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Introduction

In this Part I of the lecture notes our focus lies exclusively on stochastic epidemic
models for a homogeneously mixing community of individuals being of the same
type. The important extensions allowing for different types of individuals and al-
lowing for non-uniform mixing behaviour in the community is left for later parts in
the Notes.

In Chapter 1, we present the stochastic SEIR epidemic model, derive some im-
portant properties of it, in particular for the beginning of an outbreak. Motivated by
mathematical tractability rather than realism we then study in Chapter 2 the spe-
cial situation where the model is Markovian, and derive additional results for this
sub-model.

What happens later on in the outbreak will depend on our model assumptions,
which in turn depend on the scientific questions. In Chapter 3 we focus on short-
term outbreaks, when it can be assumed that the community is fixed and constant
during the outbreak; we call these models closed models. In Chapter 4 we are more
interested in long-term behaviour, and then it is necessary to allow for influx of
new individuals and that people die, or to include return to susceptibility. Such so-
called open population models are harder to analyse – for this reason we stick to the
simpler class of Markovian models. In this chapter we consider situations where the
deterministic model has a unique stable equilibrium, and use both the central limit
theorem and large deviation techniques to predict the time at which the disease goes
extinct in the population.

The Notes end with an extensive Appendix, giving some relevant probability
theory used in the main part of the Notes and also solutions to most of the exercises
being scattered out in the different chapters.
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Chapter 1
Stochastic Epidemic Models

This first chapter introduces some basic facts about stochastic epidemic models. We
consider the case of a closed community, i.e. without influx of new susceptibles or
mortality. In particular, we assume that the size of the population is fixed, and that
the individuals who recover from the illness are immune and do not become suscep-
tible again. We describe the general class of stochastic epidemic models, and define
the basic reproduction number, which allows one to determine whether or not a ma-
jor epidemic may start from the initial infection of a small number of individuals.
We then approximate the early stage of an outbreak with the help of a branching
process, and from this obtain the distribution of the final size (i.e. the total number
of individuals who ever get infected) in case of a minor outbreak. Finally we discuss
the impact of vaccination.

The important problem of estimating model parameters from (various types of)
data is left to Part IV of the current volume (also discussed in Chapter 4 of Part III).
Here we assume the model parameters to be known.

1.1 The stochastic SEIR epidemic model in a closed
homogeneous community

1.1.1 Model definition

Consider a closed population of N +1 individuals (N is the number of initially sus-
ceptible). At any point in time each individual is either susceptible, exposed, infec-
tious or recovered. Let S(t), E(t), I(t) and R(t) denote the numbers of individuals
in the different states at time t (so S(t)+E(t)+ I(t)+R(t) = N + 1 for all t). The
epidemic starts at t = 0 in a specified state, often the state with one infectious in-
dividual, called the index case and thought of as being externally infected, and the
rest being susceptible: (S(0),E(0), I(0),R(0)) = (N,0,1,0).

5



6 Part I. Chapter 1. Stochastic Epidemic Models

Definition 1.1.1. While infectious, an individual has infectious contacts according
to a Poisson process with rate λ . Each contact is with an individual chosen uni-
formly at random from the rest of the population, and if the contacted individual is
susceptible he/she becomes infected – otherwise the infectious contact has no ef-
fect. Individuals that become infected are first latent (called exposed) for a random
duration L with distribution FL, then they become infectious for a duration I with
distribution FI , after which they become recovered and immune for the remaining
time. All Poisson processes, uniform contact choices, latent periods and infectious
periods of all individuals are defined to be mutually independent.

The epidemic goes on until the first time τ when there are no exposed or in-
fectious individuals, E(τ) + I(τ) = 0. At this time no further individuals can get
infected so the epidemic stops. The final state hence consists of susceptible and re-
covered individuals, and we let Z denote the final size, i.e. the number of infected (by
then recovered) individuals at the end of the epidemic excluding the index case(s):
Z = R(τ)− I(0) = N−S(τ). The possible values of Z are hence 0, . . . ,N.

1.1.2 Some remarks, submodels and model generalizations

Quite often the rate of “infectious contacts” λ can be thought of as a product of a
rate c at which the infectious individual has contact with others, and the probability
p that such a contact results in infection given that the other person is susceptible, so
λ = cp. As regards to the propagation of the disease it is however only the product
λ that matters and since fewer parameters is preferable we keep only λ .

The rate of infectious contacts is λ , so the rate at which one infectious has contact
with a specific other individual is λ/N since each contact is with a uniformly chosen
other individual.

First we will look what happens in a very small community/group, but the main
focus of these notes is for a large community, and the asymptotics are hence for
N → ∞. The parameters of the model, the infection rate λ , and the latent and in-
fectious periods L and I, are defined independently of N, but the epidemic is highly
dependent on N so when this needs to be emphasized we equip the corresponding
notation with an N-index, e.g. SN(t) and τN which hence is not a power.

Some special cases of the model have received special attention in the literature.
If both L and I are exponentially distributed (with rates ν and γ say), the model
is Markovian which simplifies the mathematical analysis a great deal. This model
is called the Markovian SEIR. If L ≡ 0 and I ∼ Exp(γ) then we have the Marko-
vian SIR (whenever there is no latency period the model is said to be SIR) which is
better known under the unfortunate name the General stochastic epidemic. Another
special case of the stochastic SEIR model is where the infectious period I is non-
random. Also here there is a underlying mathematical reason – when the duration of
the infectious period is non-random and equal to ι say, then an infectious individual
has infectious contacts with each other individual at rate λ/N during a non-random
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time implying that the number of contacts with different individuals are indepen-
dent. Consequently, an infectious individual has infectious contacts with each other
individual independently with probability p = 1− e−(λ/N)ι , so the total number of
contacts is Binomially distributed, and in the limit as N → ∞ the number of infec-
tious contacts an individual has is Poisson distributed with mean λι . If further the
latent period is long in comparison to the infectious period then it is possible to
identify the infected individuals in terms of generations: the first generation are the
index cases, the second generation those who were infected by the index case(s),
and so one. When the model is described in this discrete time setting and individ-
uals infect different individuals independently with probability p, this model is the
well-known Reed–Frost model named after its inventors Reed and Frost.

The two most studied special cases are hence when the infectious period is ex-
ponentially distributed and when it is nonrandom. For real infectious diseases none
of these two extremes apply, for influenza for example, the infectious period is be-
lieved to be about 4 days, plus or minus one or two days. If one has to choose
between these choices a nonrandom infectious period is probably closer to reality.

The stochastic SEIR model in a closed homogeneous community may of course
also be generalized towards more realism. Two such extensions have already been
mentioned: allowing for individuals to die and new ones to be born, and allowing
for some social structures. Some such extensions will be treated in the other articles
of the current lecture notes but not here. But even when assuming a closed homoge-
neously mixing community of homogeneous individuals it is possible to make the
model more realistic. The most important such generalization is to let the rate of
infectious contact vary with time since infection. The current model assumes there
are no infectious contacts during the latent state, and then, suddenly when the la-
tent period ends, the rate of infectious contact becomes λ until the infectious period
ends when it suddenly drops down to 0 again. In reality, the infectious rate is usu-
ally a function λ (s) s time units after infection. In most situations λ (s) is very small
initially (corresponding to the latency period) followed by a gradual increase for
some days, and then λ (s) starts decaying down towards 0 which it hits when the
individual has recovered completely (see Figure 1.1.1 for an example where infec-
tivity starts growing after one day and is more or less over after one week). The
function λ (s) could be the same for all individuals, or it may be random and hence
a stochastic process, i.i.d. for different individuals. As regards to the temporal dy-
namics of the epidemic process, the functional form of λ (s) is important, and also
its random properties in case it is random. If one is only interested in the final size
τ , it is however possible to show that all that affects the final size is the accumulated
force of infection, i.e. the distribution of

∫
∞

0 λ (s)ds. In particular, if we let λ I in the
stochastic SEIR model have the same distribution as

∫
∞

0 λ (s)ds in the more general
model, then the two models have the same final size distribution. In that sense, the
extended model can be included in the stochastic SEIR model.
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Fig. 1.1.1 Plot of a possible infectivity curve λ (s). The time s denotes the time since infection in
unit of days.

1.1.3 Two key quantities: R0 and the escape probability

The most important quantity for this, as well as most other epidemic models, is the
basic reproduction number (sometimes “number” is replaced by “ratio”) and de-
noted by R0. In more complicated models its definition and interpretation are some-
times debated, but for the present model it is quite straightforward: R0 denotes the
mean number of infectious contacts a typical infected has during the early stage of
an outbreak. As the population under consideration is becomes large, this number
will coincide with the mean number of infections caused by a typical infected during
the early stages of an outbreak. We derive an expression for R0, but before that we
should consider its important threshold value of 1. If R0 > 1 this means that on av-
erage an infected infects more than one individual in the beginning of an epidemic.
Then the index case on average is replaced by more than one infected, who in turn
each are replaced by more than one infected and so on. This clearly suggests that a
big community fraction can become infected. If on the other hand R0 ≤ 1, then the
same reasoning suggests that there will never be a big community outbreak. Those
results hold true which we prove in Section 1.2 (Corollaries 1.2.6 and 1.2.7).

In applications the basic reproduction number R0 is a central quantity of interest.
Many studies of disease outbreaks contain estimates of R0 for a specific disease and
community, together with modeling conclusions about preventive measures which,
if put into place, will reduce the reproduction number R down to below the critical
value of 1 when an outbreak is no longer possible (e.g. Fraser et al. [12]).

Let us now derive an expression for R0. An infected individual has infectious
contacts only when infectious, and when in this state the individual has infectious
contacts at rate λ . This means that the expected number of infectious contacts equals
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R0 = E(λ I) = λι . (1.1.1)

Sometimes the rate λ of having infectious contacts is replaced by an over-all rate of
contact c multiplied by the probability p of a contact leading to infection, so λ = c p
and R0 = c p ι (cf. the first lines of the above Subsection 1.1.2, Anderson and May
[1] and Giesecke [14]).

Another key quantity appearing later several times is the probability for a given
susceptible to escape getting infected from a specific infective. The instantaneous in-
fectious force from the infective to this specific susceptible is λ/N, and the random
duration of the infectious period is I. Conditional upon I = x, the escape probability
is hence e−(λ/N)x, and the unconditional probability to escape infection is therefore

P(escape infection from an infective) = E(e−λ I/N) = ψI(−λ/N), (1.1.2)

where ψI(b) =E(ebI) is the moment generating function of the infectious period (so
ψ(−b) is the Laplace transform – in Part II in this volume the Laplace transform
has a separate notation, φ , so φ(b) = ψ(−b)).

Exercise 1.1.2. Consider the Markovian SEIR epidemic in which λ = 1.8, ν = 2
and γ = 1 in a village of size N = 100, (parameters inspired by Ebola with weeks as
time unit). Compute R0 and the escape probability.

Exercise 1.1.3. Repeat the previous exercise, but now for the Reed–Frost epidemic
with λ = 1.8, L ≡ 2 and I ≡ ι = 1 in a village of size N = 100, (perhaps having
more realistic distributions than in the previous exercise).

1.2 The early stage of an outbreak

We now consider the situation where the community size N is large and study the
stochastic SEIR epidemic in the beginning of an outbreak. By “beginning” we mean
that less than k = k(N) individuals have been infected. Recall from the model defi-
nition that infectious individuals have infectious contacts with others independently,
each infective at rate λ . The dependence only appears because individuals can only
get infected once, so if an individual has already received an infectious contact, then
future infectious contacts with that individual no longer result in someone getting
infected. However, in the beginning of an outbreak in a large community it is very
unlikely that two infectives happen to have infectious contacts with the same in-
dividual. This suggests that during the early phase of an outbreak, infectives infect
new individuals more or less independently. This implies that the number of infected
can be approximated by a branching process in the beginning of an outbreak, where
“being born” corresponds to having been infected, and “giving birth” corresponds
to infecting someone. The current section is devoted to making this approximation
rigorous, and thus obtaining asymptotic results for the epidemic in regards to having
a minor versus a major outbreak. In the next section this approximation is exploited
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in order to determine the distribution of the final size in the case of a minor out-
break. If the epidemic takes off, which happens in the case of a major outbreak, then
the approximation that individuals infect others independently breaks down. What
happens in this situation is treated in later sections.

First we define the approximating branching process and derive some properties
of it. After this we show rigorously that, as N→∞, the initial phase of the epidemic
process converges to the initial phase of the branching process by using an elegant
coupling technique.

The approximating branching process is defined similarly to the epidemic. A
newborn individual is first unable to give birth to new individuals for a period with
duration L (this period might be denoted childhood in the branching process set-
ting). After this childhood, the individual enters the reproductive stage which last
for I units of time. During this period individuals give birth to new individuals at
rate λ (randomly in time according to a Poisson process with rate λ ). Once the re-
productive stage has terminated the individual dies (or at least cannot reproduce and
hence plays no further role).

The number of offspring of an individual, X , depends on the duration of the
reproductive stage I. Conditional upon I = y, the number of births follow the Poisson
distribution Poi(λy), so the unconditional distribution of number of offspring is
mixed-Poisson, written as X ∼MixPoi(λ I), where I has distribution FI .

If we forget calendar time, and simply study the number of individuals born
in each generation, then our branching process is a Bienaymé–Galton–Watson
process with offspring distribution being MixPoi(λ I). The mean number of chil-
dren/offspring equals m = E(X) = E(E(X |I)) = E(λ I) = λι .

Exercise 1.2.1. Compute the offspring distribution P(X = x) explicitly for the two
cases: (i) where the infectious period is non-random, I ≡ ι , corresponding to the
continuous–time version of the Reed–Frost epidemic; and (ii) for the Markovian
SEIR where I is exponential with mean ι .

We now show an elegant coupling construction which we will use to show that
the epidemic and branching process have similar distributions in the beginning. To
this end we define the approximating branching process as well as all epidemics,
i.e. for each N = 1,2, . . ., on the same probability space. To this end, let L0,L1, . . .
be i.i.d. latent periods having distribution FL, and similarly let I0, I1, . . . be i.i.d. in-
fectious periods having distribution FI . Further, let ξ0(·),ξ1(·), . . . be i.i.d. Poisson
processes having intensity λ , and let U1,U2, . . . be i.i.d. U(0,1) random variables.
All random variables and Poisson processes are assumed to be mutually indepen-
dent. These will be used to construct the branching process as well as the stochastic
SEIR epidemic for each N as follows.

Definition 1.2.2. The approximating branching process. At time t = 0 there is one
new born ancestor having label 0. Let the ancestor have childhood length L0 and
reproductive stage for a duration I0 (so the ancestor dies at time L0 + I0), during
which the ancestor gives birth at the time points of the Poisson process ξ0(·). If
the jump times of this Poisson process are denoted T0,1 < T0,2 < ... and X0 denotes
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the number of jumps prior to I0, then the ancestor gives birth at the time points L0 +
T0,1, . . . ,L0+T0,X0 (the set is empty if X0 = 0). The first born individual is given label
1, and having childhood period L1, reproductive period I1 and birth process ξ1(·).
This individual gives birth according to the same rules (starting the latency period at
time L0+T0,1), and the next individual born, either to individual 0 or 1, is given label
2 and variables L2, I2 and birth process ξ2(·), and so on. This defines the branching
process, and we let L(t), I(t),R(t) respectively denote the numbers of individuals in
the childhood state, in the reproductive state and dead, respectively, at time t. The
total number of individuals born up to time t, excluding the ancestor/index case, is
denoted by Z(t) = L(t)+ I(t)+R(t)−1 in the branching process, and the ultimate
number ever born, excluding the ancestor, is denoted by Z which may be finite or
infinite.

We now define the epidemic for any fixed N (in the epidemic childhood corre-
sponds to latent and reproductive stage to being infectious). This is done similarly
to the branching process with the exception that we now keep track of which indi-
viduals who get infected using the uniform random variables U1,U2, . . . .

Definition 1.2.3. The stochastic SEIR epidemic with N initial susceptibles. We label
the N+1 individuals 0,1, . . . ,N, with the index case having label 0 and the others be-
ing labelled arbitrarily. As for the branching process, the index case is given latency
period L0, infectious period I0 and contact process ξ0(·) and the epidemic is started
at time t = 0. The infectious contacts of the index case occur at the time points
L0 + T0,1, . . . ,L0 + T0,X0 . The first infectious contact is with individual [U1N] + 1,
the integer part of NU1 plus 1 (this picks an individual uniformly among 1, . . . ,N).
This individual, k say, then becomes infected (and latent) and is given latent period,
infectious period and contact process L1, I1 and ξ1(·). The next infectious contact
(from either the index case or individual k) will be with individual [U2N] + 1. If
the contacted person is individual k then nothing happens, but otherwise this new
individual gets infected (and latent), and so on. Infectious contacts only result in
infection if the contacted individual is still susceptible. When a contact is with an
already infected individual the branching process has a birth whereas there is no
infection in the epidemic – we say a “ghost” was infected when comparing with the
branching process. Descendants of all ghosts are also ignored in the epidemic. The
epidemic goes on until there are no latent or infectious individuals. This will hap-
pen within a finite time (bounded by ∑

N
j=0(L j + I j)). The final number of infected

individuals excluding the index case is as before denoted ZN ∈ [0, . . . ,N]. Similar to
before we let LN(t), IN(t),RN(t) denote the numbers of latent, infectious and recov-
ered individuals at time t, and now we can also define the number of susceptibles
SN(t) = N +1−LN(t)− IN(t)−RN(t).

