ϕ
)(

gε(s), Ḡ′,ε
u (s)ϕ

)

ds

− 2ε2ρ
∫ t

0

(

Ḡε(s), ϕ
)(

hε(s), Ḡ′,ε
u (s)ϕ

)

ds

− 2ερ
∫ t

0

(

Ḡε(s), ϕ
)

dMϕ,ε
s .

(25)

Our aim is to estimate the quantity E
[

(< Mϕ,ε >t2 − < Mϕ,ε >t1

)2
]

, with 0 ≤ t1 < t2 ≤ T. We have

E
[

4ε4ρ
(

∫ t2

t1

(

Ḡε(s), ϕ
)(

aε(s)∇uε(s), Ḡ′,ε
u (s)∇ϕ+ Ḡ′′,ε

uu (s)∇uε(s)ϕ
)

ds
)2]

≤Cε4ρE
[(

∫ t2

t1

(

Ḡε(s), ϕ
)(

aε(s)∇uε(s), Ḡ′,ε
u (s)∇ϕ

)

ds
)2

+
(

∫ t2

t1

(

Ḡε(s), ϕ
)(

aε(s)∇uε(s), Ḡ′′,ε
uu (s)∇uε(s)ϕ

)

ds
)2]

≤Cε4ρE
[(

∫ t2

t1
‖uε(s)‖2ds

∫ t2

t1
‖∇uε(s)‖2ds

)]

+ E
[(

∫ t2

t1
‖∇uε(s)‖2ds

)2]

≤Cε4ρ
[1

2
E
(

∫ t2

t1
(‖uε(s)‖)2ds

)2
+

3

2
E
(

(
∫ t2

t1
‖∇uε(s)‖2ds)2

)]

≤Cε4ρ
(

1 + (t2 − t1)
2
)
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where the relation (17) and the assumptions (A.3), (A.4) have
been used. Therefore,

E
[

(< Mϕ,ε >t2 − < Mϕ,ε >t1)
2
]

≤CE
(

ε4ρ‖uε(t2)‖4 + ε4ρ‖uε(t1)‖4 +
(

ε2α−(4∧2α) + ε4α−(6∧3α))

(t2 − t1)
2 sup

0≤t≤T
‖uε(t)‖4 + ε4ρ(1 + (t2 − t1)

2)

+ ε4ρ(t2 − t1)
2( sup

0≤t≤T
‖uε(t)‖2 + sup

0≤t≤T
‖uε(t)‖4)

+ Cε2ρ sup
0≤t≤T

‖uε(t)‖2(< Mϕ,ε >t2 − < Mϕ,ε >t1)
)

≤C
(

ε4ρ + (ε4ρ + ε2α−(4∧2α) + ε4α−(6∧3α))(t2 − t1)
2
)

+
ε2ρ

2
E
[

(< Mϕ,ε >t2 − < Mϕ,ε >t1)
2
]

.

This yields, for all sufficiently small ε

E
[(

< Mϕ,ε >t2− < Mϕ,ε >t1

)2] ≤ C
(

ε4ρ + (ε4ρ + ε2α−(4∧2α)

+ ε4α−(6∧3α))(t2 − t1)
2
)

.

Finally the Burkholder-Davis-Gundy inequality gives

E
[

sup
t1≤s≤t2

|Mϕ,ε
s −Mϕ,ε

t1 |4
]

≤ CE
[(

< Mϕ,ε >t2 − < Mϕ,ε >t1

)2]
.

Combining the last two bounds, by Theorem 8.3 in [1] one can

deduce the required estimate for the modulus of continuity. 2

We now state

Theorem 4 The family of measures Qε = L(uε) is tight in ṼT .

Proof The result follows from the above bounds by the Prokhorov
criterium, whose applicability in the space ṼT has been justified

in [17]. 2
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5 Passage to the limit and proofs of the main results

In this section we prove the convergence of uε, as ε → 0, and
describe its limit.

5.1 Case α = 2: Proof of Theorem 1

Our goal is to introduce a limit martingale problem and to show
that any accumulation point of the sequence {uε, ε > 0} is a

solution of this problem. We first state a lemma, whose proof can
be found in [9].

Lemma 3 The equations (3) and (4) have stationary solutions.

Under the normalizations

∫

Tn
χk(z, s)dz = 0,

∫

Tn
G̃(z, t, u)dz = 0

the solutions are unique and ergodic. Moreover, the following
bounds hold

‖χk‖L∞(Tn×(−∞,+∞)×Ω) ≤ C

‖G̃‖L∞(Tn×(−∞,+∞)×Ω) ≤ C|u|
‖G̃′

u‖L∞(Tn×(−∞,+∞)×Ω) ≤ C

‖G̃′′
uu‖L∞(Tn×(−∞,+∞)×Ω) ≤

C

1 + |u| .

(26)

We now define two additional correctors as

χε(x, t) = χ

(

x

ε
,
t

ε2

)

, G̃ε(x, t, u) = G̃

(

x

ε
,
t

ε2
, u

)

.

Consider now the process

Ψε(t) =
(

uε(t), ϕ
)

+ ε
(

Ḡ(
t

ε2
, uε(t)), ϕ

)

+ ε
(

χε(t)uε(t),∇ϕ
)

+ ε
(

G̃ε(t, uε(t)), ϕ
)

.
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Using equations (1), (3), (4) and the representation (13), we get,
after multiple integrations by parts

d
[(

uε(t), ϕ
)]

= −
(

aε(t)∇uε(t),∇ϕ
)

dt+
1

ε

(

gε(t), ϕ
)

dt+
(

hε(t), ϕ
)

dt

=
1

ε

(

divzai(
·
ε
,
t

ε2
), uε(t)

∂ϕ

∂xi

)

dt+
(

aε(t)uε(t),∇∇ϕ
)

dt

+
1

ε

(

ḡε(t), ϕ
)

dt+
1

ε

(

g̃ε(t), ϕ
)

dt+
(

hε(t), ϕ
)

dt,

d
[

ε
(

Ḡ(
t

ε2
, uε(t)), ϕ

)]

= − 1

ε

(

ḡε(t), ϕ
)

dt− ε
(

aε(t)∇uε(t), Ḡ′,ε
u (t)∇ϕ+ Ḡ′′,ε

uu (t)∇uε(t)ϕ
)

dt

+
(

gε(t), Ḡ′,ε
u (t)ϕ

)

dt+ ε
(

hε(t), Ḡ′,ε
u (t)ϕ

)

dt+ dMϕ,ε
t ,

d
[

ε
(

χ(
·
ε
,
t

ε2
)uε(t),∇ϕ

)]

= − ε
(

divx(a
ε(t)∇xχ

ε
i (t)), u

ε(t)
∂ϕ

∂xi

)

dt− 1

ε

(

divzai(
·
ε
,
t

ε2
), uε(t)

∂ϕ

∂xi

)

dt

+ ε
(

divx(a
ε(t)∇uε(t)), χε

i(t)
∂ϕ

∂xi

)

dt+
(

gε(t)χε(t),∇ϕ
)

dt

+ ε
(

hε(t)χε(t),∇ϕ
)

dt

=
(

aε(t)uε(t),∇zχ(
·
ε
,
t

ε2
)∇∇ϕ

)

dt− 1

ε

(

divzai(
·
ε
,
t

ε2
), uε(t)