In our model the index case cannot be contacted. This is of course unrealistic but
simplifies notation. In the limit as N gets large this assumption has no effect. We
now state two important results for these constructions of the branching process and
epidemics.
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Theorem 1.2.4. The definition above agrees with the earlier definition of the Stochas-
tic SEIR epidemic in a homogeneous community.

Proof. The latent and infectious periods have the desired distributions, and an in-
fective has infectious contacts with others at overall rate λ , and each time such a
contact is with a uniformly selected individual as desired. ut

We now prove that the branching process and the epidemic process (with popu-
lation size N) are identical up to a time point which tends to infinity in probability
as N→ ∞. To this end, we let MN denote the number of infections prior to the first
ghost (i.e. how many uniformly selected individuals [UkN] there were before some-
one was reselected. If this never happens we set MN = ∞. Let T N denote the time at
which the first ghost appears (and if this never happens we also set T N = ∞).

Theorem 1.2.5. The branching process and N-epidemic agree up until T N:
(LN(t), IN(t),RN(t)) = (L(t), I(t),R(t)) for all t ∈ [0,T N). Secondly, TN → ∞ and
MN → ∞ in probability as N→ ∞.

Proof. The first statement of the proof is obvious. The only difference between the
epidemic and the branching process in our construction is that specific individuals
are contacted in the epidemic, and up until the first time when some individual is
contacted again, each infectious contact results in infection just as in the branching
process.

As for the second part of the theorem we first compute the probability that MN

will tend to infinity, and then that the time T N until the first ghost appears also tends
to infinity. It is easy to compute P(MN > k) since this will happen if and only if all
the first k contacts are with distinct individuals:

P(MN > k) = 1× N−1
N
×·· ·× N− k

N
=

k

∏
j=0

(
1− j

N

)
.

(This formula is identical to the celebrated (...) birthday problem if N+1 = 365 and
k is the size of the class.) For fixed k we see that this probability tends to 1 as N→∞.
We can in fact say more. We have the following lower bound (which is easily proved
by recurrence):

P(MN > k) =
k

∏
j=0

(
1− j

N

)
≥ 1−

k

∑
j=1

j
N

= 1− (k+1)k
2N

.

As a consequence, we see that P(MN > k(N))→ 1 as long as k = k(N) = o(
√

N).
In particular MN → ∞ in probability as N → ∞. In what follows we write w.l.p.
for “with large probability”, meaning with a probability tending to 1 as N → ∞.
The consequence hence implies that all infectious contacts up to k(N) will w.l.p.
be with distinct individuals and thus will result in infections. So, up until k(N) in-
dividuals have been infected, the epidemic can be approximated by a branching
process for any k(N) = o(

√
N). Let Z(t) denote the number of individuals born be-

fore t in the branching process (excluding the ancestor) and ZN(t) = N−SN(t) the
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number of individuals that have been infected before t (excluding the index case)
in the N-epidemic. Since the epidemic and branching process agree up until T N it
follows that Z(t) = ZN(t) for t < T N . But, since k(N) < MN w.l.p. it follows that
inf{t;Z(t) = k(N)} ≤ T N w.l.p. If the branching process is (sub)critical, then Z(t)
remains bounded as t→ ∞, so T N =+∞ w.l.p. Consider now the supercritical case.
From Section A.1.2 (Proposition A.1.4) we know that Z(t) = Op(ert) where the
Malthusian parameter r solves the equation∫

∞

0
e−rs

λ (s)ds = 1. (1.2.1)

The function λ (s) is the rate at which an individual gives birth s time units after
being born, so λ (s) = λP(infectious at s) and hence λ (s) = λP(L < s < L + I)
for our model. We thus have that k(N) ≤ cerT N

w.l.p., which implies that T N ≥
logk(N)/r− logc. So if for example k(N) = N1/3, which clearly satisfies k(N) =
o(
√

N), it follows that T N → ∞ in probability. ut

Theorem 1.2.5 shows that the epidemic behaves like the branching process up to
a time point tending to infinity as N → ∞, and that the number of infections/births
by then also tends to infinity. This implies that we can use theory for branching
processes to obtain results for the early part of the epidemic. We state these im-
portant results in the following corollaries; the first corollary is for the subcritical
and critical cases and the second corollary is for the supercritical case. Recall that
R0 = λE(I), the basic reproduction number in the epidemic and the mean offspring
number in the branching process.

Corollary 1.2.6. If R0 ≤ 1, then (LN(t), IN(t),RN(t)) = (L(t), I(t),R(t)) for all t ∈
[0,∞) w.l.p. As a consequence, P(ZN = k)→ P(Z = k) as N→∞, and in particular
ZN is bounded in probability.

Proof. In Theorem 1.2.5 it was shown that the epidemic and branching process
agree up until there has been MN births, where MN > N1/3 w.l.p. for example. But
from branching process theory (Proposition A.1.1) we know that this will happen
with a probability tending to 0 with N when R0 ≤ 1, implying that T N =∞ w.l.p. ut

Corollary 1.2.7. If R0 > 1, then for finite k: P(ZN = k)→ P(Z = k) as N → ∞.
Further, {ZN →∞} with the same probability as {Z = ∞}, which is the complement
to the extinction probability, the latter being the smallest solution to the equation
z = g(z) described in Proposition A.1.1.

Proof. Also this corollary is a direct consequence of Theorem 1.2.5 and properties
of branching processes. If only k births occur, then there will be no ghost w.l.p.,
implying that the epidemic and the branching process agree forever w.l.p. On the
other hand, the coupling construction showed that MN → ∞ on the other part of the
sample space, and Z ≥ ZN ≥MN which completes the proof. ut

The two corollaries state that the epidemic and branching process coincide for-
ever as long as the branching process stays finite. If the branching process grows
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beyond all limits (only possible when R0 > 1) then the epidemic and branching pro-
cess will not remain identical even though also the epidemic tends to infinity with
N. For any fixed N we have 0 ≤ ZN ≤ N which clearly is different from Z = ∞ in
that case. The distribution of ZN on the part of the sample space where ZN → ∞ is
treated below in Section 3.3.

The two corollaries show that the final number infected ZN will be small with
a probability equal to the extinction probability of the approximating branching
process, and it will tend to infinity with the remaining (explosion) probability. In
Section 3.3 we study the distribution of ZN (properly normed) and then see that the
distribution is clearly bimodal with one part close to 0 and the other part being O(N).
These two parts are referred to as minor outbreak and major outbreak respectively.

What happens during the early stage of an outbreak is particularly important
when considering so-called emerging epidemic outbreaks. Then statistical inference
based on this type of branching process approximation is often used. For example,
in [38] a branching process approximation that is very similar to the SEIR branching
process of Definition 1.2.2 is used for modelling the spread of Ebola during the early
stage of the outbreak in West Africa in 2014.

Exercise 1.2.8. Use the branching process approximation of the current section to
compute the probability of a major outbreak of the SEIR epidemic assuming that
I ≡ ι (the continuous time Reed–Frost case), and I ∼ Exp(γ) (the Markovian SIR)
with γ = 1/ι . Only one of them will be explicit. Compute things numerically for
R0 = 1.5 and ι = 1.

Exercise 1.2.9. Use the branching process approximation of the current section to
compute the exponential growth rate r for the following two cases: L≡ 0 and I ≡ ι

(the continuous time Reed–Frost), and L≡ 0 and I ∼ Exp(γ = 1/ι) (the Markovian
SIR). Compute r numerically for the two cases when R0 = 1.5 and ι = γ = 1.

1.3 The final size of the epidemic in case of no major outbreak

Let ZN denote the final size of the epidemic (i.e. the total number of individuals
that get infected during the outbreak) but now also including the initially infected
individual. In the case of no major outbreak, if the total population size N is large
enough, ZN is well approximated by the total number of individuals in a branching
process, as we saw in the previous section. Hence we consider Z as the total number
of individuals ever born in a branching process (including the ancestor), where the
number of offspring of the k-th individual is Xk. Let X1,X2, . . . be i.i.d. N-valued
random variables. We start by establishing an identity which is an instance of Kem-
perman’s formula, see e.g. Pitman [28] page 123.

Proposition 1.3.1. For all k ≥ 1,

P(Z = k) =
1
k
P(X1 +X2 + · · ·+Xk = k−1).
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Proof. Consider the process of depth–first search of the genealogical tree of the
infected individuals. This procedure can be defined as follows. The tree is explored
starting from the root. Suppose we have visited k vertices. The next visit will be to
the leftmost still unexplored son of this individual, if any; otherwise to the leftmost
unexplored son of the most recently visited node among those having not yet visited
son(s), see Figure 1.3.1. X1 is the number of sons of the root, who is the first visited
individual. Xk is the number of sons of the k-th visited individual. This exploration
of the tree ends at step k if and only if X1 ≥ 1, X1 + X2 ≥ 2, X1 + X2 + X3 ≥ 3,
... X1 +X2 + · · ·Xk−1 ≥ k− 1, and X1 +X2 + · · ·+Xk = k− 1. Let us rewrite those
conditions. Define

Yi = Xi−1, i≥ 1,
Sk = Y1 +Y2 + · · ·+Yk.

A trajectory {Yi, 1 ≤ i ≤ k} explores a tree of size k if and only if the following
conditions are satisfied

(Ck) S0 = 0,S1 ≥ 0,S2 ≥ 0, . . . ,Sk−1 ≥ 0,Sk =−1.

Indeed, it is easy to convince oneself that it is the case if there is only one generation:
if the ancestor has k−1 children, then Y1 = k−2, and Y2 = · · ·=Yk =−1, hence (Ck)
holds. If one attaches one generation trees to some of the leaves of the previous tree,
then one replaces a unique −1 step by an excursion upwards which finishes at the
same level as the replaced step. Iterating this procedure, we see that the exploration
of a general tree with k nodes satisfies (Ck).

The statement of the proposition is equivalent to

P(Z = k) =
1
k
P(Y1 +Y2 + · · ·+Yk =−1).

Denote by Vk the set of sequences of k integers ≥−1 which satisfy conditions (Ck),
and Uk the set of sequences of k integers ≥ −1 which satisfy the unique condition
Sk =−1. We use circular permutations operating on the Yi’s. For 1≤ i, `≤ k, let

(i+ `)k =

{
i+ `, if i+ `≤ k;
i+ `− k, if i+ ` > k.

For each 1≤ `≤ k, let Z`
i =Y(i+`)k

, S`j =∑
j
i=1 Z`

i for 1≤ i≤ k. Clearly S`k =−1 for all
` as soon as (Ck) is satisfied. On the other hand Sk ≡ S is the only trajectory which
satisfies conditions (Ck). The other S` hit the value −1 before rank k, see Figure
1.3.1. The Z`’s are sequences of integers ≥ −1 of length k, whose sum equals −1.
Finally to each element of Vk we have associated k distinct elements of Uk, all having
the same probability.
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Fig. 1.3.1 Top: the tree. Bottom: the random walk Sk. Here X1 = 3, X2 = 2, X3 = 0, X4 = 0, X5 = 1,
X6 = 2, X7 = X8 = X9 = 0, Y1 = 2, Y2 = 1, Y3 = Y4 =−1, Y5 = 0, Y6 = 1, Y7 = Y8 = Y9 =−1.

Reciprocally, to one element S of Uk\Vk, choosing ` = argmin
1≤i≤k

Si and using the

above transformation, we deduce that S` ∈Vk.
Finally, to each trajectory of Vk, we associate k trajectories of Uk, who all have

the same probability, and which are such that the inverse transformation gives back
the same trajectory of Vk. The result is proved. ut

Note that from branching process theory (Proposition A.1.1), we have clearly

∑
k≥1

P(Z = k)

{
= 1, if ER0 ≤ 1;
< 1, if ER0 > 1,
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which is not so obvious from the proposition.
We now deduce the exact law of Z from Proposition 1.3.1 in two cases which

are probably the two most interesting cases for epidemics models. First we consider
the case where the Xis are Poisson, which is the situation of the continuous time
Reed–Frost model, where the infectious period is non-random. Second we consider
the case where the Xis are geometric, which is the case in the Markovian model.

Example 1.3.2. Suppose that the joint law of the Xis is Poi(µ), with 0< µ < 1. Then
X1 + · · ·+Xk ∼ Poi(kµ), and consequently

P(Z = k) =
1
k
P(X1 + · · ·+Xk = k−1)

= e−µk (µk)k−1

k!
.

This law of Z is called the Borel distribution with parameter µ . Note that

EZ = 1+µ +µ
2 + · · ·

=
1

1−µ
.

Example 1.3.3. Consider now the case where Xi ∼ G (p), where we mean here that
P(Xi = k) = (1− p)k p, k = 0,1, . . .. The law of Xi +1 is the geometric distribution
with parameter p whose support is N, in other words P(Xi+1 > k) = (1− p)k. Then
k+X1 + · · ·+Xk follows the negative binomial distribution with parameters (k, p).
Hence

P(Z = k) =
1
k
P(k+X1 + · · ·+Xk = 2k−1)

=
1
k

(
2k−2
k−1

)
pk(1− p)k−1

=
(2k−2)!
k!(k−1)!

pk(1− p)k−1.

In the case p > 1/2, EZ = (2p−1)−1 p.

1.4 Vaccination

One important reason for modelling the spread of infectious diseases is to better
understand effects of different preventive measures, such as for example vaccina-
tion, isolation and school closure. When a new outbreak occurs, epidemiologists
(together with mathematicians and statisticians) estimate model parameters and then
use these to predict effects of various preventive measures, and based on these pre-
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dictions, health authorities decide upon which preventive measures to put in place,
cf. [38].

We refer the reader to Part IV in this volume for estimation methods, but in the
current section we touch upon the area of modeling prevention. Our focus is on
vaccination, and we consider only vaccination prior to the arrival of an outbreak;
the situation where vaccination (or other preventive measures) are put into place
during the outbreak is not considered. “Vaccination” can be interpreted in a wider
sense. From a mathematical and spreading point of view, the important feature is
that the individual cannot spread the disease further, which could also be achieved
by e.g. isolation or medication. Modelling effects of vaccination is also considered
in Part II, Section 2.4, and in Part III, Section 2.6, in the current volume.

Suppose that a fraction v of the community is vaccinated prior to the arrival of
the disease. We assume that the vaccine is perfect in the sense that it gives 100%
protection from being infected and hence of spreading the disease (but see the ex-
ercise below). This implies that only a fraction 1− v are initially susceptible, and
the remaining fraction v are immunized (as discussed briefly in Section 2.1). Hence
we can neglect the latter fraction and consider only the initial susceptible part of
the community of size N′ = N(1− v). However, it is not only the number of ini-
tially susceptibles that changes, the rate of having contact with initial susceptibles
has also changed to λ ′ = λ (1− v), since a fraction v of all contacts are “wasted”
on vaccinated people. The spread of disease in a partly-vaccinated community can
therefore be modelled using exactly the same SEIR stochastic model with the only
difference being that we have a different population size N′ and a different contact
rate parameter λ ′.

From this we conclude the new reproduction number, which we denote Rv to
show the dependence on v, satisfies

Rv = λ
′E(I) = λ (1− v)E(I) = (1− v)R0.

As a consequence, a major outbreak in the community is not possible if Rv ≤ 1,
which (when R0 > 1) is equivalent to v ≥ 1− 1/R0. This limit, called the critical
vaccination coverage and denoted

vc = 1− 1
R0

, (1.4.1)

is hence a very important quantity: if more than this fraction is vaccinated before
an outbreak, then the whole community is protected from a major outbreak and not
only the vaccinated, a situation called herd immunity. Equation (1.4.1) is well known
among infectious disease epidemiologists (e.g. Giesecke [14]) and is used by public
health authorities all over the world to determine the minimal yearly vaccination
coverage in vaccination programs of childhood diseases.

If v < vc there is still a possibility of a major outbreak. The probability for such
an outbreak is obtained using earlier results with λ replaced by λ ′ = λ (1− v): the
probability of a minor outbreak is the solution sv to the equation s = gv(s), where
gv(·) is the probability generating function of Xv ∼ MixPoi(λ (1− v)I), the num-
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ber of offspring (= new infections) in the case that a fraction v are immunized by
vaccination.

In the case when there is a major outbreak, the relative size zv of the outbreak
(among the initially susceptible!) is given by the unique positive solution to the
equation

1− z = e−Rvz, or equivalently 1− z = e−(1−v)R0z, (1.4.2)

this result is shown in later sections, cf. Equation (2.1.3). The community fraction
getting infected is hence (1− v)zv.

We summarize our result in the following theorem where we let ZN
v denote the

final number infected when a fraction v are vaccinated prior to the outbreak.

Theorem 1.4.1. If v ≥ vc = 1− 1/R0, then ZN
v /N → 0 in probability. If v < vc =

1−1/R0, then ZN
v /N⇒ Z∞

v which has a two-point distribution: P(Z∞
v = 0) = sv and

P(Z∞
v = (1− v)zv) = 1− sv, where sv and zv have been defined above.

Exercise 1.4.2. Consider the Markovian SEIR epidemic with λ = 2, L ∼ Exp(2)
and I ∼ Exp(1). Compute the critical vaccination coverage vc. Compute also nu-
merically the probability of a major outbreak, and the community-fraction that will
get infected in the case of a major outbreak when v = 0.333.

Exercise 1.4.3. Suppose that the vaccine gives only partial protection to catching
and spreading the disease. Suppose that the vaccine has the effect the risk of getting
infected by a contact is only 20% of the risk of getting infected when not vaccinated,
but that the vaccine has no effect on infectivity if the person gets infected (such a
vaccine is said to be a “leaky vaccine” having 80% efficacy on susceptibility and
0% efficacy on infectivity). Compute the reproduction number Rv in the case that
a fraction v is vaccinated with such a vaccine. (Another vaccine response model is
“all-or-nothing” where a fraction is assumed to receive 100% effect and the remain-
ing fraction receive no effect from vaccination, for example due to the cold chain
being broken for a live vaccine.)





Chapter 2
Markov Models

This chapter describes the important class of Markov models. It starts with a pre-
sentation of the deterministic ODE models. We then formulate precisely the random
Markov epidemic model as a Poisson process driven stochastic differential equation,
and establish the law of large numbers (later referred to as LLN), whose limit is pre-
cisely the already described ODE model. The next section studies the fluctuations
around this LLN limit, which is described by the central limit theorem. Finally we
give a diffusion approximation result, i.e. a diffusion process (solution of a Brown-
ian motion driven stochastic differential equation) which, again in the case of a large
population, is a good approximation of our Poisson process driven model. One of
the earliest references for those three approximation theorems is Kurtz [22]. See
also chapter 11 of Ethier and Kurtz [11].

2.1 The deterministic SEIR epidemic model

Before analysing the stochastic SEIR model assuming N → ∞ in greater detail in
the following subsections, we first derive heuristically a deterministic counterpart
for the Markovian version and study some of its properties, which are relevant also
for the asymptotic case of the stochastic model.

Consider the Markovian stochastic SEIR model. There are three types of events:
a susceptible gets infected and becomes exposed, an exposed becomes infectious
when the latent period terminates, and an infectious individual recovers and be-
comes immune. Since the model is Markovian all these events happen at rates
depending only on the current state, and these rates are respectively given by:
λS(t)I(t)/N, νE(t) and γI(t). When an infection occurs, the number of suscep-
tibles decreases by 1 and the number of exposed increases by 1; when a latency
period ends, the number of exposed decreases by 1 and the number of infectives
increases by 1; and finally when there is a recovery, the number of infectives de-
creases by 1 and the number of recovered increases by 1. If we instead look at
“proportions” (to simplify notation we divide by N rather than the more appropri-

21
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ate choice N +1), the corresponding changes are −1/N and +1/N. This reasoning
justifies a deterministic model for proportions where one should think of an infinite
population size allowing the proportions to be continuous. The deterministic SEIR
epidemic (s(t),e(t), i(t),r(t)) is given by

s′(t) =−λ s(t)i(t),

e′(t) = λ s(t)i(t)−νe(t),

i′(t) = νe(t)− γi(t),

r′(t) = γi(t).

We start with all fractions being non-negative and summing to unity, which implies
that s(t)+ e(t)+ i(t)+ r(t) = 1 and all being nonnegative for all t. It is important
to stress that this system of differential equations only approximates the Markovian
SEIR model. If for example the latent and infectious stages are non-random, then a
set of differential-delay equations would be the appropriate approximation. If these
durations are random but not exponential one possible pragmatic assumption is to
use a gamma distribution where the shape parameter is an integer (so it can be seen
as a sum of i.i.d. exponentials). Then the deterministic approximation would be a set
of differential equations where the state space has been expanded. Just like for the
stochastic SEIR model, the deterministic model has to start with a positive fraction
of exposed and/or infectives for anything to happen. Most often it is assumed that
there is a very small fraction ε of latent and/or infectives.

The case where there is no latent period meaning that ν → ∞, the deterministic
SIR epidemic (or deterministic general epidemic), sometimes called the Kermack–
McKendrick equations, has perhaps received more attention in the literature:

s′(t) =−λ s(t)i(t),

i′(t) = λ s(t)i(t)− γi(t),

r′(t) = γi(t).
(2.1.1)

This system of differential equations (and the SEIR system on the previous page)
are undoubtedly the most commonly analysed epidemic models (e.g. Anderson and
May [1]), and numerous related extended models, capturing various heterogeneous
aspects of disease spreading, are published every year in mathematical biology jour-
nals.

The deterministic SEIR and SIR share the two most important properties in that
they have the same basic reproduction number R0 and give the same final size (as-
suming the initial number of infectives/exposed are positive but negligible in both
cases), which we now show. In Figure 2.1.1 both the SEIR and SIR systems are
plotted for the same values of λ = 1.5 and γ = 1 (so R0 = 1.5), and with ν = 1 in
the SEIR system.

From the differential equations we see that s(t) is monotonically decreasing and
r(t) monotonically increasing. The differential for i(t) in the SIR model can be
written i′(t) = γi(t)

(
λ

γ
s(t)−1

)
. The initial value is i(0) = ε ≈ 0 and s(0) = 1−ε ≈
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Fig. 2.1.1 Plot of the deterministic SIR (left) and SEIR (right) systems for λ = 1.5 and γ = 1, and
with ν = 1 in the SEIR model. The dash-dotted curve is the fraction of susceptibles, the solid curve
the fraction of infectives, the dashed curve the fraction of recovered, and the lowest curve in the
right figure is the fraction of exposed (latent).

1. From this we see that for having i′(0) > 0 we need that λ/γ > 1. If this holds,
i(t) grows up until s(t) < γ/λ after which i(t) decays down to 0. If on the other
hand λ/γ ≤ 1, then i(t) is decreasing from the start and since its initial value is
ε ≈ 0, nothing much will happen so s(∞) ≈ s(0) ≈ 1 and r(∞) ≈ r(0) = 0. We
hence see that also in the deterministic model, R0 = λ/γ plays an important role in
that whether or not R0 exceeds 1 determines whether there will be a substantial or a
negligible fraction getting infected during the outbreak. Note that this is the same R0
as for the Markovian SEIR epidemic. There the infectious period is exponentially
distributed with parameter γ , so ι := E(I) = 1/γ .

An important difference between deterministic and stochastic epidemic models
lies in the initial values. Stochastic models usually start with a small number of in-
fectious individuals (in the model of the current Notes we assumed one initial infec-
tive: I(0) = 1). This implies that the initial fraction of infectives tend to 0 as N→∞.
In the deterministic setting we however have to assume a fixed and strictly positive
fraction ε of initially infectives (if we start with a fraction 0 of infectives nothing
happens in the deterministic model). This implicitly implies that the deterministic
model starts to approximate the stochastic counterpart only when the number of in-
fectives in the stochastic model has grown up to a fraction ε , so a number Nε . The
earlier part of the stochastic model cannot be approximated by this deterministic
model, and as we have seen it might in fact never reach this level (if there is only a
minor outbreak).

In order to derive an expression for the ultimate fraction getting infected we
use the differential for s(t) (and below also the one for r(t)). Dividing by s and
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multiplying by dt gives the following differential: ds/s = −λ idt. Integrating both
sides and recalling that R0 = λ/γ , we obtain

logs(t)− logs(0) =−λ

∫ t

0
i(t)dt

=−R0

∫ t

0
r′(s)ds

=−R0(r(t)− r(0)) =−R0r(t).

And since s(0) = 1− ε ≈ 1 and r(∞) = 1− s(∞) we obtain the following equation
for the final size z = r(∞) = 1− s(∞):

1− z = e−R0z. (2.1.2)

In Section 3.3.1 we show that this final size equation coincides with that of the
LLN limit of the final fraction getting infected in the stochastic model (cf. Equation
(3.3.2), which is identical to (2.1.2)).

The equation always has a root at z = 0 corresponding to no (or minor) outbreak.
It can be shown (cf. Exercise 2.1.1) that if and only if R0 > 1 there is a second
solution to (2.1.2), corresponding to the size of a major outbreak, and this solution
z∗ is strictly positive and smaller than 1. For a given value of R0 > 1 the solution z∗

has to be computed numerically. In Figure 2.1.2 the solution is plotted as a function
of R0.
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Fig. 2.1.2 Plot of the final size solution z∗ to Equation (2.1.2) as a function of R0.
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It is important to point out that the final size equation (2.1.2) assumes that, at t =
0, all individuals (except the very few initially latent and infectives) are susceptible.
If a fraction v is initially immune (perhaps due to natural immunity, or vaccination
as described in Section 1.4) then r(0) = v and s(0) = 1−v, resulting in the equation

1− z = e−R0z(1−v), (2.1.3)

where its solution zv now is interpreted as the fraction among the initially susceptible
that get infected. The overall fraction getting infected is hence zv(1− v). Using the
same argument as for the final size without immunity, we conclude that z = 0 is the
only solution if R0(1− v)≤ 1. This is equivalent to v≥ 1−1/R0. If immunity was
caused by vaccination, this hence suggests that a fraction exceeding vc = 1−1/R0
should be vaccinated; then there will be no outbreak! For this reason, the quantity
vc = 1−1/R0 is often called the critical vaccination coverage, and if this coverage is
reached, so-called herd immunity is achieved. Herd immunity implies that not only
the vaccinated are protected, but so are also the unvaccinated, since the community
is protected from epidemic outbreaks.

Exercise 2.1.1. Show that z = 0 is the only solution to (2.1.2) when R0 ≤ 1 and that
there is a unique positive solution if R0 > 1. (Hint: Study suitable properties of the
function f (z) = e−R0z + z−1.)

Exercise 2.1.2. Compute the final size numerically for R0 = 1.5 (e.g. influenza),
R0 = 3 (e.g. rubella) and R0 = 15 (e.g. measles).

2.2 Law of Large Numbers

Consider a general compartmental model, which takes the form

Z N
t = zN +

k

∑
j=1

h jPj

(∫ t

0
βN, j(s,Z N

s )ds
)
,

where the Pjs are mutually independent standard (i.e. unit rate) Poisson processes,
and βN, j(t,Z N

t ) is the rate of jumps in the direction h j at time t, h j being a d-
dimensional vector. Z N

t takes values in Zd
+. The i-th component of Z N

t is the num-
ber of individuals in the i-th compartment at time t. N is a scale parameter. In the
case of models with fixed total population size, N = ∑

d
i=1 ZN,i

t is the total population
at any time t. Note that the above formula for Z N

t can be rewritten equivalently,
following the comments at the end of Section A.2 in the Appendix below, as

Z N
t = zN +

k

∑
j=1

h j

∫ t

0

∫
βN, j(s,Z N

s )

0
Q j(ds,du),
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where Q1, . . . ,Qk are mutually independent Poisson random measures on R2
+, with

mean measure dsdu.
We now define

ZN
t = N−1Z N

t

the vector of rescaled numbers of individuals in the various compartments. In the
case of a constant population size equal to N, the components of the vector ZN

t are
the proportions of the total population in the various compartments at time t. The
equation for ZN

t reads, with xN = N−1zN ,

ZN
t = xN +

k

∑
j=1

h j

N
Pj

(∫ t

0
βN, j(s,NZN

s )ds
)
.

Example 2.2.1. The SIR model.
One important example is that of the SIR model with constant population size.

Suppose there is no latency period and that the duration of infection satisfies
I ∼ Exp(γ). In that case, let S(t), I(t), and R(t)) denote respectively the number
of susceptibles, infectives and recovered at time t.

In this model, two types of events happen:

1. infection of a susceptible (such an event decreases S(t) by one, and increases
I(t) by one, so h1 = (−1,1,0)); these events happen at rate

βN,1(t,Zt) =
λ

N
S(t)I(t), where λ = cp;

2. recovery of an infective (such an event decreases I(t) by one, and increases R(t)
by one, so h2 = (0,−1,1)); these events happen at rate

βN,2(t,Zt) = γI(t).

Hence we have the following equations, with P1(t) and P2(t) two standard mutually
independent Poisson processes:

S(t) = S(0)−P1

(
λ

N

∫ t

0
S(r)I(r)dr

)
,

I(t) = I(0)+P1

(
λ

N

∫ t

0
S(r)I(r)dr

)
−P2

(
γ

∫ t

0
I(r)dr

)
,

R(t) = R(0)+P2

(
γ

∫ t

0
I(r)dr

)
.

We can clearly forget about the third equation, since R(t) = N−S(t)− I(t).
We now define (SN(t), IN(t)) = (N−1S(t),N−1I(t)). We have

SN(t) = SN(0)− 1
N

P1

(
Nλ

∫ t

0
SN(r)IN(r)dr

)
,
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IN(t) = IN(0)+
1
N

P1

(
Nλ

∫ t

0
SN(r)IN(r)dr

)
− 1

N
P2

(
Nγ

∫ t

0
IN(r)dr

)
.

The above model assumes that λ and γ are constant, but in applications at least
λ may depend upon t.

Example 2.2.2. The SEIRS model with demography.
We now describe one rather general example. We add to the preceding example

the state E and the fact that removed individuals lose their immunity at a certain
rate, which gives the SEIRS model. In addition, we add demography. There is an
influx of susceptible individuals at rate µN, and each individual, irrespective of its
type, dies at rate µ . This gives the following stochastic differential equation

S(t) = S(0)−Pse

(
λ

N

∫ t

0
S(r)I(r)dr

)
+Prs

(
ρ

∫ t

0
R(r)dr

)
+Pb(µNt)−Pds

(
µ

∫ t

0
S(r)dr

)
,

E(t) = E(0)+Pse

(
λ

N

∫ t

0
S(r)I(r)dr

)
−Pei

(
ν

∫ t

0
E(r)dr

)
−Pde

(
µ

∫ t

0
E(r)dr

)
,

I(t) = I(0)+Pei

(
ν

∫ t

0
E(r)dr

)
−Pir

(
γ

∫ t

0
I(r)dr

)
−Pdi

(
µ

∫ t

0
I(r)dr

)
,

R(t) = R(0)+Pir

(
γ

∫ t

0
I(r)dr

)
−Prs

(
ρ

∫ t

0
R(r)dr

)
−Pdr

(
µ

∫ t

0
R(r)dr

)
.

In this system, the various Poisson processes are standard and mutually independent.
The indices should be self-explanatory. Note that the rate of births is µ ×N rather
than µ× the actual number of individuals in the population, in order to avoid the
pitfalls of branching processes (either exponential growth or extinction). Also, the
probability S(t)/N(t) that an infective meets a susceptible (where N(t) denotes the
total population at time t) is approximated by S(t)/N for the sake of mathematical
simplicity. Note however that N(t)

N → 1 a.s. as N→∞, see Exercise 4.1.1 below. The
equations for the proportions in the various compartments read

SN(t) = SN(0)− 1
N

Pse

(
Nλ

∫ t

0
SN(r)IN(r)dr

)
+

1
N

Prs

(
Nρ

∫ t

0
RN(r)dr

)
+

1
N

Pb(µNt)− 1
N

Pds

(
µN

∫ t

0
SN(r)dr

)
,

EN(t) = EN(0)+
1
N

Pse

(
Nλ

∫ t

0
SN(r)IN(r)dr

)
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− 1
N

Pei

(
νN

∫ t

0
EN(r)dr

)
− 1

N
Pde

(
µN

∫ t

0
EN(r)dr

)
,

IN(t) = IN(0)+
1
N

Pei

(
νN

∫ t

0
EN(r)dr

)
− 1

N
Pir

(
Nγ

∫ t

0
IN(r)dr

)
− 1

N
Pdi

(
µN

∫ t

0
IN(r)dr

)
,

RN(t) = RN(0)+
1
N

Pir

(
Nγ

∫ t

0
IN(r)dr

)
− 1

N
Prs

(
Nρ

∫ t

0
RN(r)dr

)
− 1

N
Pdr

(
µN

∫ t

0
RN(r)dr

)
.