∂ϕ

∂xi

)

dt

− ε
(

aε(t)∇uε(t), χε(t)∇∇ϕ
)

dt+
(

gε(t)χε(t),∇ϕ
)

dt+ ε
(

hε(t)χε(t),∇ϕ
)

dt,

d
[

ε
(

G̃(
·
ε
,
t

ε2
, uε(t)), ϕ

)]

=
(

− divx(a
ε(t)∇xG̃

ε(t, uε(t))), ϕ
)

dt+ ε
(

aε(t),∇xG̃
′,ε(t, uε(t))∇uε(t), ϕ

)

dt

− 1

ε

(

g̃ε(t), ϕ
)

dt+ ε
(

divx(a
ε(t)∇uε(t)), G̃′

u(
·
ε
,
t

ε2
, uε(t))ϕ

)

dt

+
(

gε(t), G̃′
u(
·
ε
,
t

ε2
, uε(t))ϕ

)

dt+ ε
(

hε(t), G̃′
u(
·
ε
,
t

ε2
, uε(t))ϕ

)

dt
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=
(

aε(t)∇zG̃(
·
ε
,
t

ε2
, uε(t)),∇ϕ

)

dt− 1

ε

(

g̃ε(t), ϕ
)

dt

− ε
(

aε(t)∇uε(t), G̃′
u(
·
ε
,
t

ε2
, uε(t))∇ϕ

)

dt

− ε
(

aε(t)∇uε(t), G̃′′
uu(

·
ε
,
t

ε2
, uε(t))∇uε(t)ϕ

)

dt

+
(

gε(t), G̃′
u(
·
ε
,
t

ε2
, uε(t))ϕ

)

dt+ ε
(

hε(t), G̃′
u(
·
ε
,
t

ε2
, uε(t))ϕ

)

dt,

where we denoted by ai(t) the i-th row of the matrix a(t).

Summing up the above identities we get

dΨε(t) =
(

(I + ∇zχ(
·
ε
,
t

ε2
))aε(t)uε(t),∇∇ϕ

)

dt

+
(

aε(t)∇zG̃(
·
ε
,
t

ε2
, uε(t)) + χε(t)gε(t),∇ϕ

)

dt

+
(

(Ḡ′,ε
u (t) + G̃′,ε

u (t, uε(t))gε(t), ϕ
)

dt+
(

hε(t), ϕ
)

dt+ dMϕ,ε
t

− ε
[(

aε(t)∇uε(t), G̃′′,ε
uu (t, uε(t))∇uε(t)ϕ+ G̃′,ε

u (t, uε(t))∇ϕ
)

dt

+
(

aε(t)∇uε(t), Ḡ′′,ε
uu (t)∇uε(t)ϕ+ Ḡ′,ε

u (t)∇ϕ
)

dt

+
(

aε(t)∇uε(t), χε(t)∇∇ϕ
)

dt

−
(

hε(t), χε(t)∇ϕ+ G̃′,ε
u (t, uε(t))ϕ+ Ḡ′,ε

u (t)ϕ
)

dt
]

,

from which we derive the expression for

(

uε(t),ϕ
)

=
(

u0, ϕ
)

+
∫ t

0

(

〈a(I + ∇χ)〉uε(s),∇∇ϕ
)

ds

+
∫ t

0

[(

〈a∇G̃〉(uε(s)),∇ϕ
)]

ds+
(

〈gχ〉(uε(s)),∇ϕ
)]

ds

+
∫ t

0

[(

〈gḠ′
u〉(uε(s)), ϕ

)

+
(

〈gG̃′
u〉(uε(s)), ϕ

)

+
(

〈h〉(uε(s)), ϕ
)]

ds

+Mϕ,ε
t +Aε(t), (27)
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where Mϕ,ε
t is the martingale introduced in (13) and

Aε(t) = − ε







[(

Ḡε(t) − Ḡε(0), ϕ
)

+
(

G̃ε(t, uε(t)) − G̃ε(0, u0), ϕ
)

+
(

χε(t)uε(t) − χε(0)u0,∇ϕ
)]

+
[

∫ t

0

(

aε(s)∇uε(s), G̃′′,ε
uu (s, uε(s))∇uε(s)ϕ+ G̃′,ε

u (s, uε(s))∇ϕ
)

ds

+
∫ t

0

(

aε(s)∇uε(s), Ḡ′′,ε
uu (s)∇uε(s)ϕ+ Ḡ′,ε

u (s)∇ϕ
)

ds

+
∫ t

0

(

aε(s)∇uε(s), χε(s)∇∇ϕ
)

ds

−
∫ t

0

(

hε(s), χε(s)∇ϕ+ G̃′,ε
u (s, uε(s))ϕ+ Ḡ′,ε

u (t)ϕ
)

ds
]







+
∫ t

0

(

uε(s), (aε(s)(I + ∇χ(
·
ε
,
s

ε2
)) − 〈a(I + ∇χ)〉)∇∇ϕ

)

ds

+
∫ t

0

(

aε(s)∇G̃ε(s, uε(s)) − 〈a∇G̃〉(uε(s)),∇ϕ
)

ds

+
∫ t

0

(

gε(s)χε(s) − 〈gχ〉(uε(s)),∇ϕ
)

ds

+
∫ t

0

(

gε(s)Ḡ′,ε
u (s) − 〈gḠ′

u〉(uε(s)), ϕ
)

ds

+
∫ t

0

(

gε(s)G̃′,ε
u (s, uε(s)) − 〈gG̃′

u〉(uε(s)), ϕ
)

ds

+
∫ t

0

(

hε(s) − 〈h〉(uε(s)), ϕ
)

ds.

Here and in what follows the notation 〈θ〉(u) stands for E
∫

Tn θ(z, t, u)dz,
with periodic in z and stationary in t random function θ(z, t, u).
If θ doesn’t depend on u we simply write 〈θ〉.
Since all the terms in figure brackets have uniformly bounded
expectations, the contribution of these terms vanishes as ε → 0.

The fact that the other terms on the right hand side tend to 0
can be proved in the same way as in proposition 7 in [14]. We

conclude that

lim
ε↘0

E[ sup
0≤t≤T

|Aε(t)|] = 0. (28)
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Let Q be an accumulation point of the sequence of probability
measures {P ◦ {uε}−1} defined on B(ṼT ), and denote by u a ran-

dom variable with law Q.

Let 0 ≤ s < t ≤ T , and let Θs be a continuous bounded func-

tional defined on Ṽs. If we set Θε
s = Θs(u

ε) and denote by Fϕ the
functional

Fϕ(t, u) :=
(

u(t), ϕ
)

−
(

u0, ϕ
)

−
∫ t

0

(

u(s), 〈a(I + ∇χ)〉∇∇ϕ
)

ds

−
∫ t

0

[(

〈a∇G̃〉(u(s)),∇ϕ
)

+
(

〈gχ〉(u(s)),∇ϕ
)]

ds

−
∫ t

0

[(

〈gḠ′
u〉(u(s)), ϕ

)

+
(

〈gG̃′
u〉(u(s)), ϕ

)

+
(

〈h〉(u(s)), ϕ
)]

ds,

for any u ∈ VT , then from formula (27) it follows that

E[(Fϕ(t, uε) − (Fϕ(s, uε))Θε
s] = E[(Aε(t) −Aε(s))Θ

ε
s]

Using proposition 6 in [14] and taking into account (19) we can
pass to the limit here as ε → 0 and conclude that the process

Fϕ is a Q-martingale with respect to the natural filtration of
σ-algebras B(Ṽt), 0 ≤ t ≤ T .