Example 2.2.3. A variant of the SEIRS model with demography.
In the preceding example, we decided to replace the true proportion of suscep-

tibles by its approximation S(t)/N, in order to avoid complications. There is an-
other option, which is to force the population to remain constant. The most natu-
ral way to achieve this is to assume that each death event coincides with a birth
event. Every susceptible, exposed, infected, removed individual dies at rate µ . Each
death is compensated by the birth of a susceptible. The equation for the evolution of
(S(t),E(t), I(t),R(t)) reads

S(t) = S(0)−Pse

(
λ

N

∫ t

0
S(r)I(r)dr

)
+Prs

(
ρ

∫ t

0
R(r)dr

)
+Pds

(
µ

∫ t

0
S(r)dr

)
+Pde

(
µ

∫ t

0
E(r)dr

)
+Pdi

(
µ

∫ t

0
I(r)dr

)
+Pdr

(
µ

∫ t

0
R(r)dr

)
−Pds

(
µ

∫ t

0
S(r)dr

)
,

E(t) = E(0)+Pse

(
λ

N

∫ t

0
S(r)I(r)dr

)
−Pei

(
ν

∫ t

0
E(r)dr

)
−Pde

(
µ

∫ t

0
E(r)dr

)
,

I(t) = I(0)+Pei

(
ν

∫ t

0
E(r)dr

)
−Pir

(
γ

∫ t

0
I(r)dr

)
−Pdi

(
µ

∫ t

0
I(r)dr

)
,

R(t) = R(0)+Pir

(
γ

∫ t

0
I(r)dr

)
−Prs

(
ρ

∫ t

0
R(r)dr

)
−Pdr

(
µ

∫ t

0
R(r)dr

)
.

The equations for the proportions in the various compartments read

SN(t) = SN(0)− 1
N

Pse

(
Nλ

∫ t

0
SN(r)IN(r)dr

)
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+
1
N

Prs

(
Nρ

∫ t

0
RN(r)dr

)
+

1
N

Pds

(
Nµ

∫ t

0
SN(r)dr

)
+

1
N

Pde

(
Nµ

∫ t

0
EN(r)dr

)
+

1
N

Pdi

(
Nµ

∫ t

0
IN(r)dr

)
+

1
N

Pdr

(
Nµ

∫ t

0
RN(r)dr

)
− 1

N
Pds

(
Nµ

∫ t

0
SN(r)dr

)
,

EN(t) = EN(0)+
1
N

Pse

(
Nλ

∫ t

0
SN(r)IN(r)dr

)
− 1

N
Pei

(
Nν

∫ t

0
EN(r)dr

)
− 1

N
Pde

(
Nµ

∫ t

0
EN(r)dr

)
,

IN(t) = IN(0)+
1
N

Pei

(
ν

∫ t

0
EN(r)dr

)
− 1

N
Pir

(
γ

∫ t

0
IN(r)dr

)
− 1

N
Pdi

(
Nµ

∫ t

0
IN(r)dr

)
,

RN(t) = RN(0)+
1
N

Pir

(
Nγ

∫ t

0
IN(r)dr

)
− 1

N
Prs

(
Nρ

∫ t

0
RN(r)dr

)
− 1

N
Pdr

(
Nµ

∫ t

0
RN(r)dr

)
.

In the three above examples, for each j, βN, j(t,Nz) = Nβ j(t,z), for some β j(t,z)
which does not depend upon N. We shall assume from now on that this is the case
in our general model, namely that

βN, j(t,Nz) = Nβ j(t,z), for all 1≤ j ≤ k, N ≥ 1, z ∈ Rd
+.

Remark 2.2.4. We could assume more generally that

βN, j(t,Nz) = Nβ̃N, j(t,z), where β̃N, j(t,z)→ β j(t,z),

locally uniformly as N→ ∞.

Finally our model reads

ZN
t = xN +

k

∑
j=1

h j

N
Pj

(∫ t

0
Nβ j(s,ZN

s )ds
)
. (2.2.1)

We note that in the first example above, 0 ≤ ZN
j (t) ≤ 1 for all 1 ≤ j ≤ k, t ≥ 0,

N ≥ 1. In the second example however, such a simple upper bound does not hold,
but a much weaker assumption will suffice.

We assume that all β j are locally bounded, which is clearly satisfied in all exam-
ples we can think of, so that for any K > 0,

C(T,K) := sup
1≤ j≤k

sup
0≤t≤T

sup
|z|≤K

β j(t,z)< ∞. (2.2.2)
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We first prove the Law of Large Numbers for Poisson processes.

Proposition 2.2.5. Let {P(t), t ≥ 0} be a rate λ Poisson process. Then

t−1P(t)→ λ a.s. as t→ ∞.

Proof. Consider first for n ∈ Z+

n−1P(n) = n−1
n

∑
i=1

[P(i)−P(i−1)]

→ λ a.s. as n→ ∞

from the standard strong Law of Large Numbers, since the random variables P(i)−
P(i−1), 1≤ i≤ n are i.i.d. Poisson with parameter λ . Now

t−1P(t) =
[t]
t
[t]−1P([t])+ t−1{P(t)−P([t])},

so
∣∣t−1P(t)−λ

∣∣≤ ∣∣∣∣ [t]t [t]−1P([t])−λ

∣∣∣∣+ t−1{P([t]+1)−P([t])}.

But

t−1{P([t]+1)−P([t])}= t−1P([t]+1)− t−1P([t])

is the difference of two sequences which converge a.s. towards the same limit, hence
it converges to 0 a.s. ut

Define the continuous time martingales (see Section A.4.2 in Appendix A)
M j(t) = Pj(t)− t, 1≤ j ≤ k. We have

ZN
t = xN +

∫ t

0
b(s,ZN

s )ds+
k

∑
j=1

h j

N
M j

(∫ t

0
Nβ j(s,ZN

s )ds
)
,

where

b(t,x) =
k

∑
j=1

h jβ j(t,x).

Consider the k-dimensional process M N(t) whose j-th component is defined as

M N
j (t) :=

1
N

M j

(
N
∫ t

0
β j(r,ZN

r )dr
)
.

From the above, we readily deduce the following.

Proposition 2.2.6. For any K > 0, let τK := inf{t > 0, |ZN
t | ≥K}. As N→∞, for all

T > 0, provided (2.2.2) holds,

sup
0≤t≤T∧τK

|M N(t)| → 0 a.s.
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Proof. In order to simplify the notation we treat the case d = 1. It follows from
(2.2.2) that, if M(t) = P(t)− t and N is large enough,

sup
0≤t≤T∧τK

|M N(t)| ≤ 1
N

sup
0≤r≤NTC(T,K)

|M(r)|.

From the previous proposition, for all t > 0,

P(Nt)
N
→ t a.s. as N→ ∞.

Note that we have pointwise convergence of a sequence of increasing functions
towards a continuous (and of course increasing) function. Consequently from the
second Dini Theorem (see e.g. pages 81 and 270 in Polya and Szegö [30]), this
convergence is uniform on any compact interval, hence for all T > 0,

1
N

sup
0≤r≤NTC(T,K)

|M(r)| → 0 a.s.

ut

Concerning the initial condition, we assume that for some x ∈ [0,1]d , xN =
[Nx]/N, where [Nx] is of course a vector of integers. We can now prove the fol-
lowing theorem.

Theorem 2.2.7. Law of Large Numbers Assume that the initial condition is given
as above, that b(t,x) = ∑

k
j=1 β j(t,x)h j is locally Lipschitz as a function of x, locally

uniformly in t, that (2.2.2) holds and that the unique solution of the ODE

dzt

dt
= b(t,zt), z0 = x

does not explode in finite time. Let ZN
t denote the solution of the SDE (2.2.1). Then

ZN
t → zt a.s. locally uniformly in t, where {zt , t ≥ 0} is the unique solution of the

above ODE.

Needless to say, our theorem applies to the general model (2.2.1). We shall de-
scribe below three specific models to which we can apply it. Note that if the initial
fraction of infected is zero, then the fraction of infected is zero for all t ≥ 0.

Proof. We have

ZN
t = xN +

∫ t

0
b(s,ZN

s )ds+
k

∑
j=1

h jM
N
j (t).

Let us fix an arbitrary T > 0. We want to show uniform convergence on [0,T ]. Let
K := sup0≤t≤T |zt |+C, where C > 0 is arbitrary, and let τK = inf{t > 0, |ZN

t | ≥ K}.
Since b(t, ·) is locally Lipschitz,
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cT,K := sup
0≤t≤T,x 6=x′,|x|,|x′|≤K

|b(t,x)−b(t,x′)|
|x− x′|

< ∞.

For any 0≤ t ≤ T , if we define Y N
t = ∑

k
j=1 h jM N

j (t), we have

|ZN
t∧τK
− zt∧τK | ≤ |xN− x|+ cT,K

∫ t∧τK

0
|ZN

s − zs|ds+ |Y N
t∧τK
|

≤ εN exp(cT,Kt),

where εN := |xN−x|+sup0≤t≤T∧τK
|Y N

t | and we have used Gronwall’s Lemma 2.2.9
below. It follows from our assumption on xN and Proposition 2.2.6 that εN → 0 as
N→ ∞. The result follows, since as soon as εN exp(cT,KT )≤C, τK ≥ T . ut

Remark 2.2.8. Showing that a stochastic epidemic model (for population propor-
tions) converges to a particular deterministic process is important also for applica-
tions. This motivates the use of deterministic models, which are easier to analyse,
in the case of large populations.

Lemma 2.2.9. Gronwall Let a,b ≥ 0 and ϕ : [0,T ] → R be such that for all
0≤ t ≤ T ,

ϕ(t)≤ a+b
∫ t

0
ϕ(r)dr.

Then ϕ(t)≤ aebt .

Proof. We deduce from the assumption that

e−bt
ϕ(t)−be−bt

∫ t

0
ϕ(r)dr ≤ ae−bt ,

or in other words
d
dt

(
e−bt

∫ t

0
ϕ(r)dr

)
≤ ae−bt .

Integrating this inequality, we deduce

e−bt
∫ t

0
ϕ(r)dr ≤ a

1− e−bt

b
.

Multiplying by bebt and exploiting again the assumption yields the result. ut

Example 2.2.10. The SIR model. It is clear that Theorem 2.2.7 applies to Example
2.2.1. The limit of (SN(t), IN(t)) is the solution (s(t), i(t)) of the ODE

s′(t) =−λ s(t)i(t),

i′(t) = λ s(t)i(t)− γi(t).

Example 2.2.11. The SEIRS model with demography (continued). Again Theorem
2.2.7 applies to Example 2.2.2. The limit of (SN(t),EN(t), IN(t), RN(t)) is the solu-
tion (s(t),e(t), i(t),r(t)) of the ODE
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s′(t) = µ(1− s(t))−λ s(t)i(t)+ρr(t),

e′(t) = λ s(t)i(t)− (ν +µ)e(t),

i′(t) = νe(t)− (γ +µ)i(t),

r′(t) = γi(t)− (ρ +µ)r(t).

Note that of we define the total renormalized population as n(t) = s(t) + e(t) +
i(t)+ r(t), then it is easy to deduce from the above ODE that n′(t) = µ(1− n(t)),
consequently n(t) = 1 + e−µt(n(0)− 1). If n(0) = 1, then n(t) ≡ 1, and we can
reduce the above model to a three-dimensional model (and to a two-dimensional
model as in the previous example if we are treating the SIR or the SIRS model with
demography).

We note that this “Law of Large Numbers” approximation is only valid when
s, i > 0, i.e. when significant fractions of the population are infective and are sus-
ceptible, in particular at time 0. The ODE is of course of no help to compute the
probability that the introduction of a single infective results in a major epidemic.

The vast majority of the literature on mathematical models in epidemiology con-
siders ODEs of the type of equations which we have just obtained. The probabilistic
point of view is more recent.

Exercise 2.2.12. Let us consider Ross’s model of malaria, which we write in a
stochastic form. Denote by H(t) the number of humans (hosts) who are infected
by malaria, and by V (t) the number of mosquitos (vectors) who are infected by
malaria at time t. Let NH denote the total number of humans, and NV denote the
total number of mosquitos, which are assumed to be constant in time. The humans
(resp. the mosquitos) which are not infected are all supposed to be susceptibles. Let
m = NV/NH and denote by a the mean number of bites of humans by one mosquito
per time unit, pV H the probability that the bite of a susceptible human by an infected
mosquito infects the human, and by pHV the probability that a susceptible mosquito
gets infected while biting an infected human. We assume that the infected humans
(resp. mosquitos) recover at rate γ (resp. at rate µ).

1. What is the mean number of bites that a human suffers per time unit?
2. Given 4 mutually independent standard Poisson processes P1(t), P2(t), P3(t) and

P4(t), justify the following as a stochastic model of the propagation of malaria.

H(t) = H(0)+P1

(
apV H

∫ t

0
V (s)

NH −H(s)
NH

ds
)
−P2

(
γ

∫ t

0
H(s)ds

)
V (t) =V (0)+P3

(
ampHV

∫ t

0
H(s)

NV −V (s)
NV

ds
)
−P4

(
µ

∫ t

0
V (s)ds

)
.

3. Define now (with NH = N, NV = mN)

hN(t) =
H(t)
NH

, vN(t) =
V (t)
NV

.
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Write the equation for the pair (hN(t),vN(t)). Show that as N → ∞, with m
constant, (hN(t),vN(t))→ (h(t),v(t)), the solution of Ross’s ODE:

dh
dt

(t) = apV Hmv(t)(1−h(t))− γh(t),

dv
dt

(t) = apHV h(t)(1− v(t))−µv(t).

2.3 Central Limit Theorem

In the previous section we have shown that the stochastic process describing the
evolution of the proportions of the total population in the various compartments
converges, in the asymptotic of large population, to the deterministic solution of
a system of ODEs. In the current section we look at fluctuations of the difference
between the stochastic epidemic process and its deterministic limit.

We now introduce the rescaled difference between ZN
t and zt , namely

UN
t =
√

N(ZN
t − zt).

We wish to show that UN
t converges in law to a Gaussian process. It is clear that

UN
t =
√

N(xN− x)+
√

N
∫ t

0
[b(s,ZN

s )−b(s,zs)]ds+
k

∑
j=1

h jM̃
N
j (t),

where for 1≤ j ≤ k,

M̃ N
j (t) =

1√
N

M j

(
N
∫ t

0
β j(r,ZN

r )dr
)
.

We certainly need to find the limit in law of the k dimensional process M̃ N
t , whose

j-th coordinate is M̃ N
j (t). We prove the following proposition below.

Proposition 2.3.1. As N→ ∞,

{M̃ N
t , t ≥ 0}⇒ {M̃t , t ≥ 0}

meaning weak convergence for the topology of locally uniform convergence, where
for 1 ≤ j ≤ k, M̃ j(t) =

∫ t
0
√

β j(s,zs)dB j(s) and the processes B1(t), . . . ,Bk(t) are
mutually independent standard Brownian motions.

Let us first show that the main result of this section is indeed a consequence of
this proposition.

Theorem 2.3.2. Central Limit Theorem In addition to the assumptions of Theo-
rem 2.2.7, we assume that x→ b(t,x) is of class C1, locally uniformly in t. Then, as
N→ ∞, {UN

t , t ≥ 0}⇒ {Ut , t ≥ 0}, where
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Ut =
∫ t

0
∇xb(s,zs)Usds+

k

∑
j=1

h j

∫ t

0

√
β j(s,zs)dB j(s), t ≥ 0. (2.3.1)

Proof. We shall fix an arbitrary T > 0 throughout the proof. Let V N(s) :=
√

N[b(s,ZN
s )−

b(s,zs)] and Ñ N
t := ∑

k
j=1 h jM̃ N

j (t). We have

UN
t =UN

0 +
∫ t

0
V N(s)ds+ Ñ N

t .

Let us admit for the moment the following lemma.

Lemma 2.3.3. For each N ≥ 1, 0 ≤ t ≤ T there exists a random d× d matrix AN
t

such that
V N

t = ∇b(t,zt)UN
t +AN

t UN
t .

Moreover, sup0≤t≤T ‖AN
t ‖→ 0, a.s., as N→ ∞.

We clearly have

UN
t =UN

0 +
∫ t

0
[∇b(s,zs)+AN

s ]U
N
s ds+ Ñ N

t .

It then follows from Gronwall’s Lemma that

sup
0≤t≤T

|UN
t | ≤

(
|UN

0 |+ sup
0≤t≤T

|Ñ N
t |
)

exp
(

sup
0≤t≤T

‖∇b(t,zt)+AN
t ‖T

)
.

The right-hand side of this inequality is tight,1 hence the same is true for the left-
hand side. From this and Lemma 2.3.3 it follows that RN

t := AN
t UN

t tends to 0 in
probability as N→ ∞, uniformly for 0≤ t ≤ T . Consequently

UN
t =

∫ t

0
∇xb(s,zs)UN

s ds+W N
t , where

W N
t =UN

0 +
∫ t

0
RN

s ds+ Ñ N
t .

The following two hold

1. sup0≤t≤T |UN
0 +

∫ t
0 RN

s ds|→ 0 in probability, and from Proposition 2.3.1 Ñ N
t ⇒

Ñt , hence W N
t ⇒ Ñt for the topology of uniform convergence on [0,T ].

2. The mapping y 7→Φ(y), which to y ∈C([0,T ];Rd) associates x ∈C([0,T ];Rd),
the solution of the ODE

x(t) =
∫ t

0
∇b(s,zs)x(s)ds+ y(t),

is continuous.
1 A sequence ξn of R+-valued random variables is tight if for any ε > 0, there exists an Mε such
that P(ξn > Mε )≤ ε , for all n≥ 1, see Section A.5 in the Appendix.
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Indeed, we can construct this mapping by first solving the ODE

ż(t) = ∇b(t,zt)[z(t)+ y(t)], z(0) = 0,

and then defining x(t) = z(t)+ y(t).

Since
UN = Φ(W N),

the result follows from 1. and 2., and the fact that T is arbitrary. ut

Proof of Lemma 2.3.3. For 1≤ i≤ d, 0≤ t ≤T , define the random function ρi,t(θ)=
bi(t,zt + θ(ZN

t − zt)), 0 ≤ θ ≤ 1. The mean value theorem applied to the function
ρi,t implies that for all 0≤ i≤ d, 0≤ t ≤ T , there exists a random 0 < θ̄i,t < 1 such
that

bi(t,ZN
t )−bi(t,zt) = 〈∇bi(t,zt + θ̄i,t(ZN

t − zt)),ZN
t − zt〉.

Applying the same argument for all 1≤ i≤ d yields the first part of the Lemma. The-
orem 2.2.7 and the continuity in z of ∇b(t,z) uniformly in t imply that
∇bi(t,zt + θ̄i,t(ZN

t − zt))−∇bi(t,zt)→ 0 a.s., uniformly in t, as N→ ∞. ut

It remains to prove Proposition 2.3.1. Let us first establish a central limit theorem
for standard Poisson processes. Let {Pj(t), t ≥ 0}1≤ j≤k be k mutually independent
standard Poisson processes and M(t) denote the k-dimensional process whose j-th
component is Pj(t)− t.

Lemma 2.3.4. As N→ ∞,
M(Nt)√

N
⇒ B(t),

where B(t) is a k-dimensional standard Brownian motion (in particular B(t) ∼
N (0, tI), with I the d× d identity matrix) and the convergence is in the sense of
convergence in law in D([0,+∞);Rk).

For a definition of the space D([0,+∞);Rk) of the Rk-valued càlàg functions of
t ∈ [0,∞) and its topology, see section A.5 in the Appendix.

Proof. It suffices to consider each component separately, since they are indepen-
dent. So we do as if k = 1. We first note that our process is a martingale, whose asso-
ciated predictable increasing process is given by 〈N−1/2M(N·),N−1/2M(N·)〉t = t.
Hence it is tight.

Let us now compute the characteristic function of the random variable
N−1/2M(Nt). We obtain

E
(

exp
[
iuN−1/2M(Nt)

])
= exp

(
Nt
[

ei u√
N −1− i

u√
N

])
→ exp

(
−t

u2

2

)
,

as N→ ∞. This shows that N−1/2M(Nt) converges in law to an N (0, t) r.v.
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Now let n ≥ 1 and 0 < t1 < · · · < tn. The random variables N−1/2M(Nt1),
N−1/2M(Nt2)−N−1/2M(Nt1), . . . ,N−1/2M(Ntn)−N−1/2M(Ntn−1) are mutually in-
dependent and, if B(t) denotes a standard one dimensional Brownian motion,
the previous argument shows that, with M(0) = B(0) = 0, for any 1 ≤ k ≤ n,
N−1/2(M(Ntk)−M(Ntk−1))⇒ B(tk)−B(tk−1). Thus, since the random variables
B(t1),B(t2)−B(t1), . . . ,B(tn)−B(tn−1) are mutually independent, we have shown
that (

M(Nt1)√
N

,
M(Nt2)−M(Nt1)√

N
, . . . ,

M(Ntn)−M(Ntn−1)√
N

)
⇒ (B(t1),B(t2)−B(t1), . . . ,B(tn)−B(tn−1))

as N → ∞. This proves that the finite dimensional distributions of the process
N−1/2M(Nt) converge to those of B(t). Together with tightness, this shows the
lemma. ut

Proof of Proposition 2.3.1. With the notation of the previous lemma,

M N
j (t) = N−1/2M j

(
N
∫ t

0
β j(s,ZN

s )ds
)
.

We write

M N
j (t) = N−1/2M j

(
N
∫ t

0
β j(s,zs)ds

)
+
˜̃
M

N

j (t),

where

˜̃
M

N

j (t) = N−1/2M j

(
N
∫ t

0
β j(s,ZN

s )ds
)
−N−1/2M j

(
N
∫ t

0
β j(s,zs)ds

)
.

For C > 0, let τN,C = inf{t > 0, |ZN
t |>C}. We assume for a moment the identity

E

(∣∣∣∣˜̃M N

j (t ∧ τN,C)

∣∣∣∣2
)
=E

(∫ t∧τN,C

0

∣∣∣∣β j(s,ZN
s )ds−

∫ t

0
β j(s,zs)ds

∣∣∣∣) . (2.3.2)

The above right-hand side is easily shown to converge to 0 as N→ ∞. Jointly with
Doob’s inequality from Proposition A.4.8 in the Appendix, this shows that for all
T > 0, ε > 0,

P
(

sup
0≤t≤T

∣∣∣∣˜̃M N

j (t)
∣∣∣∣> ε

)
≤ P(τN,C < T )+P

(
sup

0≤t≤T∧τN,C

∣∣∣∣˜̃M N

j (t)
∣∣∣∣> ε

)
≤ P(τN,C < T )

+
4
ε2E

(∫ t∧τN,C

0

∣∣∣∣β j(s,ZN
s )ds−

∫ t

0
β j(s,zs)ds

∣∣∣∣) .
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It follows from Theorem 2.2.7 that for C > 0 large enough, both terms on the right

tend to 0, as N→∞. Consequently sup0≤t≤T

∣∣∣∣˜̃M N

j (t)
∣∣∣∣→ 0 in probability as N→∞.

It remains to note that an immediate consequence of Lemma 2.3.4 is that

N−1/2M j

(
N
∫ t

0
β j(s,zs)ds

)
⇒ B j

(∫ t

0
β j(s,zs)ds

)
in the sense of weak convergence in the space D((0,+∞);R), and the coordi-
nates are mutually independent. However the two processes B j

(∫ t
0β j(s,zs)ds

)
and∫ t

0
√

β j(s,zs)dB j(s) are two centered Gaussian processes which have the same co-
variance functions. Hence they have the same law.

We finally need to establish (2.3.2). Following the development in Section A.2 in

the Appendix, we can rewrite the local martingale ˜̃M N

j (t) as follows, forgetting the
index j, and the time parameter of β for the sake of simplifying notations

˜̃
M

N
(t) = N−1/2

∫ t

0

∫
∞

0
1{Nβ (zs)≤u≤Nβ (ZN

s−)}
Q(ds,du)

−N−1/2
∫ t

0

∫
∞

0
1{Nβ (ZN

s−)≤u≤Nβ (zs)}Q(ds,du),

where Q(ds,du) = Q(ds,du)−dsdu and Q is a standard Poisson point measure on
R2
+. Noting that the square of each jump of the above martingale equals N−1, we

deduce from Proposition A.4.9 in the Appendix that

E

(∣∣∣∣˜̃M N
(t ∧ τN,C)

∣∣∣∣2
)

= N−1E
∫ t∧τN,C

0

∫ N[β (ZN
s−∨β (zs)]

N[β (ZN
s−∧β (zs)]

Q(ds,du)

= N−1E
∫ t∧τN,C

0

∫ N[β (ZN
s ∨β (zs)]

N[β (ZN
s ∧β (zs)]

dsdu,

which yields (2.3.2). ut

Example 2.3.5. The SIR model. It is clear that Theorem 2.3.2 applies to Example

2.2.1. If we define
(

Ut
Vt

)
= limN→∞

√
N
(

SN(t)− s(t)
IN(t)− i(t)

)
, we have

Ut =−λ

∫ t

0
[i(r)Ur + s(r)Vr)]dr−

∫ t

0

√
λ s(r)i(r)dB1(r),

Vt =
∫ t

0
[λ (i(r)Ur + s(r)Vr)− γVr]dr+

∫ t

0

√
λ s(r)i(r)dB1(r)

−
∫ t

0

√
γi(r)dB2(r).

Remark 2.3.6. Consider now the SIR model, started with a fixed small number of in-
fectious individuals, all others being susceptible, so that (SN(0), IN(0))→ (1,0), as
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N→ ∞. The solution of the ODE from Example 2.2.10 starting from (s(0), i(0)) =
(1,0) is the constant (s(t), i(t)) ≡ (1,0). So in that case the coefficients of the
noise in the last example are identically 0, and, the initial condition of the stochas-
tic model being deterministic, it is natural to assume that (U0,V0) = (0,0). Then
(Ut ,Vt)≡ (0,0). Consequently Theorem 2.3.2 tells us that, as N→∞, for any T > 0,

√
N
(

SN(t)−1
IN(t)−0

)
→ 0, in probability, uniformly w.r.t. t ∈ [0,T ].

In the case R0 > 1, i.e. λ > γ , with positive probability the epidemic gets off. How-
ever, as we shall see in Section 3.4 below, this take time of the order of log(N), and
there is no contradiction with the present result.

We close this section by a discussion of some of the properties of solutions of
linear SDEs of the above type, following some of the developments in section 5.6
of Karatzas and Shreve [17]. Suppose that {A(t), t ≥ 0} and {C(t), t ≥ 0} are d×d
matrix-valued measurable and locally bounded deterministic functions of t. With
{B(t), t ≥ 0} being a d-dimensional Brownian motion, we consider the SDE

dXt = A(t)Xtdt +C(t)dBt , t ≥ 0,

X0 being a given d-dimensional Gaussian random vector independent of the Brow-
nian motion {B(t)}. The solution to this SDE is the Rd-valued process given by the
explicit formula

X(t) = Γ (t,0)X0 +
∫ t

0
Γ (t,s)C(s)dBs,

where the d×d matrix Γ (t,s) is defined for all 0≤ s≤ t as follows. For each fixed
s≥ 0, {Γ (t,s), t ≥ s} solves the linear ODE

dΓ (t,s)
dt

= A(t)Γ (t,s), Γ (s,s) = I,

where I denotes the d× d identity matrix. It follows that {Xt , t ≥ 0} is a Gaussian
process, and for each t > 0, the mean and the covariance matrix of the Gaussian
random vector Xt are given by (denoting by C∗ the transpose of the matrix C)

E(Xt) = Γ (t,0)E(X0),

Cov(Xt) = Γ (t,0)Cov(X0)Γ
∗(t,0)+

∫ t

0
Γ (t,s)C(s)C∗(s)Γ ∗(t,s)ds.

Assume now that A(t) ≡ A and C(t) ≡ C are constant matrices. Then Γ (t,s) =
exp((t− s)A). If we define V (t) := Cov(Xt), we have that

V (t) = etA
[
V (0)+

∫ t

0
e−sACC∗e−sA∗ds

]
etA∗ .
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If we assume moreover that all the eigenvalues of A have negative real parts, then it
is not hard to show that as t→ ∞,

V (t)→V :=
∫

∞

0
esACC∗esA∗ds.

In that case the Gaussian law with mean zero and covariance matrix V is an invariant
distribution of Gauss–Markov process Xt . This means in particular that if X0 has that
distribution, then the same is true for Xt for all t > 0. We now show the following
result, which is often useful for computing the covariance matrix V in particular
cases.

Lemma 2.3.7. Under the above assumptions on the matrix A, V is the unique d×d
positive semidefinite symmetric matrix which satisfies

AV +VA∗+CC∗ = 0.

Proof. Uniqueness follows from the fact that the difference V̄ of two solutions sat-
isfies AV̄ + V̄ A∗ = 0. This implies that for all x ∈ Rd , 〈AV̄ x,x〉 = 0. Since none of
the eigenvalues of A∗ is zero, this implies that 〈V̄ x,x〉 = 0 for all eigenvectors x of
A∗, hence for all x ∈ Rd . Since V̄ is symmetric, this implies that V̄ = 0.

To show that V satisfies the wished identity, assume that the law of X0 is Gaussian
with mean 0 and Covariance matrix V . Then V is also the covariance matrix of Xt .
Consequently

V = etAVetA∗ +
∫ t

0
e(t−s)ACC∗e(t−s)A∗ds.

Differentiating with respect to t, and letting t = 0 yields the result. ut

We leave the last result as an exercise for the reader.

Exercise 2.3.8. Consider again the case of time varying matrices A(t) and C(t). We
assume that A(t)→ A and C(t)→C as t → ∞, and moreover that the real parts of
all the eigenvalues of A are negative. Conclude that the law of Xt converges to the
Gaussian law with mean 0 and covariance matrix V defined as above.

2.4 Diffusion Approximation

We consider again the vector of proportions in our model as

ZN(t) = x+
1
N

k

∑
j=1

h jPj

(∫ t

0
Nβ j(ZN(s))ds

)
. (2.4.1)

From the strong law of large numbers, sup0≤t≤T ‖ZN(t)− zt‖ → 0 almost surely as
N→ ∞, for all T > 0, where zt solves the ODE
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żt = b(zt), z0 = x; where b(x) =
k

∑
j=1

h jβ j(x).

We now consider a diffusion approximation XN
t of the above model, which solves

the SDE

XN
t = x+

∫ t

0
b(XN

s )ds+
k

∑
j=1

h j√
N

∫ t

0

√
β j(XN

s )dB j
s ,

where B1, . . . ,Bk are mutually independent standard Brownian motions. Let us de-
fine the Wasserstein-1 distance on the interval [0,T ] between two Rd-valued pro-
cesses Ut and Vt as

W1,T (U,V ) = infE(‖U−V‖T ) ,

where, if x : [0,T ]→Rd , ‖x‖T = sup0≤t≤T ‖x(t)‖, and the above infimum is over all
couplings of the two processes U(t) and V (t), i.e. over all ways of defining jointly
the two processes, while respecting the two marginal laws of U and V . We shall use
the two following well–known facts about the Wasserstein distance: it is a distance
(and satisfies the triangle inequality); if Un is a sequence of random elements of
D([0,T ];Rd) which converges in law to a continuous process U , and is such that the
sequence of random variables ‖Un‖T is uniformly integrable, then W1,T (Un,U)→ 0
as n→ ∞.

The aim of this section is to establish the following theorem.

Theorem 2.4.1. For all T > 0, as N→ ∞,
√

NW1,T (ZN ,XN)→ 0,

or in other words, W1,T (ZN ,XN) = o(N−1/2).

Proof. We have proved in Theorem 2.2.7 that sup0≤t≤T ‖ZN
t − zt‖T → 0 almost

surely, as N → ∞, and moreover
√

N(ZN − z)⇒ U as N → ∞, where the above
convergence holds for the topology of uniform convergence on the interval [0,T ],
and U is the Gaussian process solution of the SDE

Ut =
∫ t

0
∇b(zs)Usds+

k

∑
j=1

h j

∫ t

0

√
β j(zs)dB j

s .

It is not hard to prove the following.

Exercise 2.4.2. As N→ ∞, sup0≤t≤T ‖XN
t − zt‖T → 0 almost surely, and moreover√

N(XN− z)⇒U .

We first note that from the triangle inequality

W1,T (
√

N(ZN− z),
√

N(XN− z))≤W1,T (
√

N(ZN− z),U)

+W1,T (
√

N(XN− z),U)

→ 0,
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as N→ ∞. Moreover

W1,T (
√

N(ZN−z),
√

N(XN−z)) = inf
couplings

E‖
√

N(ZN−z)−
√

N(XN−z)‖T

= inf
couplings

√
NE‖(ZN− z)− (XN− z)‖T

= inf
couplings

√
NE‖ZN−XN‖T

=
√

NW1,T (ZN ,XN).

Theorem 2.4.1 follows from the two last computations. ut

Remark 2.4.3. If we combine the law of large numbers and the central limit theorem
which have been established in the previous two sections, we conclude that ZN

t −
zt−N−1/2Ut = ◦(N−1/2). In other words, if we replace ZN

t by the Gaussian process
zt +N−1/2Ut , the error we make, at least on any given finite time interval, is small
compared to N−1/2. The same is true for the diffusion approximation XN

t .