We treat now the martingale term Mϕ,ε
t through its quadratic

variation which was computed in (25). Notice that all the terms
on the right hand side of (25) vanishes as ε → 0, except for the

third one. Therefore,

E
(

sup
0≤t≤T

|〈Mϕ,ε〉t − 2
∫ t

0
(Ḡε(s), ϕ)(ḡε(s), ϕ)ds|

)

−−→
ε→0

0. (29)

Denote by (R(v)ϕ, ϕ) the quantity

2E
[(

Ḡ(t, v), ϕ
)(

ḡ(t, v), ϕ
)]

= 2E
∫

Rn

∫

Rn
Ḡ(t, v(x))ḡ(t, v(y))ϕ(x)ϕ(y)dxdy,

(30)
for v ∈ L2(Rn). The bilinear form R(v) does not depend on t.
Using the relation (5) and the stationarity of the random field

ḡ(t, u), for each real u, we derive the following representation for
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R(v)

(R(v)ϕ, ϕ) =2
∫ ∞
t
dsE

∫

Rn

∫

Rn
ḡ(s, v(x))ḡ(t, v(x′))ϕ(x)ϕ(x′)dxdx′

=2
∫ ∞
0
dsE

∫

Rn

∫

Rn
ḡ(s+ t, v(x))ḡ(t, v(x′))ϕ(x)ϕ(x′)dxdx′

=2
∫ ∞
0
dsE

∫

Rn

∫

Rn
ḡ(s, v(x))ḡ(0, v(x′))ϕ(x)ϕ(x′)dxdx′

for any ϕ ∈ L2(Rn).

The mappings Ḡ(t, ·) and ḡ(t, ·) are Lipschitz continuous uni-
formly with respect to t. Now, following exactly the same scheme

as that in the proof of Proposition 8 in [14], we derive

E
(

sup
0≤t≤T

|
∫ t

0

[(

Ḡε(s), ϕ
)(

ḡε(s), ϕ
)

−
(

R(uε(s))ϕ, ϕ
)]

ds|
)

−−→
ε↘0

0.

Combining this formula with (28) and (29), we pass to the limit,

as ε↘ 0, in (27) and arrive at the following statement.

Proposition 3 For every ϕ ∈ C∞
0 (Rn), the process

Fϕ(t, u) =
(

u(t), ϕ
)

−
(

u0, ϕ
)

−
∫ t

0

(

Â(u(s)), ϕ
)

ds,

defined over the probability space (VT ,B(ṼT), Q) is a square inte-
grable martingale w.r.t. the natural filtration of σ-algebras, with
the associated quadratic variation process given by

〈Fϕ(·, u)〉t =
∫ t

0

(

R(u(s))ϕ, ϕ
)

ds,

where

Â(v) :=div〈a(I + ∇χ)〉∇v) − div〈a∇G̃〉(v) − div〈gχ〉(v)

+ 〈g(G̃′
u + Ḡ′

u)〉(v) + 〈h〉(v)
(31)

and R(u) is defined in (30).

We prove now that the martingale problem we just stated has
a unique solution. To this end we apply the well-known result
of Yamada-Watanabe which specifies that the uniqueness of the

solution of a martingale problem is a consequence of the path-
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wise uniqueness for a corresponding SDE. This result may be
adapted to our type of SPDE.

We define the Hilbert space K of real valued stationary random
processes as follows. We first denote by W the set of all processes

{ḡ(t, u), t ≥ 0}, where u varies in R and let Span(W ) be the linear
set generated by W . All the processes in Span(W ) are stationary

and adapted to the filtration {Ft}. The space Span(W ) may be
endowed with the bilinear form:

< ḡu, ḡv >:=
∫ ∞
0

E[ḡ(0, u)ḡ(t, v) + ḡ(0, v)ḡ(t, u)]dt,

where for instance ḡu stands for ḡ(·, u). In view of assumption

(A.6) this form is well defined. Also it is easy to see that < ·, · >
is pre-Hilbertian, as considered on the quotient space Span(W )/N ,

where N is the null set {h ∈ Span(W )/ < h, h >= 0}.
Set now K the closure of Span(W )/N under < ·, · > . In this
way K becomes a Hilbert space. We now define , for each fixed

w in L2(Rn), the mapping

C∗(w) : L2(Rn) 7→ K

as

[C∗(w)ϕ](t) :=
∫

Rn
ḡ(t, w(x))ϕ(x)dx,

and denote by C(w) the adjoint of C∗(w).

It is easy to see that C(w) is a linear operator, for each w, and is
Lipschitz with respect to the parameter w, according to assump-
tion (A.3), i.e. ‖C(w2) − C(w1)‖L(K;L2(Rn)) ≤ ‖w2 − w1‖L2(Rn).

The following relations are straightforward

< C(w)C∗(w)ϕ, ϕ >=< C∗(w)ϕ, C∗(w)ϕ >

=
∫ ∞
0

E[C∗(w)ϕ](0)[C∗(w)ϕ](t)dt

=
∫ ∞
0

E
[

∫

Rn

∫

Rn
ḡ(0, w(x))ϕ(x)ḡ(t, w(y))ϕ(y)dxdy

]

dt

=(R(w)ϕ, ϕ).
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Consider now the following SPDE in L2(Rn)










du(t) = Â(u(t))dt+ C(u(t))dBt,

u(0) = u0,
(32)

where Bt is a standard cylindrical Brownian motion on K, i.e.
for any h ∈ K,< h,Bt > is a real valued Brownian motion with
covariance t

√
< h, h >, and Â(u) is defined in (6). By theorem

1.1, page 83, in [12], the equation (32) has a unique solution u in
VT . 2

5.2 Case α < 2 : Proof of Theorem 2

We consider first the following elliptic PDEs written in divergence

form
Aχ−

i (z, s) = −divai(z, s), z ∈ Tn, (33)

1 ≤ i ≤ n, s ∈ [0,∞) being a parameter. For each s ∈ R

this equation has a unique up to an additive constant solution,

χ−(z, s) denotes the solution which satisfies:
∫

Tn
χ−

i (z, s)dz = 0.

Combining now the theorems 8.3, 8.8 and 8.34 from [7], we deduce
that χ−

i (·, s) ∈ W 2,2(Tn)
⋂C1,γ(Tn), γ ∈ (0, 1) being a determin-

istic constant. The assumption A.7 and Theorem 8.22 from [7]

tells us now that ψ−
i (z, s) := ∂χ−

i

∂s
(,̇s) ∈ W 1,2(Tn)

⋃ Cγ(Tn) and
satisfies the equation:

Aψ−
i (z, s) = −∂divai

∂s
(z, s) − div

(

∂a

∂s
(z, s)∇zχ

−(z, s)

)

. (34)

It is obvious that
∫

Tn
ψ−

i (z, s)dz =
∂

∂s

∫

Tn
χ−

i (z, s)dz = 0.

Now, like in (8), one can find Ei(z, s) ∈ C1,γ(Tn) such that,

∂χ−
i

∂s
= divEi(z, s) (35)
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Denote χ−,ε(x, t) := χ− (x
ε
, t

εα

)

and Eε(x, t) = E
(

x
ε
, t

εα

)

.