Chapter 3
General Closed Models

In this chapter we go back to the general model, i.e. not assuming exponential la-
tent and infectious periods implying that the epidemic process is Markovian. We
consider models which are closed in the sense that there is no influx of new suscep-
tibles during the epidemic. No birth, no immigration, and the removed individual are
either dead or recovered, with an immunity which they do not lose in the considered
time frame.

In this context, the epidemic will stop sooner or later. The questions of main
interest are: the evaluation of the duration of the epidemic, and the total number of
individuals which are ever infected. The first section gives exact results concerning
the second issue in small communities. The rest of the chapter is concerned with
large communities. We present the Sellke construction, and then use it to give a law
of large number and a central limit theorem for the number of infected individuals.
Finally we study the duration of the epidemic.

3.1 Exact results for the final size in small communities

In earlier sections it is often assumed that the population size N is large. In other
situations this is not the case, for example in planned infectious disease experiments
in veterinary science the number of studied animals is of the order 5–20 (e.g. Quenee
et al. [29]), and in such cases law of large numbers and central limit theorems have
not yet kicked in, which motivates the current section about exact results in small
populations.

It turns out that it is quite complicated to derive expressions for the distribu-
tion of the final size, even when N is quite small. The underlying reason for this is
that there are many ways in which an outbreak can result in exactly k initially sus-
ceptible individuals getting infected. We illustrate this by computing the final size
distribution {p(N)

k } for the Reed–Frost model for N = 1, 2 and 3. We then derive a
recursive formula for the final outcome of the full model valid for general N and k
(but numerically unstable for N larger than, say, 40).

43
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Consider the Reed–Frost epidemic where the probability to infect a given sus-
ceptible equals p (= 1−e−λι/N). And let N = 1, one susceptible and one infectious
individual to start with. The possible values of Z are then 0 and 1, and obviously we
have p(1)0 =P(Z = 0|N = 1) = 1− p and p(1)1 = p. For N = 2 things are slightly more

complicated. No one getting infected is easy: p(2)0 = (1− p)2, since both individuals
have to escape infection from the index case. For Z = 1 to occur, the index case must
infect exactly one of the two remaining, but further, this individual must not infect
the third person: p(2)1 =

(2
1

)
p(1− p) ∗ (1− p). Finally, the probability of Z = 2 is

of course the complimentary probability, but it can also be obtained by considering
the two possibilities for this to happen: either the index case infects both, or else
the index case infects exactly one of the two, and that individual in turn infects the
remaining individual: p(2)2 = p2 +2p(1− p)∗ p.

For N = 3 initial susceptibles the situation becomes even more complicated. It
is best to write down the different epidemic generation chains at which individuals
get infected. We always have one index case. The chain in which the index case
infects two individuals who in turn together infect the last individual, is denoted
1→ 2→ 1→ 0. The probability for such a chain can be computed sequentially
for each generation keeping in mind: how many susceptibles there are at risk, how
many that get infected and what is the risk of getting infected (the complimentary
probability of escaping infection). The probability for the chain just mentioned is
given by

P(1→ 2→ 1→ 0|N = 3) =
(

3
2

)
p2(1− p)1 ∗ (1− (1− p)2).

The last factor comes from the final individual getting infected when there were
two infected individuals in the previous generation (so the escape probability equals
(1− p)2). We hence see that the probability of a chain is the product of (different)
binomial probabilities. The final size probabilities are then obtained by writing down
the different possible chains giving the desired final outcome:

p(3)0 = P(1→ 0) = (1− p)3

p(3)1 = P(1→ 1→ 0) =
(

3
1

)
p(1− p)2 ∗ (1− p)2

p(3)2 = P(1→ 2→ 0)+P(1→ 1→ 1→ 0)

=

(
3
2

)
p2(1− p)∗ ((1− p)2)+

(
3
1

)
p(1− p)2 ∗

(
2
1

)
p(1− p)∗ (1− p)

p(3)3 = P(1→ 3→ 0)+P(1→ 2→ 1→ 0)+P(1→ 1→ 2→ 0)
+P(1→ 1→ 1→ 1→ 0)

= . . .
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Exercise 3.1.1. Compute p(3)3 explicitly by computing the probabilities of the dif-

ferent chains. Check that ∑
3
k=0 p(k)3 = 1 for any p ∈ [0,1].

For general N it is possible to write down the outcome probability for a specific
chain as follows. If we denote the number of susceptibles and infectives in gener-
ation k by (Sk, Ik), then the epidemic starts with (S0, I0) = (s0, i0) = (N,1). From a
chain 1→ i1→ . . . i j→ 0 (so i j+1 = 0) the number of susceptibles in generation k is
also known from the relation sk = s0−∑

k
j=1 ik. We use this when we compute the bi-

nomial probabilities of a given generation of the chain, these binomial probabilities
depend on: how many were at risk, how many infectives there were in the previous
generation, and how many to be infected in the current. Finally, the probability of a
chain is the product of the different binomial probabilities of the different genera-
tions. From this we obtain the following so called chain-binomial probabilities

P(1→ i1→ . . . i j→ 0) =
j+1

∏
k=1

(
sk−1

ik

)(
1− (1− p)ik−1

)ik ((1− p)ik−1
)sk−1−ik .

As seen, these expression are quite long albeit explicit. However, computing the fi-
nal outcome probabilities pN(k), k = 0, . . . ,N, is still tedious since there are many
different possible chains resulting in exactly k getting infected at the end of the epi-
demic. Further, things become even more complicated when considering different
distributions of the infectious period than a constant infectious period as is assumed
for the Reed–Frost epidemic model.

However, it is possible to derive a recursive formula for the final number infected
pN(k), see e.g. Ball [5], which we now show. The derivation of the recursion of the
final size uses two main ideas: a Wald’s identity for the final size and the total infec-
tion pressure, and the exchangeability of individuals making it possible to express
the probability of having k infections among the initially N susceptibles in terms of
the probability of getting all k infected in the subgroup containing those k individu-
als and the index case, and the probability that the remaining N−1− k individuals
escape infection from that group.

Let us start with the latter. Fix N and write λ̄ = λ/N. As before we let ZN

denote the total number infected excluding the index case(s), explicitly showing
the dependence on the number of initially susceptible N. Since individuals are ex-
changeable we can label the individuals according to the order in which they get
infected. The index case is labelled 0, the individuals who get infected during the
outbreak are labelled: 1, . . . ,ZN , and those who avoid infection according to any
order ZN +1, . . . ,N. With this labelling we define the total infection pressure AN by

AN = λ̄

ZN

∑
i=0

Ii (3.1.1)

i.e. the infection pressure, exerted on any individual, during the complete outbreak
(sometimes referred to as the “total cost" or the “severity” of the epidemic).
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As earlier we let p(N)
i = P(ZN = i) denote the probability that exactly k initial

susceptibles out of N get infected during the outbreak. Reasoning in terms of subsets
among the initial susceptibles as described earlier, and using the exchangeability of
individuals, it can be shown ([5]) that for any i≤ k ≤ N,

p(N)
i(N
i

) =
p(k)i(k

i

) E(e−(N−k)Ak |Zk = i
)
. (3.1.2)

The equation is explained as follows. On the left-hand side is the probability that a
specific group of size i (out of N) get infected and no one else. On the right-hand side
this event is divided into two sub events.This is done by considering another group
of size k ≥ i, containing the earlier specified group of size i as a subset. The first
factor is then the probability that exactly the subgroup of size i get infected within
the bigger group of size k. The second factor, the expectation, is the probability that
all individuals outside the bigger subgroup avoid getting infected. The notation Ak

and Zk hence denote the total pressure and final size starting with k susceptibles.
We use the following steps to show Wald’s identity recalling that ψI(b) = E(ebI)

is the moment generating function of the infectious period (so ψI(−b) is the Laplace
transform)

(ψI(−θλ̄ ))k+1 = E

[
exp

(
−θλ̄

k

∑
i=0

Ii

)]

= E

[
exp

(
−θ

(
Ak + λ̄

k

∑
i=Zk+1

Ii

))]
= E

[
e−θAk

(ψI(−θλ̄ )k−Zk
]
.

The last identity follows since the k−Zk infectious periods IZk+1, . . . Ik, are mutu-
ally independent and also independent jointly of the total pressure Ak (which only
depends on the first Zk infectious periods and the contact processes of these individ-
uals). If we now divide both sides by (ψI(−θλ̄ ))k+1 we obtain Wald’s identity for
Zk and Ak:

E

(
e−θAk

(ψI(θλ̄ ))1+Zk

)
= 1, θ ≥ 0. (3.1.3)

If we apply Wald’s identity with θ = N− k and condition on the value of Zk we
get

k

∑
i=0

E
(

e−(N−k)Ak |Zk = i
)

(ψI(−(N− k)λ̄ ))i+1
p(k)i = 1. (3.1.4)

If we now use Equation (3.1.2) in the equation above we get

k

∑
i=0

(k
i

)
p(N)

i(N
i

)
(ψI(−(N− k)λ̄ ))i+1

= 1.
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Simplifying the equation, returning to λ = λ̄N and putting p(N)
k on one side, we

obtain the recursive formula for the final size distribution p(N)
k ,k = 0, . . . ,N.

Theorem 3.1.2. The exact final size distribution is given by the recursive formula

p(N)
k =

(
N
k

)
[ψI(−(N− k)λ/N)]k+1−

k−1

∑
i=0

(
N− i
k− i

)
[ψI(−(N− k)λ/N)]k−i p(N)

i .

(3.1.5)

For example, solving Equation (3.1.5) for k = 0 (when the sum is vacuous) and
then for k = 1 gives, after some algebra,

p(N)
0 = ψI (λ ) ,

p(N)
1 = NψI

(
(N−1)λ

N

)
×
[(

ψI

(
(N−1)λ

N

))
−ψI (λ )

]
.

In order to compute p(N)
k using (3.1.5) it is required to sequentially compute p(N)

0

up to p(N)
k−1. Further, the formula is not very enlightening and it may be numerically

very unstable when k (and hence N ≥ k) is large. For this reason we devote the major
part of these notes to approximations assuming N is large.

In Section 1.9 of Part II of this volume the exact results above are generalized to
a model allowing for heterogeneous spreading, meaning that the transmission rate
depends on the two individuals involved.

Exercise 3.1.3. Compute the final size distribution {p(N)
k } numerically using some

suitable software for N = 10, 50 and 100, for λ = 2 and I ≡ 1 (the Reed–Frost
model) and I ∼ Γ (3,1/3) (having mean 1 and variance 1/3).

3.2 The Sellke construction

We now present the Sellke construction (Sellke [36]), which is an ingenious way
to define the epidemic outbreak in continuous time using two sets of i.i.d. random
variables. This elegant construction is made use of in many new epidemic models,
as proven by having more than 50 citations in the past decade.

We number the individuals from 0 to N: 0 1 2 3 . . . N. Index 0 denotes the initially
infected individual, and the individuals numbered from 1 to N are all susceptible at
time 0.

Let

Q1,Q2, . . . ,QN be i.i.d. random variables, with the law Exp(1);
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(L0, I0),(L1, I1), . . . ,(LN , IN) be i.i.d. random variables, with the law P(L,I).
In the Markov model, Li and Ii are independent, hence P(L,I) = PL⊗PI ,2 where
PL is the law of the latency period and PI that of the infectious period. But this
need not be the case in more general non-Markov models.

Individual 0 has the latency period L0 and the infectious period I0. We denote below

L(t) the number of individuals in state E at time t;
I(t) the number of individuals in state I at time t.

Note that for each i, the two random variables Li and Ii could be dependent, which
typically is not the case in a Markov model.

We define the cumulative force of infection experienced by an individual, be-
tween times 0 and t as

ΛC(t) =
λ

N

∫ t

0
I(s)ds.

For i = 1, . . . ,N, individual i is infected at the time when ΛC(t) achieves the value
Qi (which might be considered as the “level of resistance to infection of individual
i”). The j-th infected susceptible has the latency period L j and the infectious period
I j. The epidemic stops when there is no individual in either the latent or infectious
state, after which ΛC(t) does not grow any more, ΛC(t) = ΛC(∞). The individuals
such that Qi > ΛC(∞) escape infection.

We put the Qis in increasing order: Q(1) < Q(2) < · · · < Q(N). It is the order in
which individuals are infected in Sellke’s model. Note that Sellke’s model respects
the durations of latency and infection. In order to show that Sellke’s construction
gives a process which has the same law as the process from Definition 1.1.1, it
remains to verify that the rates at which infections happen are the correct ones.

In the initial model, we assume that each infectious meets other individuals at
rate c. Since each individual has the same probability of being the one who is met,
the probability that a given individual is that one is 1/N. Hence the rate at which a
given individual is met by a given infectious one is c/N. Each encounter between
a susceptible and an infectious individual achieves an infection with probability p.
Hence the rate at which a given individual is infected by a given infectious individual
is λ/N, where we have set λ = cp. The rate at which an infectious individual infects
susceptibles is then λS(t)/N. Finally the epidemic propagates at rate λS(t)I(t)/N.

Let us go back to Sellke’s construction. At time t, S(t) susceptibles have not yet
been infected. Each of those corresponds to a Qi >ΛC(t). At time t, the slope of the
curve which represents the function t 7→ΛC(t) is λ I(t)/N. If Qi > ΛC(t) = x, then

2 This notation stands for the product of the two probability measures PL and PI . The fact that the
law of the pair is the product of the two marginals is equivalent to the fact that the two random
variables L and I are independent.
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P(Qi > x+ y|Qi > x) = e−y,

hence P(Qi > ΛC(t + s)|Qi > ΛC(t)) = exp
(
−λ

N

∫ t+s

t
I(r)dr

)
= exp

(
−λ

N
I(t)s

)
,

if I is constant on the interval [t, t+s]. Consequently, conditionally upon Qi >ΛC(t),

Qi−ΛC(t)∼ Exp
(

λ

N
I(t)
)
.

The same is true for all S(t) of those Qi which are > ΛC(t). The next individual
to get infected corresponds to the minimum of those Qi, hence the waiting time
after t for the next infection follows the law Exp

(
λ

N I(t)S(t)
)

, if no removal of an
infectious individual happens in the mean time, which would modify I(t).

Thus in Sellke’s construction, at time t the next infection comes at rate

λ

N
I(t)S(t),

as in the model described above.

3.3 LLN and CLT for the final size of the epidemic

Define, for 0≤ w≤ N+1, with the notation [w] = integer part of w, and the conven-
tion that a sum over an empty index set is zero,

J (w) =
λ

N

[w]−1

∑
i=0

Ii.

Note that i = 0 is the index of the initially infected individual, Ii denotes here the
length of the infectious period of individual whose resistance level is Q(i) (who is
not that of the i-th individual of the original list, but of the individual having the i-th
smallest resistance).

J (w) is the infection pressure produced by the first [w] infected individuals
(including number 0). For any integer k, J is of course constant on the interval
[k,k+1). Define for v > 0 the number of individuals who do not resist to the infec-
tious pressure v:

q(v) =
N

∑
i=1

1{Qi≤v}.

The total number of infected individuals in the epidemic is
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Z = min

{
k ≥ 0; Q(k+1) >

λ

N

k

∑
i=0

Ii

}
(3.3.1)

= min
{

k ≥ 0; Q(k+1) > J (k+1)
}

= min{w≥ 0; q(J (w+1)) = w} .

Suppose indeed that Z = i. Then according to (3.3.1),

J ( j)> Q( j), hence q(J ( j))≥ j, for all j ≤ i,

and J (i+1)< Q(i+1) hence q(J (i+1))< i+1.

In other words Z = i if and only if i is the smallest integer such that

q(J (i+1))< i+1, hence q(J (i+1)) = i.

3.3.1 Law of Large Numbers

Let us index J and q by N, the population size, so that they become JN and qN .
We now define

J N(w) = JN(Nw)

qN(v) =
qN(v)

N
.

It follows from the strong law of large numbers that as N→ ∞,

J N(w)→ λE(I)w = R0w almost surely, and

qN(v)→ 1− e−v a.s.

Hence, with the notation f ◦g(u) := f (g(u)), as N→ ∞,

qN ◦J N(w)→ 1− e−R0w

a.s., uniformly on [0,1] (the uniformity in w follows from the second Dini theorem,
as in the proof of Proposition 2.2.6). We have (replacing now Z by ZN)

ZN

N
= min

{w
N
≥ 0; qN(JN(w+1)) = w

}
= min

{
s≥ 0;

1
N

qN

(
JN

(
N
(

s+
1
N

)))
= s
}

= min
{

s≥ 0; qN

(
J N

(
s+

1
N

))
= s
}
.
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Recall from (1.1.1) that R0 = λι , where ι = E(I). Note that when R0 > 1, the equa-
tion

z = 1− e−R0z (3.3.2)

(which is equation (2.1.2) from Section 2.1) has a unique solution z∗ ∈ (0,1)
(besides the zero solution). Indeed, f (z) = 1− e−R0z is concave, f (1) < 1, and
f ′(0) = R0. For the proof of the next theorem, we follow an argument from An-
dersson and Britton [2] (see also Ball and Clancy [6]).