For an arbitrary ϕ ∈ C∞
0 set

Φε(t) = (uε(t), ϕ) + ε(χ−,ε(t)uε(t),∇ϕ) + ε
α
2

(

Ḡε(
t

εα
, uε(t)), ϕ

)

We have

d
(

uε(t), ϕ
)

= −
(

aε(t)∇uε(t),∇ϕ
)

dt+
1

ε
α
2

(

gε(t), ϕ
)

dt+
(

hε(t), ϕ
)

dt

=
1

ε

(

uε(t), divai(
·
ε
,
t

εα
)
∂ϕ

∂xi

)

dt+
(

uε(t), aε(t)∇∇ϕ
)

dt

+ ε1−α
2

(

divx

[

H̃(
·
ε
,
t

εα
, uε(t))

]

, ϕ
)

dt

− ε1−α
2

(

H̃ ′
u(
·
ε
,
t

εα
, uε(t))∇uε(t), ϕ

)

dt

+ ε−
α
2 (ḡε(t), ϕ)dt+ (hε(t), ϕ)dt,

d

[

ε
α
2

(

Ḡε(
t

εα
, uε(t)), ϕ

)]

= −ε−α
2 (ḡε(t), ϕ)dt

− ε
α
2

(

aε(t)∇uε(t), Ḡ′,ε
u (t)∇ϕ+ Ḡ′′,ε

uu (t)∇uε(t)ϕ
)

dt

+

(

g(
·
ε
,
t

εα
, uε(t))Ḡ′

u(
t

εα
, uε(t)), ϕ

)

dt

+ ε
α
2

(

hε(t)Ḡ′
u(
t

εα
, uε(t)), ϕ

)

dt+ dMϕ,ε
t ,

d[ε(χ−,ε(t)uε(t),∇ϕ)] = ε1−α





∂χ−,ε

ds
(t), uε(t)∇ϕ



 dt

+ ε1





∂uε(t)

dt
(t), χ−,ε(t)∇ϕ



 dt

= ε2−α(Eε(t), uε(t)∇∇ϕ)dt+ ε2−α(Eε(t),∇uε(t)∇ϕ)dt

+
1

ε

(

∇z(a
ε(t)∇z(χ

−,ε(t))uε(t),∇ϕ
)

dt

+
(

aε(t)∇zχ
−,ε(t), uε(t)∇∇ϕ

)

dt

− ε
(

aε(t)∇uε(t), χ−,ε(t)∇∇ϕ
)

dt

+ ε1−α
2 (gε(t), χ−,ε(t)∇ϕ)dt+ ε(hε(t), χ−,ε(t)∇ϕ)dt,
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where Mϕ,ε
t is a square integrable martingale. Summing up gives

Φε(t) = Φε(0) +
∫ t

0

(

uε(s), a(
·
ε
,
s

εα
)

(

I + ∇zχ
−(

·
ε
,
s

εα

)

∇∇ϕ
)

ds

+
∫ t

0
(hε(s), ϕ)ds+

∫ t

0

(

g(
·
ε
,
s

εα
, uε(s))Ḡ′

u(
s

εα
, uε(s)), ϕ

)

ds

+Mϕ,ε
t +Rε

t ,

where

E( sup
0≤t≤T

|Rε
t |) → 0,

as ε → 0. The quadratic variation of the martingale term Mϕ,ε
t

was computed in (25)

< Mϕ,ε >t=ε
α
(

Ḡ(
t

ε2
, uε(t)), ϕ

)2 − εα
(

Ḡ(0, u0), ϕ
)2

+ 2
∫ t

0

(

Ḡε(s), ϕ
)(

ḡε(s), ϕ
)

ds

+ 2εα
∫ t

0

(

Ḡε(s), ϕ
)(

aε(s)∇uε(s), Ḡ′,ε
u (s)∇ϕ+ Ḡ′′,ε

uu (s)∇uε(s)ϕ
)

ds

− 2ε
3α
2

∫ t

0

(

Ḡε(s), ϕ
)(

gε(s), Ḡ′,ε
u (s)ϕ

)

ds

− 2εα
∫ t

0

(

Ḡε(s), ϕ
)(

hε(s), Ḡ′,ε
u (s)ϕ

)

ds

− 2ε
α
2

∫ t

0

(

Ḡε(s), ϕ
)

dMϕ,ε
s

We now pass to the limit in the last two expressions in the same
way as we did in the proof of Theorem 1 and the required state-

ment follows. 2

5.3 Case α > 2 : Proof of Theorem 3

The proof of convergence is slightly more involved in this last
case, comparing to the two other ones. The general strategy is

the same as in the previous subsections, however we shall need
to introduce and study new types of correctors, and prove some
averaging lemmas adapted to those. In order to try to clarify our

strategy, we split this subsection into smaller units.
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5.3.1 Definition and properties of new correctors

We now define correctors which are obtained via stationary and

ergodic solutions of linear parabolic PDEs with large parame-
ters in front of the time derivative. Let χ+,ε

i (z, s), G̃+,ε(z, s, u) be

stationary and ergodic solutions of the equations

1

εα−2

∂χ+,ε
i

∂s
(z, s) + divz

(

a(z, s)∇zχ
+,ε
i (z, s)

)

= −∂aik

∂zk

(z, s),

1

εα−2

∂G̃+,ε

∂s
(z, s, u) + divz

(

a(z, s)∇zG̃
+,ε(z, s, u)

)

= −g̃(z, s, u),

for s ∈ (−∞,+∞), z ∈ Tn, u ∈ R.

As was proved in [8], for each ε > 0 these equations have station-
ary solutions which are unique under the centering conditions

∫

Tn
χ+,ε(z, s)dz = 0 and

∫

Tn
G̃+,ε(z, s, u)dz = 0.

Define

vε
i (x, t) := χ+,ε

i (x,
t

εα−2
), wε(x, t, u) := G̃+,ε(x,

t

εα−2
, u).

(36)

These functions satisfy the parabolic PDEs:

∂vε
i

∂t
(x, t) + div

[

a(x,
t

εα−2
)∇vε

i (x, t)

]

= −bi(x,
t

εα−2
), (37)

∂wε

∂t
(x, t, u) + div

[

a(x,
t

εα−2
)∇wε(x, t, u)

]

= −g̃(x, t

εα−2
, u),

(38)
where u ∈ R is a parameter, and for brevity we have denoted

bi(z, s) =
∑

k

∂aik

∂zk

(z, s).

The solutions of these equations are periodic in x and stationary

ergodic in t, for each fixed u.
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Proposition 4 For any (t, x) ∈ (0,∞)×Tn,

(a) vε
i (t, x) → χ+

i (x),

(b) χ+,ε
i (x, t) → χ+

i (x),
(39)

a.s., as ε→ 0, where χ+
i is a solution to the first equation in (7).

Moreover these convergences are uniform on Tn × [0, T ], for any
T > 0.

Proof. First we are going to show that uniformly in ε

‖vε
i ‖L∞(Tn×(−∞,∞)) ≤ C (40)

To this end we consider the following Cauchy problems

∂

∂t
vN,ε

i + div

[

a(x,
t

εα−2
)∇vN,ε

i

]

= −1{N−1≤t<N} bi(x,
t

εα−2
) in Tn × (−∞, N),

vN,ε
i |t≥N = 0

with N = 0,±1,±2, . . . . As was shown in the proof of Lemma 4
in [9], the functions vN,ε satisfy the bound

‖vN,ε
i (t, ·)‖L∞(Tn) ≤ Ce−κ(N−t)‖bi‖W−1,∞(Tn×(−∞,∞)), (41)

with constants κ > 0 and C > 0 which only depend on the

ellipticity constants of matrix a(x, t).

By the same Lemma 4 in [9], the function vε admits the repre-

sentation

vε =
∞
∑

N=−∞
vN,ε.

Summing up the estimates (41) we obtain the desired bound (40).

Next, combining (40) with the Nash estimate for solutions of
parabolic equations, we conclude that the family of functions

{vε, ε > 0, ω ∈ Ω} is Hölder continuous in Tn × (−∞,∞) and,
moreover for any a ∈ R,

‖vε‖Cν(Tn×[a,a+1]) ≤ C

for some ν > 0 and C > 0 which do not depend on a. Hence the

same estimate holds for the Cν(Tn× (−∞,∞)) norm. Therefore,
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for each ω ∈ Ω the function vε converges along a subsequence, as
ε → 0, and the convergence is uniform on compact sets. Denote

the limit function by v0 = v0(x, t).

Now denote V ε
k = ∂

∂xk
vε. Approximating the coefficients {aij} by

smooth ones, one can easily show that V ε
k solves the equation

∂

∂t
V ε

k +div

[

a(x,
t

εα−2
)∇V ε

k

]

= − ∂

∂xk

b(x,
t

εα−2
)−div

[( ∂

∂xk

a(x,
t

εα−2
)
)

∇vε
]

We want to show that for any a ∈ R, ω ∈ Ω, V ε
k (ω) is a compact

family (indexed by ε > 0) of elements of L2(Tn× (a, a+1)). The
function on the right hand side of the V ε

k –equation is uniformly

bounded in
L2((a − 1, a + 1);H−1(Tn)). Moreover there exists C > 0 such

that

‖V ε
k ‖L2((a−1,a)×Tn) ≤ C,

hence for each ε > 0 and ω ∈ Ω, there exists t0 ∈ (a− 1, a) such

that

‖V ε
k (t0)‖L2(Tn) ≤ C.

Now from standard parabolic estimate,

‖V ε
k ‖L2(a,a+1;H1(Tn)) +

∥

∥

∥

∥

∥

∂V ε
k

∂t

∥

∥

∥

∥

∥

L2(a,a+1;H−1(Tn))
≤ C ′,

which implies the whished compactness in L2(Tn × (a, a+ 1)).

Let ϕ = ϕ(x, t) be a C∞(Tn×(−∞,∞)) function with a compact
support. Using ϕ as a test function in the integral identity of the

first equation in (7), we get

∞
∫

−∞

∫

Tn
vε∂ϕ

∂t
dxdt+

∞
∫

−∞

∫

Tn
a(x,

t

εα−2
)∇vε · ∇ϕdxdt =

= −
∞
∫

−∞

∫

Tn
a(x,

t

εα−2
)∇ϕdxdt.

By the Birkhoff ergodic theorem a(x, t
εα−2 ) converges a.s., as ε→

0, towards ā(x) = Ea(x, s) weakly in L2
loc(T

n × (−∞,∞)). Pass-
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ing to the limit in the above integral relation we find

∞
∫

−∞

∫

Tn
v0ϕdxdt+

∞
∫

−∞

∫

Tn
ā(x)∇v0 · ∇ϕdxdt =

= −
∞
∫

−∞

∫

Tn
ā(x)∇ϕdxdt.

Therefore, v0 is a bounded zero spatial average solution of the
equation

∂

∂t
v0 + div

[

ā(x)∇v0
]

= −divā(x).

By the uniqueness of a bounded solution, v0 does not depend on t
and solves the elliptic equation div

[

ā(x)∇v0
]

= −divā(x). Thus

v(x) = χ+(x), and the entire family vε converges a.s. to χ+(x),
as ε→ 0.

The second convergence in (39) is the evident consequence of the
first one. 2

We have also proved the following statement.

Lemma 4 The sequences {χ+,ε
i , ε > 0} and

{

∂χ
+,ε
i

∂xj
, ε > 0

}

are

bounded in L∞(Tn × [0,∞)), uniformly in ω ∈ Ω.

Similar results hold for the process G̃+,ε(x, t, u), as well as G̃+,ε
u (x, t, u).

Lemma 5 (a) For any (t, x) ∈ (0,∞)×Tn, u ∈ R, the following

convergence takes place:

wε(x, t, u) →G̃+(x, u),

G̃+,ε(x, t, u) →G̃+(x, u),

G̃+,ε,′

u (x, t, u) →G̃+,′

u (x, u).

in probability, as ε→ 0.
(b) The function G̃+,ε(x, t, u) is differentiable in x and its partial

derivatives
∂G̃+,ε

∂xj

(x, t, ·) are Lipschitz, uniformly with respect to

ε, x, t, ω.
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(c) The following bounds hold

|G̃+,ε(x, t, u)| ≤ C|u|,
∣

∣

∣

∣

∣

∣

∂G̃+,ε

∂xj

(x, t, u)

∣

∣

∣

∣

∣

∣

≤ C |u| ,

for any (t, x) ∈ [0,∞) ×Tn, u ∈ R.

We now define

χ+,ε,α(x, t) = χ+,ε

(

x

ε
,
t

εα

)

, G̃+,ε,α(x, t, u) = G̃+,ε

(

x

ε
,
t

εα
, u

)

.

It is easy to see that these processes satisfy the equations

ε2∂χ
+,ε,α
i

∂t
(x, t) + ε2divx

(

a(
x

ε
,
t

εα
)∇xχ

+,ε,α
i (x, t)

)

= −∂aik

∂zk

(
x

ε
,
t

εα
),

ε2∂G̃
+,ε,α

∂t
(x, t, u)+ε2divx

(

a(
x

ε
,
t

εα
)∇xG̃

+,ε,α(x, t, u)
)

= −g̃(x
ε
,
t

εα
, u).

Moreover G̃+,ε,α,′

u and G̃+,ε,α,′′

uu satisfy

ε2∂G̃
+,ε,α,′

u

∂t
(x, t, u)+ε2divx

(

aε(
x

ε
,
t

εα
)∇xG̃

+,ε,α,′

u (x, t, u)
)

= −g̃′u(
x

ε
,
t

εα
, u),

ε2∂G̃
+,ε,α,′′

uu

∂t
(x, t, u)+ε2divx

(

aε(
x

ε
,
t

εα
)∇xG̃

+,ε,α,′′

uu (x, t, u)
)

= −g̃′′uu(
x

ε
,
t

εα
, u),

5.3.2 Preparation for taking the limit

Consider now the process:

Ψε,α(t) =
(

uε(t), ϕ
)

+ εα−1
(

Ḡ(
t

εα
, uε(t)), ϕ

)

+ ε
(

χ+,ε,α(t)uε(t),∇ϕ
)

+ ε
(

G̃+,ε,α(t, uε(t)), ϕ
)

.