Theorem 3.3.1. If R0 ≤ 1, then ZN/N→ 0 a.s., as N→ ∞.
If R0 > 1, as N→ ∞, ZN/N converges in law to the random variable ζ which is

such that P(ζ = 0) = z∞ = 1−P(ζ = z∗), where
z∞, the probability of a minor outbreak (i.e. that the epidemic does not get off), is

the solution in (0,1) of (3.3.3) below, and z∗ is the positive solution of (3.3.2).

Let us explain how one can characterize z∞. It follows from Theorem 1.2.5 that
the probability z∞ that the epidemic does not get off equals the probability that the
associated branching process goes extinct, which is the probability that the associ-
ated discrete time branching process (where we consider the infected by generation)
goes extinct. According to Proposition A.1.1 from Appendix A, the probability that
this happens is the solution in the interval (0,1) of the equation g(s) = s, where g
is the generating function of the random number ξ of individuals that one infected
infects. As explained in Section 1.2, the law of ξ is MixPoi(λ I), so if we denote by
ψI(µ) = E[exp(−µI)] the Laplace transform of I, which is well defined for µ > 0,
then g(s) = ψI(λ (1− s)). Hence z∞ is the unique solution in (0,1) of the equation

ψI(λ (1− s)) = s . (3.3.3)

Proof. If R0≤ 1, then from Corollary 1.2.6, ZN remains bounded, hence ZN/N→ 0.
If R0 > 1, then ZN remains bounded with probability z∞, which is the proba-

bility of extinction in the branching process which approximates the early stage of
the epidemic. We now need to see what happens on the complementary event. For
that sake, we first choose an arbitrary sequence of integers tN , which satisfies both
tN/N→ 0 and tN/

√
N→ ∞, as N→ ∞. We note that on the event {ZN ≤ tN}, each

infective infects susceptibles at a rate which is bounded below by λN = λ
N+1−tN

N .
Let Z(λN , I) denote the total progeny of a single ancestor in a branching process,
where each individual has children according to a rate λN Poisson process, during
his life whose length is I. It is plain that for ant t ∈ Z+, and N large enough such
that t ≤ tN ,

P(B(λ , I)≤ t)≤ P(ZN ≤ t)≤ P(ZN ≤ tN)≤ P(B(λN , I)< ∞).

Define as in the statement z∞ = P(B(λ , I) < ∞) the probability of extinction of
the branching process approximating the early stage of the epidemic, and zN,∞ =
P(B(λN , I)< ∞). It is not hard to show that zN,∞→ z∞ as N→ ∞, as a consequence
of the fact that λN → λ (since tN/N → 0). Hence for any ε > 0, we can choose
t large enough such that P(B(λ , I) ≤ t) ≤ z∞ − ε , and N large enough such that
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zN,∞ ≤ z∞ + ε . We have shown that

P(ZN ≤ tN)→ z∞, as N→ ∞. (3.3.4)

This shows that a.s. on the event that the epidemic goes off, ZN tends to ∞ faster
than tN . We will next prove that

lim
c→∞

lim
N→∞

P
({

tN < ZN < Nz∗− c
√

N
}⋃{

ZN > Nz∗+ c
√

N
})

= 0 . (3.3.5)

Recalling the last formula preceding the statement of the present theorem,{
ZN

N
∈
(

tN ,z∗−
c√
N

)⋃(
z∗− c√

N
,1
]}

⊂
{
∃s ∈

(
tN ,z∗−

c√
N

)⋃(
z∗− c√

N
,1
]

; qN

(
J N

(
s+

1
N

))
= s
}

⊂
{

sup
0≤s≤1

∣∣∣∣qN

(
J N

(
s+

1
N

))
−1+ e−R0s

∣∣∣∣> φ(c)√
N

}
, (3.3.6)

where φ(c)→ ∞, as c→ ∞, for N large enough. We have exploited the facts that
tN/
√

N→∞ as N→∞, and f ′(0)> 1, f ′(z∗)< 1. However, we shall see in the next
subsection (see (3.3.7)) that{√

N
(

qN

(
J N

(
s+

1
N

))
−1+ e−R0s

)
, s ∈ [0,1]

}
converges weakly, for the sup–norm topology, to a centred Gaussian process with
finite covariance, hence the limit as N → ∞ of the probability of the event (3.3.6)
tends to 0, as c→ ∞, which establishes (3.3.5). It is easily seen that the second part
of the Theorem follows from the combination of (3.3.4) and (3.3.5). ut

We see that z∗ is the size, measured as the proportion of the total population, of
a “significant” epidemic, if it takes off, which happens with probability 1− z∞.

We notice that z∗ depends on the particular model only through the quantity R0.
In particular it depends on the law of the infectious period I only through its mean.
In the case where both E and I are exponential random variables, we know from
Section 2.2 that the model has a law of large numbers limit, which is a system of
ODEs. The same value for z∗ has been deduced from an analysis of this deterministic
model in Section 2.1. The last theorem holds for a larger class of models.
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3.3.2 Central Limit Theorem

From the classical CLT, as N→ ∞,

AN(ω) :=
√

N(J N(w)−R0w) =
λ
√

w√
Nw

[Nw]

∑
i=0

[Ii−E(Ii)]+O(1/
√

N)

⇒ A(w),

where A(w)∼N (0, p2c2Var(I)w). One can in fact show that, as processes

{
√

N(J N(w)−R0w), 0≤ w≤ 1}⇒ {A(w), 0≤ w≤ 1}

for the topology of uniform convergence, where {A(w), 0 ≤ w ≤ 1} is a Brow-
nian motion (i.e. a centered Gaussian process with independent increments and
continuous trajectories) such that Var(A(w)) = r2R2

0w, where r2 = (EI)−2Var(I).
It is easy to show that for all k ≥ 1, all 0 < w1 < · · · < wk ≤ 1, if we define
AN(w) :=

√
N(J N(w)−R0w),

(AN(w1), . . . ,AN(wk))⇒ (A(w1), . . . ,A(wk)).

This means the convergence of the finite dimensional distributions. Combining this
with the techniques exposed in Section A.5 of the Appendix yields the above func-
tional weak convergence.

Consider now qN . Again from the usual CLT,

BN(v) =
√

N(qN(v)− [1− e−v])

=
1√
N

N

∑
i=1

[
1{Qi≤v}− (1− e−v)

]
⇒ B(v),

where B(v)∼N (0,e−v(1−e−v)). We have again a functional convergence, accord-
ing to the Kolmogorov–Smirnov theorem, towards a time changed Brownian bridge.
In simpler words, {B(v), v ≥ 0} is a centred Gaussian process with continuous
trajectories whose covariance function is specified by the identity E[B(u)B(v)] =
e−u∨v− e−(u+v), where u∨ v := sup(u,v).

Let us now combine the two functional central limit theorems which we have just
derived. We have

√
N
(
qN(J N(w))−1+ e−R0w)

=
√

N
(
qN(J N(w))−1+ exp(−J N(w))

)
+
√

N
(

e−R0w− e−J N(w))
)

∼ BN(J N(w))−R0e−R0wAN(w).
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Consequently
√

N
(
qN(J N(w))−1+ e−R0w)B(R0w)−R0e−R0wA(w), (3.3.7)

which is the functional central limit theorem which was used in the proof of Theo-
rem 3.3.1.

Recall that the above Law of Large Numbers has been obtained by taking the
limit in the equation

qN
(
J N

(
z+N−1))= z.

Making use of the above two CLTs, we get

z = 1− e−J N(z+N−1) +N−1/2BN(J N(z+N−1))

= 1− exp
(
−R0(z+N−1)−N−1/2AN(z+N−1)

)
+N−1/2BN

(
R0(z+N−1)+N−1/2AN(z+N−1)

)
.

Let z = z∗+ zNN−1/2 +◦(N−1/2), where z∗ satisfies e−R0z∗ = 1− z∗. We obtain

z∗+ zNN−1/2 +◦(N−1/2)

= 1− exp
(
−R0z∗−R0zNN−1/2−AN(z∗)N−1/2 +◦(N−1/2)

)
+N−1/2BN(R0z∗)+◦(N−1/2)

= 1− e−R0z∗ +N−1/2e−R0z∗ (R0zN +AN(z∗))+N−1/2BN(R0z∗)+◦(N−1/2).

We simplify this relation by making use of the equation which specifies z∗. Multi-
plying the remaining terms by N1/2, we deduce

[1− (1− z∗)R0]zN = BN(R0z∗)+(1− z∗)AN(z∗)+◦(1).

Hence zN ⇒ Ξ , where (note that e−R0z∗(1− e−R0z∗) = z∗(1− z∗))

Ξ ∼N

(
0,

z∗(1− z∗)
(1− (1− z∗)R0)2

(
1+ r2(1− z∗)R2

0
))

,

where we have exploited the independence of the two processes A(·) and B(·), which
follows from that of the two collections of random variables (Ii, i≥ 0) and (Qi, i≥
1).

Finally we can conclude with the following theorem. We refer to Scalia-Tomba
[32] and [33] for a more complete justification.

Theorem 3.3.2. As N→∞, conditionally upon the event that the epidemic takes off,
the law of N−1/2(ZN−Nz∗) converges towards the Gaussian distribution

N

(
0,

z∗(1− z∗)
(1− (1− z∗)R0)2

(
1+ r2(1− z∗)R2

0
))

.
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Exercise 3.3.3. Compute numerically the limiting mean and standard deviation of
the final size ZN in case of a major outbreak and N = 1000, λ = 1.5 and ι = 1,
for the following two situations. The first scenario is when I ≡ 1 (fixed infectious
period), and the second when I ∼ Exp(1) (Markovian SIR).

3.4 The duration of the stochastic SEIR epidemic

Recall that LN(t) and IN(t) denote the numbers of latent and infectious individuals
at time t respectively, and introduce ZN(t) = N−LN(t)− IN(t)−RN(t) to denote
the number of individuals who have been infected by time t (i.e. who are no longer
susceptible). We now study how long it takes for the epidemic to first grow big,
and then later to end, i.e. for the end of the epidemic we will study properties of
τN = inf{t;LN(t)+ IN(t) = 0} as N → ∞. It will only be a sketch since it is quite
technical to prove the results rigorously. For detailed results we refer to Barbour [7].
From an applied point of view, this question has clear practical relevance, since for
instance hospitals are on highest pressure when the epidemic peaks, and knowing
how long until the outbreak is over indicates how long preventive measures should
be enforced.

If the epidemic does not take off we know from branching process theory that
the time to extinction is finite, so τN = Op(1) on this part of the sample space
(Op(1) denotes bounded in probability). We hence focus on the situation where the
epidemic takes off resulting in a major outbreak, hence implicitly assuming that
R0 > 1.

We divide the duration of the whole epidemic τN into three parts: the beginning,
the main part and the end of the epidemic. Pick ε > 0 small. Formally we define
these parts by defining two intermediate times (inspired by Sir Winston Churchill):
the end of the beginning τN

Beg = inf{t ≤ τN ;ZN(t) ≥ εN}, and the beginning of the
end τN

End = inf{t ≤ τN ;ZN(t)≥ (1−ε)z∗N}, where z∗ is the positive solution to the
final size equation from Section 2.1. Each of these times are equal to τN in the case
when the event never occurs.

With these definitions the beginning of the epidemic is the time interval [0,τN
Beg),

the main part [τN
Beg,τ

N
End) and the end part [τN

End ,τ
N ].

During the beginning we can sandwich the epidemic between two branching pro-
cesses. The upper bound is the branching process Z(t) described in Section 1.2.
Similarly, we can construct a lower bound using a very similar branching process
Z−(t), the only difference being that the birth rate is λ (1− ε) as opposed to λ for
the upper branching process. This is true because before τN

Beg the rate of new in-
fections in the epidemic equals λ (1−ZN(t)/N) which lies between λ (1− ε) and
λ . Since Z−(t) ≤ ZN(t) ≤ Z(t) for t ≤ τN

Beg it follows that τN
+ ≤ τN

Beg ≤ τN
− , where

τN
+ = inf{t;Z(t)≥ εN} and τN

− = inf{t;Z−(t)≥ εN}.
From Section A.1.2 we know the rate at which a branching process grows. More

specifically, we know that when a branching process Z′(t) takes off, it grows ex-
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ponentially: Z′(t)∼ er′t , where r′ is the unique solution to 1 =
∫

∞

0 e−r′sλ (s)ds = 1,
where λ (s) is the average (expected) rate at which an individual gives birth at age
s (cf. Equation (1.2.1)). For our two branching processes Z(t) and Z−(t) we have
λ (s) = λP(L < s < L + I) and λ−(s) = λ (1− ε)P(L < s < L + I) respectively.
From this it follows that the exponential growth rates r and r− can be made ar-
bitrary close to each other by choosing ε small enough (r− = r(1+ o(ε))). The
particular form of r and r− depends on the distribution of L and I (see Exercise
3.4.2 below). Recall that τN

+ = inf{t;Z(t)≥ εN}, so the fact that Z(t)∼ ert implies
that τN

+ = log(εN)
r +Op(1). Similarly, τN

− = log(εN)
r− +Op(1). As a consequence, the

two stopping times are arbitrary close to each other on the logarithmic scale. From
this we have τN

Beg =
log(N)

r (1+o(ε))+Op(1).
We now turn to the duration of the main part of the epidemic: τN

End− τN
Beg which

is positive only if the epidemic takes off, which we hence condition upon. During
this part of the epidemic, the Markovian SEIR epidemic can be approximated by
the deterministic SEIR model. This means that for the Markovian SEIR model, the
duration of the main part of the epidemic τN

End − τN
Beg can be well approximated by

the corresponding duration of the deterministic system τDet
End − τDet

Beg . The determin-
istic system is started at τDet

Beg = 0 with initial conditions (s(0),e(0), i(0),r(0)) =
(1− ε,aε,bε,(1− a− b)ε) for some positive numbers a and b with 0 < a+ b ≤ 1
(there is no closed form expression for how the infected individuals are divided
into exposed, infectives and recovereds). The system is then run until τDet

End =
inf{t;e(t)+ i(t)+ r(t) ≥ (1− ε)z}. We know that z(t) = e(t)+ i(t)+ r(t)→ z and
z(t) is monotonically increasing (since s(t) = 1− z(t) is decreasing). This implies
that τDet

End − τDet
Beg = τDet

Beg is just a constant for any fixed positive ε . It will depend
slightly on a and b, but when ε is small the dependence is weak and there is a uni-
form bound. From this we conclude that the main part of the epidemic is bounded:

τ
N
End− τ

N
Beg = τ

Det
Beg +op(ε) = Op(1).

If the latent and infectious periods are not exponentially distributed, then the
stochastic SEIR epidemic is not Markovian, and the deterministic approximating
system is a difference-delay-system which we will not study more closely. The qual-
itative properties of this system coincide with those of the Markovian SEIR system;
in particular, the duration of the main part is bounded in probability.

Just like the main part of the epidemic the duration of end of the epidemic,
τN−τN

End is only positive if the epidemic takes off, which we hence condition upon.
At the beginning of the end part, the number of infected (either exposed, infec-
tious or recovered) equals ZN(τN

End) = (1−ε)z∗N and SN(τN
End) = (1−z∗)N+εz∗N.

Since ε is assumed to be small, infectious individuals give birth at rate λ (1− z∗+
εz∗)≈ (1− z∗) during the rest of the epidemic (we know the final fraction infected
converges to z∗ in probability). Further, at the start of the beginning the fractions
exposed and infectious will both close to that of the deterministic system which
are both small, having size cEε and cIε say (cf. Figure 2.1.1 where it is seen that
e(t) and i(t) are both small for large t). So, from the beginning of the end part, the



3.4. The duration of the stochastic SEIR epidemic 57

epidemic behaves like a branching process with childhood duration L, adult dura-
tion I and birth rate λ (1− z∗) during the adult life stage, and this part is started
with cEεN children (exposed) and cIεN adults (infectious). The mean off-spring
distribution for this branching process equals λE(I)(1− z∗) = R0(1− z) where z∗

is the positive solution to 1− z = eR0z. It can be shown (cf. Exercise 3.4.1 below)
that R0(1− z∗)< 1 implying that the branching process is subcritical (otherwise the
epidemic would not be on decline).