Differentiating the terms on the right hand gives

εα−1d
(

Ḡ(
t

εα
, uε(t)), ϕ

)

= −1

ε

(

ḡε(t), ϕ
)

dt− εα−1
(

aε(t)∇uε(t), Ḡ′,ε
u (t)∇ϕ+ Ḡ′′,ε

uu (t)∇uε(t)ϕ
)

dt

+ εα−2
(

gε(t), Ḡ′,ε
u (t)ϕ

)

dt+ εα−1
(

hε(t), Ḡ′,ε
u (t)ϕ

)

dt+ dMϕ,ε
t ,
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εd
(

χ+,ε(t)uε(t),∇ϕ
)

=
(

aε(t)uε(t),∇zχ
+,ε(

·
ε
,
t

εα
)∇∇ϕ

)

dt− 1

ε

(

divzai(
·
ε
,
t

εα
), uε(t)

∂ϕ

∂xi

)

dt

− ε
(

aε(t)∇uε(t), χ+,ε,α(t)∇∇ϕ
)

dt+
(

gε(t)χ+,ε,α(t),∇ϕ
)

dt

+ ε
(

hε(t)χ+,ε,α(t),∇ϕ
)

dt,

εd
(

G̃+,ε(·, t, uε(t)), ϕ
)

=
(

aε(t)∇zG̃
+,ε(

·
ε
,
t

εα
, uε(t)),∇ϕ

)

dt− 1

ε

(

g̃ε(t), ϕ
)

dt

− ε
(

aε(t)∇uε(t), G̃+,ε,′
u (

·
ε
,
t

εα
, uε(t))∇ϕ

)

dt

− ε
(

aε(t)∇uε(t), G̃+,ε,′′
uu (

·
ε
,
t

εα
, uε(t))∇uε(t)ϕ

)

dt

+
(

gε(t), G̃+,ε,′
u (

·
ε
,
t

εα
, uε(t))ϕ

)

dt+ ε
(

hε(t), G̃+,ε,′
u (

·
ε
,
t

εα
, uε(t))ϕ

)

dt.

Summing up the above relations we get

dΨε(t) =
(

(I + ∇zχ
+,ε(

·
ε
,
t

εα
))aε(t)uε(t),∇∇ϕ

)

dt

+
(

aε(t)∇zG̃
+,ε(

·
ε
,
t

εα
, uε(t)) + χ+,ε(

·
ε
,
t

εα
)gε(t),∇ϕ

)

dt

+
(

G̃+,ε,′
u (

·
ε
,
t

εα
, uε(t))gε(t), ϕ

)

dt+
(

hε(t), ϕ
)

dt+ dMϕ,ε
t

− ε
[(

aε(t)∇uε(t), G̃+,ε,α,′′
uu (t, uε(t))∇uε(t)ϕ+ G̃+,ε,α,′

u (t, uε(t))∇ϕ
)

dt

+
(

aε(t)∇uε(t), χ+,ε(t)∇∇ϕ
)

dt

−
(

hε(t), χ+,ε(t)∇ϕ+ G̃+,ε,α,′
u (t, uε(t))ϕ

)

dt
]

− εα−1
(

aε(t)∇uε(t), Ḡ′,ε
u (t)∇ϕ+ Ḡ′′,ε

uu (t)∇uε(t)ϕ
)

dt

+ εα−2
(

gε(t), Ḡ′,ε
u (t)ϕ

)

dt+ εα−1
(

hε(t), Ḡ′,ε
u (t)ϕ

)

dt

(42)

Denote, as in the case α = 2, by Q a limit point of the sequence

Qε = L(uε).
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5.3.3 Some averaging lemmas

The following statements will allow us to pass to the limit in (42).

Lemma 6 Let Eε(z, t, u) be a sequence of continuous z-periodic
random fields, such that

|Eε(z, t, u)| ≤ C|u|,

|Eε(z, t, u2) −Eε(z, t, u1)| ≤ C|u2 − u1|,

for any u, u1, u2 ∈ R, uniformly with respect to ε, t, z, ω. More-

over, suppose that for each ε > 0, s > 0, u ∈ R, the function
Eε has a.s. zero spatial average :

∫

Tn Eε(z, s, u)dz = 0, and for
each ε > 0, s > 0 the function u→ Eε(z, t, u) is a.s. of class C1.

Then for any t ∈ [0, T ] and ϕ ∈ C∞
0 (Rn), the following conver-

gence holds true:

∫ t

0

∫

K
Eε

(

x

ε
,
s

εα
, uε(s, x)

)

ϕ(x)dxds→ 0,

in L1(Ω), as ε→ 0, where K stands for supp(ϕ).

Proof. Making use of the representation

Eε(z, t, u) = divz [κε(z, t, u)] ,

where u ∈ R is a parameter and κε(z, t, u) is a z-periodic function

satisfying the estimates

|κε(x, t, u)| ≤ C|u|,

|κ′u, ε(x, t, u)| ≤ C,

we obtain

divx

[

κε(
x

ε
, t, uε(t, x))

]

=
1

ε
Eε(

x

ε
, t, uε(t, x))+κ′u

, ε
(
x

ε
, t, uε(t, x))∇uε(t, x).
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By Proposition 1, we get

E|
∫ t

0

∫

K
Eε

(

x

ε
,
s

εα
, uε(s, x)

)

ϕ(x)dxds|

= E|ε
∫ t

0

∫

K
κε

(

x

ε
,
s

εα
, uε(s, x)

)

∇ϕ(x)dxds

+ ε
∫ t

0

∫

K
κ′u

, ε
(

x

ε
,
s

εα
, uε(s, x)

)

∇uε(s, x)ϕ(x)dxds|

≤ εC[tE sup
0≤s≤t

‖uε(s)‖L2(K) + E
∫ t

0
‖∇uε(s)‖L2(K)ds]

≤ εC(t+ 1).

2

Let d(z, r) and c(z, r) be stationary, continuous, periodic in z ran-
dom fields, which are measurable w.r.t. σ{a(z, r), g(z, r, u), h(z, r, u), z ∈
Tn, u ∈ R}, and satisfy, for some C > 0,

∫

Tn
c(z, r)dz = 0, |d(z, r)| ≤ C.

Define

f ε(r) =
∫

Tn
d(z,

r

εα−2
)F ε(z, r)dz, f ε

1 (r) =
∫

Tn
d(z,

r

εα−2
)∇F ε(z, r)dz,

where F ε stands for a stationary zero average solution of the
following parabolic equation:

∂F ε

∂t
(z, t) + div

[

a(z,
t

εα−2
)∇F ε(z, t)

]

= c(z,
t

εα−2
).

Lemma 7 For any t > 0, the following convegences hold in

L2(Ω), as ε→ 0,

1

t

∫ t

0
f ε(

r

ε2
)dr −Ef ε(0) → 0,

1

t

∫ t

0
f ε

1(
r

ε2
)dr − Ef ε

1(0) → 0.

Proof. Denote by FN,ε(z, t) the solution of the Cauchy problem

∂FN,ε

∂t
(z, t) + div

[

a(z,
t

εα−2
)∇FN,ε(z, t)

]

= c(z,
t

εα−2
),

FN,ε(z,N) = 0, (z, t) ∈ Tn × (−∞, N),
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where N is an arbitrary real number. The difference (FN,ε(z, t)−
F ε(z, t)) decays exponentially, as (N − t) → ∞, uniformly in ε,
that is

sup
z∈Tn, t∈[k,k+1]

|FN,ε(z, t) − F ε(z, t)| ≤ Ce−γ(N−k),

for any k ≤ N , with nonrandom constants C and γ. Denote
fN,ε(r) =

∫

Tn d(z, r
εα−2)F

N,ε(z, r)dz. By integrating the latter in-

equality over Tn we get

|fN,ε(t) − f ε(t)| ≤ Ce−γ(N−t), (43)

Since f
t
2
,ε(0) is measurable with respect to the events before t

2εα−2 ,

and f ε(t) is measurable with respect to the events after time t
εα−2 ,

for each t > 0,

|E[(f ε(t)f ε(0) −E(f ε(t)Ef ε(0)]|
= |E[(f ε(t) −E(f ε(t))f ε(0)]|
= |E{(f ε(0) − f

t
2
,ε(0))(f ε(t) − Ef ε(t)) + f

t
2
,ε(0)(f ε(t) − Ef ε(t))}|

≤ 2Ce−γ t
2E|f ε(t)| + Cφ(

t

2εα−2
)
√

E(f
t
2
,ε(0))2E(f ε(0))2

≤ C(e−γ t
2 + φ(

t

2εα−2
)),

where φ(t) denotes again the uniform mixing coefficient (for fur-
ther details see Lemmas 3 and 4 in [8]). Hence

E
[(ε2

t

∫ t

ε2

0
(f ε(s) − Ef ε(s))ds

)2]

=
ε4

t2

∫ t

ε2

0

∫ t

ε2

0
E[f ε(s)f ε(r) − E(f ε(s))E(f ε(r))]dsdr

= 2
ε4

t2

∫ t

ε2

0

∫ s

0
E[f ε(s)f ε(r) −E(f ε(s))E(f ε(r))]drds

≤ 2C
ε4

t2

∫ t

ε2

0

∫ s

0
[e−γ s−r

2 + φ(
s− r

2εα−2
)]drds

≤ C ′ε
2

t
.

where we have used the assumption (A.6) and the stationarity

of the random field f ε(s). The first result follows. The second one
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can be proved similarly. 2

Lemma 8 The following convergence holds, as ε → 0, for any

r ≥ 0

(a) E
∫

Tn

(

a(z,
r

εα−2
)(I + ∇zv

ε(z, r)

)

dz −E
∫

Tn

(

a(z, 0)(I + ∇χ+(z))
)

dz → 0

(b) E
∫

Tn

(

a(z,
r

εα−2
)∇zw

ε(z, r, uε(εz, ε2r))

)

dz − E
∫

Tn
〈a∇zG̃

+〉(uε(εz, ε2r))dz →

where for each ε > 0, uε is the solution of the problem (1), vε

and wε are defined in (36).

Proof Denote

ηε = E
∫

Tn
a(z,

r

εα−2
)(I + ∇zv

ε(z, r))dz.

In view of the stationarity of the integrand, we may write :

ηε = E
∫

Tn

∫ 1

0
a(z,

r

εα−2
)(I + ∇zv

ε(z, r))drdz.

By the definition of vε we have

E
∫ 1

0

∫

Tn
a(z,

r

εα−2
)∇χ+(z)(I + ∇zv

ε(z, r))dzdr

= −E
∫ 1

0

∫

Tn
div[a(z,

r

εα−2
)(I + ∇zv

ε(z, r))] χ+(z)dzdr

= E
∫

Tn

∫ 1

0

∂vε

∂s
(z, s)χ+(z)dsdz = 0.

Hence

ηε = E
∫ 1

0

∫

Tn
a(z,

r

εα−2
)(I + ∇χ+(z))(I + ∇zv

ε(z, r))drdz

= E
∫ 1

0

∫

Tn
a(z,

r

εα−2
)(I + ∇χ+(z))dz

−E
∫ 1

0

∫

Tn
div

[

a(z,
r

εα−2
)(I + ∇χ+(z))

]

vε(z, s)dzds

= E
∫

Tn
a(z, 0)(I + ∇χ+(z))dz − E

∫

Tn
div

[

a(z, 0)(I + ∇χ+(z))
]

χ+(z)dz

−E
∫ 1

0

∫

Tn
div

[

a(z,
r

εα−2
)(I + ∇χ+(z))

]

(vε(z, r) − χ+(z))dzdr.

The second term on the r. h. s. is equal to 0 by (7). The third term

tends to 0 by Proposition 4, Lemma 4 and the boundedness of the
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first factor of the integrand. Statement (b) can be proved in an
analogous way, using Proposition 1, Lemma 5, and the argument

developed in the last part of the proof of Lemma 9 below (the
study of the term Iε

2). 2

5.3.4 Passage to the limit

Let {uε} denote a subsequence of solutions of (1) that converges
in law, as ε→ 0, in the space ṼT . We denote by Q the limit law,

and by u the generic element of ṼT .

Proposition 5 For any ϕ ∈ C∞
0 (Rn), the process Mϕ

t defined on
the probability space (VT ,B(ṼT), Q) by the formula:

Mϕ
t := (u(t), ϕ)− (u0, ϕ) −

∫ t

0
(u(s), ã∇∇ϕ) ds

+
∫ t

0

(

b̂(u(s)),∇ϕ
)

ds−
∫ t

0

(

ĥ(u(s)), ϕ
)

ds

is a martingale with respect to the natural filtration of σ-algebras

B(Ṽt), 0 ≤ t ≤ T .

Proof Fix 0 ≤ s < t ≤ T and let again Θs denote an arbitrary

bounded continuous functional defined on Ṽs. We denote Θε
s =

Θs(u
ε), and write Θs for Θs(u). By the formula (42), we have:

0 = E
[

(Mϕ,ε
t −Mϕ,ε

s )Θε
s

]

= E
[

(uε(t), ϕ)− (uε(s), ϕ)
]

Θε
s

− E
[

∫ t

s

(

aε(r)(I + ∇zχ
+,ε(

·
ε
,
r

εα
))uε(r),∇∇ϕ

)

dr
]

Θε
s

− E
[

∫ t

s

(

aε(r)∇zG̃
+,ε(

·
ε
,
r

εα
, uε(r)) + χ+,ε(

·
ε
,
r

εα
)gε(r),∇ϕ

)

dr
]

Θε
s

− E
[

∫ t

s

(

G̃+,ε,′
u (

·
ε
,
r

εα
, uε(r))gε(r), ϕ

)

dr
]

Θε
s

− E
[

∫ t

s

(

hε(r), ϕ
)

dr
]

Θε
s + εα−2Rε,

where Rε is bounded. We proceed with the following statement.

Lemma 9 For any test function ϕ ∈ C∞
0 (Rn) and 0 < s < t < T ,

the following convergence takes place, as ε→ 0,

(a) E
∫ t

s

(

a(
·
ε
,
r

εα
)(I + ∇zχ

+,ε(
·
ε
,
r

εα
))uε(r),∇∇ϕ

)

Θε
sdr
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→ EQ
∫ t

s

(

〈a(I + ∇zχ
+)〉u(r),∇∇ϕ

)

Θsdr,

where 〈a(I + ∇zχ
+)〉 = E

∫

Tn a(z, r)(I + ∇χ+(z))dz, and EQ de-

notes expectation with respect to the measure Q;

(b) E
∫ t

s

(

a(
·
ε
,
r

εα
)(∇zG̃

+,ε(
·
ε
,
r

εα
, uε(r)),∇ϕ

)

Θε
sdr

→ EQ
∫ t

s

(

〈a∇zG̃
+〉(u(r)),∇ϕ

)

Θsdr,

(c) E
∫ t

s

(

χ+,ε(
·
ε
,
r

εα
)g(

·
ε
,
r

εα
, uε(r)),∇ϕ

)

Θε
s

→ EQ
∫ t

s
〈χ+g〉(u(r)),∇ϕ

)

Θsdr,

(d) E
∫ t

s

(

G̃+,ε,′
u (

·
ε
,
r

εα
, uε(s))g(

·
ε
,
r

εα
, uε(r)) + hε(r), ϕ

)

Θε
sdr

→ EQ
∫ t

s
〈G̃+,′

u g + h〉(u(r)), ϕ
)

Θsdr.

Proof. We prove the first statement only. Essentially similar ar-

guments apply to the others. Denote K := supp(ϕ). In (a), we
only consider the most complex term :
∣

∣

∣

∣

E
∫ t

s

(

a(
·
ε
,
r

εα
)∇zχ

+,ε(
·
ε
,
r

εα
)uε(r),∇∇ϕ

)

Θε
sdr −EQ

∫ t

s
〈a∇zχ

+〉u(r),∇∇ϕ
)

Θsdr
∣

∣

∣

∣

≤ E
∫ t

s

∣

∣

∣

∣

∫

K

[

a(
x

ε
,
r

εα
)∇zχ

+,ε(
x

ε
,
r

εα
)

−
∫

Tn
a(z,

r

εα
)∇χ+,ε(z,

r

εα
)dz

]

uε(x, r)∇∇ϕ(x)dx
∣

∣

∣

∣

dr |Θε
s|

+ E
∫

K

∣

∣

∣

∣

∫ t

s

[ ∫

Tn
a(z,

r

εα
)∇χ+,ε(z,

r

εα
)dz

−E
∫

Tn
a(z, 0)∇zv

ε(z, 0)dz
]

uε(x, r)∇∇ϕ(x)dr
∣

∣

∣

∣

dx|Θε
s|

+
∣

∣

∣

∣

E
∫

K

{ ∫ t

s

[

E
∫

Tn
a(z, 0)∇zv

ε(z, 0)dz − 〈a∇zχ
+〉
]

× uε(x, r)∇∇ϕ(x)dr
}

dx
∣

∣

∣

∣

|Θε
s|

+
∣

∣

∣

∣

∫

K
E
∫ t

s
〈a∇zχ

+〉uε(x, r)∇∇ϕ(x)drdxΘε
s

−
∫

K
EQ

∫ t

s
〈a∇zχ

+〉u(x, r)∇∇ϕ(x)drdxΘs

∣

∣

∣

∣

= Iε
1 + Iε

2 + Iε
3 + Iε

4 .

From the convergence in law of the uniformly integrable sub-

sequence {uε} it follows that Iε
4 → 0, as ε → 0. The uniform
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integrability is a direct consequence of Proposition 1. The conver-
gence of Iε

1 to 0 follows from Lemma 6 and Lebesgue’s dominated

convergence theorem, while the same result for the integral Iε
3 is

proved in Lemma 8.

It remains to consider the second term Iε
2. Fix a small δ > 0. The

tightness of the sequence (uε) allows us to choose, for any t > 0

and any compact set K, the step functions qj(r, x), 1 ≤ j ≤ N ,
defined on (0, T )×K, such that: P

(

⋂

j(B
ε
j )

c
)

< δ, ∀ε > 0, where

the events Bε
j , 1 ≤ j ≤ N , are disjoint and such that

Bε
j ⊆ {‖uε(x, r) − qj(r, x)‖L2((0,t)×K) < δ}.

This δ–net can be chosen in such a way that all its elements qj
have the form:

qj(r, x) =
∑

i

αj
i1[tji−1

,t
j
i ]×K

j
i
(r, x),

where {tji , 1 ≤ i ≤ N}, is a partition of [0, t] and the sets {Kj
i ,

1 ≤ i ≤ N} are disjoint and such that their union contains K.

Denote

Aε :=
⋂

j

{‖uε(x, r) − qj(r, x)‖L2((0,t)×K) > δ},

and

eε(r) :=
∫

Tn
a(z,

r

εα−2
)∇zv

ε(z, r)dz

We then obtain:

Iε
2 ≤ C

∫

Aε

∫

K

∫ t

s

∣

∣

∣

∣

∣

eε(
r

ε2
) − E(eε(0))

∣

∣

∣

∣

∣

|uε(x, r)| drdx dP

+ C
∑

j

∫

Bε
j

[
∑

i

|
∫ ti

ti−1

[

eε(
r

ε2
) − E(eε(0))

]

dr|αj
i ] dP

+ C
∑

j

∫

Bε
j

∫ t

s

∫

K
|uε(r, x)− qj(r, x)| drdx dP

= Jε
1 + Jε

2 + Jε
3 .
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It is clear that Jε
1 < Cδ, due to the fact that P(Aε) < δ. Lemma

7 implies that Jε
2 → 0. Finally, Jε

3 satisfies the estimate

Jε
3 < C

√
t
∑

j

∫

Bε
j

‖uε − qj‖L2((0,t)×K) < C
√
Tδ.

The convergence of Iε
2 to 0 is now obvious. 2

The quadratic variation of the martingale term Mϕ,ε was com-

puted in the formula (21) from which it easily follows that

lim
ε→0

E
(

〈Mϕ,ε〉t
)

= 0.

This implies

〈Mϕ〉t = 0, 0 ≤ t ≤ T.

2

Combining this with Proposition 5, we conclude that, on the
probability space (VT ,B(ṼT ), Q), we have:

(v(t), ϕ)− (u0, ϕ) −
∫ t

0
(v(s), ã∇∇ϕ) ds

+
∫ t

0

(

b̂(v(s)),∇ϕ
)

ds−
∫ t

0

(

ĥ(v(s)), ϕ
)

ds = 0,

Q a.s. In the latter relation we have used the notation

b̂(u) := E
∫

Tn

[a(z, s)∇zG̃
+(z, u) + g(z, s, u)χ+(z)]dz, u ∈ R.

Let us show that b̂ = 0. Indeed, by the definition of χ+ and G̃+

one has:

E
∫

Tn

[a(z, s)∇zG̃
+(z, u) + g(z, s, u)χ+(z)]dz

=
∫

Tn

[ā(z)∇zG̃
+(z, u) + (g̃)(z, u)χ+(z)]dz

= −
∫

Tn

[div(ā(z)) G̃+(z, u)]dz +
∫

Tn

[Ā(G̃+(·, u))(z)χ+(z)]dz

= −
(

Āχ+, G̃+(u)
)

L2(Tn)
+
(

ĀG̃+(u), χ+
)

L2(Tn)
= 0,
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where we have also used the assumption (A.5). Hence Q is the
Dirac mass concentrated at a solution of the Cauchy problem:















∂u

∂t
(t, x) = div(ã∇u(t, x)) + ĥ(u); 0 < t < T, x ∈ Rn;

uε(0, x) = u0(x), x ∈ Rn.

Since this problem has a unique solution, the whole sequence

{uε, ε > 0} converges in probability to the solution of the above
Cauchy problem.
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monotones. Etude de solutions fortes de type Itô. Thèse, Université Paris Sud,
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