The duration τN − τN
End of the end part can hence be approximated by the time

until extinction of a subcritical branching process, starting with cEεN children
(exposed) and cIεN adults (infectious). This branching process will have negative
drift r∗ < 0 being the solution to the corresponding equation

∫
∞

0 e−rsλ (s)ds = 1
where now λ (s) = λ (1− z∗)P(L < s < L+ I). So, E(t)+ I(t)∼ (E(0)+ I(0))er∗t =
(cE +cI)εNer∗t . The time until this branching process goes extinct (i.e. E(t)+I(t)<
1) is hence of order − log((cE + cI)εN)/r∗ =− logN/r∗+Op(1).

To sum up, the duration of the epidemic τN = Op(1) if the epidemic does not
take off, whereas it has the following structure in case it does take off:

τ
N = τ

N
Beg +

(
τ

N
End− τ

N
Beg
)
+
(
τ

N− τ
N
End
)
=

logN
r

+Op(1)+
− logN

r∗
. (3.4.1)

Note that the last term is also positive since r∗ < 0.

Exercise 3.4.1. Show that R0(1− z∗)< 1 and compute it numerically for R0 = 1.5.

Exercise 3.4.2. Consider the stochastic SEIR epidemic with infection rate λ = 1.5
per time unit. Compute the two leading terms of the duration of a major outbreak for
the following three case: L ≡ 0 and I ∼ Exp(1) (Markovian SIR), L ≡ 0 and I ≡ 1
(continuous time Reed–Frost), and L∼ Exp(1) and I ∼ Exp(1) (Markovian SEIR).





Chapter 4
Open Markov Models

In this chapter, contrary to the situation considered in earlier chapters, we study
models where there is a constant supply of susceptibles (either by births, immigra-
tion or loss of immunity of the removed individuals) giving rise to endemic type
situations. We study how the random fluctuations in the model can drive the system
out of the basin of attraction of the stable endemic equilibrium of the deterministic
model, such that the disease goes extinct.

As we shall see in Section 4.1, in the case of a moderate population size, one
may expect that the Gaussian fluctuations described by the central limit theorem
are strong enough to stop the endemy in a SIR model with demography. For larger
population sizes, following Freidlin and Wentzell [13], we describe in Section 4.2
how long it will take for the random perturbations to stop the endemy. We apply this
approach successively to the SIRS, the SIS and the SIR model with demography.
In the case of the SIS model, we compute explicitly the constant which appears in
the Freidlin–Wentzell theory, see Proposition 4.2.29 below. This is unfortunately
the only case where we have such a simple and explicit formula in terms of the
coefficients of the model.

4.1 Open populations: time to extinction and critical population
size

Up until now we have (mainly) considered the stochastic SEIR epidemic model in a
fixed community of size N, where N has been assumed large (except in Section 3.1
when N was assumed small). This is of course an approximation of reality, but when
considering outbreaks of a few months (e.g. influenza outbreaks) it seems like a fair
approximation; recall that the time to extinction of our model was Op(logN). For
other diseases including childhood diseases, the disease is present in the community
constantly – such diseases are said to be endemic. When trying to understand the
behaviour of such diseases it is necessary to also allow people to die and new peo-
ple entering the population (by birth or immigration). In the current section we do

59
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this and derive approximations for two important quantities: the time to extinction
of the endemic disease T N

E , and the critical community size Nc. These two quanti-
ties have received much attention in the literature over the years. In particular, the
critical community size Nc and how it depends on properties of the disease and the
community have been studied both in the mathematical and applied communities
(e.g. Lindholm and Britton [23] and Keeling and Grenfell [18]).

Let us first describe the population model, which is the simplest model for a
population which fluctuates randomly in time with a mean size of N individuals,
and where individuals have life time distribution with mean 1/µ (cf. Example 2.2.2).
The population N(t) is defined to be a Markovian birth-death process with constant
birth rate µN and linear death rate, all individuals dying at rate µ . This process N(t)
will fluctuate around N, a parameter we denote by the mean population size. If N is
large, it is known that N(t) will be approximately normally distributed with mean N
and standard deviation proportional to

√
N, so for practical purposes we will later

approximate N(t) by N.

Exercise 4.1.1. Assuming that N(0) = N, write N(t) as the solution of an SDE
of the same form as the SDE appearing at the beginning of Section 2.2. Define
QN

t = N(t)/N and show that, as a consequence of Theorem 2.2.7, QN
t → 1 a.s., lo-

cally uniformly in t. Then deduce from Theorem 2.3.2 that
√

N(QN
t −1) converges

weakly, as N→ ∞, towards an Ornstein–Uhlenbeck process of the form

Ut =
√

2µ

∫ t

0
e−µ(t−s)dBs,

where Bt is a standard Brownian motion. Prove that E(Ut) = 0 and Var(Ut)→ 1 as
t → ∞. Deduce that for large N and t, N(t) is approximately normally distributed
with mean N and standard deviation proportional to

√
N.

For this population model, we assume that the Markovian SIR epidemic spreads
(this can easily be extended to the Markovian SEIR model). By this we mean that
individuals who get infected immediately become infectious and remain so for an
Exp(γ) time, unless they happen to die before by chance. In the fixed population
size model, the contact rate was λ which implied that it was λ/N to each specific
individual. Now, in the open population model, we assume that the infection rate
to a specific individual is unchanged, λ/N. More appropriate would perhaps have
been to instead have λ/N(t) but since N(t)≈ N for all t we use the simpler choice
λ/N. So, new individuals enter the community at constant rate µN and all individ-
uals die, irrespective of being susceptible, infectious or recovered, at rate µ , suscep-
tible individuals get infected at rate λ IN(t)/N, and infectious individuals recover
at rate γ . The rate at which susceptibles get infected and infected recover hence
equals λ IN(t)SN(t)/N, and γIN(t) respectively. If we study the limiting determinis-
tic system for the fractions in each state we get the following system of differential
equations:
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s′(t) = µ−λ s(t)i(t)−µs(t),

i′(t) = λ s(t)i(t)− γi(t)−µi(t), (4.1.1)
r′(t) = γi(t)−µr(t),

which is identical to those of Example 2.2.11 with ρ = 0 and ν = +∞. From this
we can compute the endemic state where all derivatives are 0. First we note that
the basic reproduction number R0 (the expected number of infectious contact while
infectious and alive) and the expected relative time of a life an individual is infected,
ε , are given by

R0 =
λ

γ +µ
ε =

1/(γ +µ)

1/µ
=

µ

γ +µ
. (4.1.2)

The rate of recovery γ is much larger than the death rate µ (52 compared to 1/75 for
a one week infectious period and 75 year life length) so for all practical purposes
the two expressions can be approximated by R0 ≈ λ/γ and ε ≈ µ/γ .

If we solve the system of differential equations (4.1.1) by setting all derivatives
equal to 0, and replace µ , λ and γ by the dimensionless quantities R0 and ε (three
parameters can be replaced by two because the unit of time for the rates is arbitrary
and one rate can be set to unity), we obtain the endemic level which is given by

(ŝ, î, r̂) =
(

1
R0

, ε

(
1− 1

R0

)
, 1− 1

R0
− ε

(
1− 1

R0

))
(4.1.3)

Exercise 4.1.2. Show that this is the endemic level, i.e. that the solution solves
Equation (4.1.1) with all derivatives being 0.

This state is only meaningful if R0 > 1 (otherwise some fraction is negative), so
the endemic level only exists if R0 > 1. Another solution to the equation system is
of course the disease free equilibrium (s, i,r) = (1,0,0). It is well known that when
R0 > 1 (which we from now on assume), then the endemic state is globally stable
whereas the disease free state is locally unstable, meaning the system converges to
the endemic level irrespective of starting value as long as i(0)> 0.

Using the theory of Section 2.2 it can be shown that the current Markov model
(for an open population) converges to the above deterministic model as N → ∞,
if the starting point is such that the fraction initially infectious is strictly positive
(IN(0)/N→ i(0)> 0).

This suggests that the stochastic model (for the fractions in different states) can
be approximated by the corresponding deterministic function

(SN(t)/N, IN(t)/N,RN(t)/N)≈ (s(t), i(t),r(t))

which solves Equation (4.1.1) and having the same initial condition as the stochastic
system. And, since we know that (s(t), i(t),r(t))→ (ŝ, î, r̂) as t → ∞ this suggests
that (SN(t)/N, IN(t)/N,RN(t)/N) ≈ (ŝ, î, r̂) when N and t are large. This is indeed
true in some sense, but it is only true depending on the relation between N and
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t. For any finite N, the stochastic epidemic, which fluctuates randomly around the
endemic equilibrium, will eventually go extinct, meaning that for some random T N

Ext
(the extinction time) it will happen that IN(T N

Ext) = 0. When this happens the rate of
new infections is 0 so the stochastic epidemic will remain disease free ever after (and
eventually all removed will have died so all individuals are susceptible. Using large
deviation theory (cf. Section 4.2 below) it can be shown that the time to extinction
grows exponentially with N, T N

Ext ≈ ecN for some c > 0 as N→ ∞.
On the other hand, for any arbitrary but fixed time horizon [0, tmax] the stochastic

epidemic will converge to the deterministic process as N→ ∞. It also follows from
Theorem 2.3.2 that the scaled process

√
N(SN(t)/N− s(t), IN(t)/N− i(t), RN(t)/N− r(t))

converges to an Ornstein–Uhlenbeck process (S̃(t), Ĩ(t), R̃(t)). This Ornstein–
Uhlenbeck process is a Gaussian process with stationary distribution being Nor-
mally distributed. In particular, the variance of Ĩ(t) in stationarity is well approxi-
mated by 1/R0−1/R2

0, see Nåsell [24].

Exercise 4.1.3. Show this as a consequence of Theorem 2.3.2, Lemma 2.3.7, and
Exercise 2.3.8

This suggests that IN(t) will be approximately Gaussian with mean Nî and stan-
dard deviation

√
N/R0 when N is large and t is moderately large (smaller than T N

Ext
but still large since we assume the Ornstein–Uhlenbeck is close to stationary).

From above we know that T N
Ext will grow exponentially with N as N → ∞. On

the other hand, if N is small or moderate, the disease will go extinct very quickly,
e.g. within a year. We now use the Gaussian approximation above to define a sort
of threshold, the critical population size Nc, between these two scenarios (quick
extinction and very long time before extinction). Of course, there is no unique exact
such value, so it will involve some arbitrary choice(s).

Above we noted that IN(t) was approximately Gaussian with mean Nî and stan-
dard deviation

√
N/R0. If we want to be above the critical population size, then

we want to avoid quick extinction for which it is necessary that this approximately
Gaussian process avoids extinction for a fairly long time. Extinction occurs when
IN(t) = 0, and if we want to avoid this we want the value 0 to be far enough away
from the mean, e.g. at least 3 standard deviations away. The choice 3 is of course
arbitrary but if we instead choose 2 the process will hit 0 fairly quickly with large
enough probability, and if we choose 4 it seems extremely unlikely that it will hit
extinction within e.g. a life time, so 3 seems like a reasonable compromise when it
is unlikely but not completely impossible. This choice then suggests that the thresh-
old is for the case Nî− 3

√
N/R0 = 0. This is equivalent to

√
N = 3/î

√
R0, i.e.

N = 9/î2R0. Inserting that î = ε(1− 1/R0) (remember that ε = µ/(γ + µ) is the
relative length of the infectious period compared to life-length), then we arrive at
our definition of the critical population size Nc:

Nc =
9

ε2(1− 1
R0
)2R0

. (4.1.4)
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The conclusion is that, for a given infectious disease, i.e. given R0 and ε , the dis-
ease will die out quickly in a community of size N � Nc whereas it will persist
for a very long time if N � Nc, during which the disease is endemic. As an illus-
tration, consider measles prior to vaccination. If we assume that R0 ≈ 15 and the
infectious period is 1 week (1/52 years) and life duration 75 years, implying that
ε ≈ 1/75

1/(1/52)+1/75 ≈ 1/3750 we arrive at Nc ≈ 9(3750)2/15≈ 8 ·106. So, if the pop-
ulation is a couple of million (or less) the disease will go extinct quickly, whereas
the disease will become endemic (for a very long time) in a population being larger
than e.g. 20 million people. This confirms the empirical observation that measles
was continuously endemic in UK whereas it died out quickly in Iceland (and was
later reintroduced by infectious people visiting the country).

Exercise 4.1.4. Which parameter affects Nc the most? Compute Nc using the measles
example but making R0 50% bigger/smaller and the same for the duration of the in-
fectious period (assuming we live equally long).

Exercise 4.1.5. Suppose that a vaccine giving 100% life long immunity is avail-
able, and that a fraction v of all infants are continuously vaccinated. How does this
affect the critical community size, i.e. give an expression for Nc also containing
v. (Hint: Vaccinating people affects both the relevant population size Nv, the non-
vaccinated population, and the reproduction number Rv, but other than that nothing
has changed.)

4.2 Large deviations and extinction of an endemic disease

4.2.1 Introduction

In Section 2.2, we have proved that, under appropriate conditions, the solution of
the SDE

ZN
t = xN +

k

∑
j=1

h j

N
Pj

(
N
∫ t

0
β j(s,ZN

s )ds
)

(4.2.1)

converges a.s., locally uniformly in t, towards the unique solution of the ODE

dzt

dt
= b(t,zt), z0 = x, (4.2.2)

see Theorem 2.2.7, where b(t,x) = ∑
k
j=1 h jβ j(t,x). Consequently the above SDE

(4.2.1) can be considered for large N as a small random perturbation of the ODE
(4.2.2). Small random perturbations of ODEs by Brownian motion have been stud-
ied by many authors, starting with Freidlin and Wentzell [13]. Our aim is to study
the above type of random perturbations of an ODE like (4.2.2). The starting point
is the estimation of a large deviation from the law of large numbers, which has
been studied for our type of Poisson driven SDEs by Shwartz and Weiss [34]. The
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difficulty is the fact that some of the rates in the SDE (4.2.1) vanish when the so-
lution hits part of the boundary. This makes the estimate a bit delicate, since the
logarithms of the rates enter the rate function in our large deviations estimate. This
situation has been addressed first by Shwartz and Weiss [35], but their assumptions
are not quite satisfied in our framework. Recently Kratz and Pardoux [21] and Par-
doux and Samegni-Kepgnou [26] have developed an approach to Large Deviations
which is well adapted to the epidemics models which are considered in these Notes.
In fact the main difficulty concerns the lower bound. In the following, we present a
new approach to the lower bound, based upon a quasi–continuity result, Proposition
4.2.4 below, which mimics a similar result for Brownian motion driven SDEs due to
Azencott [4]. The same approach, for other types of Poisson driven SDEs, will soon
appear in Kouegou-Kamen and Pardoux [19], [20].

The main application we have in mind is to estimate the time needed for the small
random perturbations to drive the system from a stable endemic equilibrium to the
disease free equilibrium (i.e. extinction). This applies to the classical SIS and SIRS
models, as well as to an SIR model with demography, as well as to models with
vaccination and to models with several levels of susceptibility, thus predicting the
time it will take for the random perturbation to end an endemic disease.

We rewrite our model as

ZN,xN
t = xN +

k

∑
j=1

h j

∫ t

0

∫
β j(s,Z

N,xN
s −)

0
QN

j (ds,du),

where
QN

j (ds,du) =
1
N

Q j(ds,Ndu),

and the Q j’s are i.i.d. Poisson random measures on [0,T ]×R+, with mean λ 2, the
2-dimensional Lebesgue measure.

(A.1) We shall assume in all of this section that the β j’s are locally Lipschitz with
respect to x, uniformly for t ∈ [0,T ].

4.2.2 The rate function

We want to establish a large deviations principle for trajectories in the space
D([0,T ];Rd) of Rd-valued right-continuous functions which have a left limit at any
time t ∈ (0,T ]. We shall also consider the sets C([0,T ];Rd) of continuous functions
from [0,T ] into Rd , and the subset of absolutely continuous functions, which we
will denote A C T,d . For any φ ∈A C T,d , let Ak(φ) denote the (possibly empty) set
of functions c ∈ L1(0,T ;Rk

+) such that c j(t) = 0 a.e. on the set {t, β j(φt) = 0} and

dφt

dt
=

k

∑
j=1

c j(t)h j, t a.e.
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We define the rate function

IT (φ) :=

{
infc∈Ak(φ) IT (φ |c), if φ ∈A C T,A;
∞, otherwise.

where as usual the infimum over an empty set is +∞, and

IT (φ |c) =
∫ T

0

k

∑
j=1

g(c j(t),β j(φt))dt

with g(ν ,ω) = ν log(ν/ω)−ν +ω . We assume in the definition of g(ν ,ω) that for
all ν > 0, log(ν/0) = ∞ and 0log(0/0) = 0log(0) = 0.

We consider IT as a functional defined on the space D([0,T ];Rd) equipped with
Skorokhod’s topology. We first give two other possible definitions of the functional
IT . Let ` : R3d 7→ R be defined as

`(x,y,θ) = 〈y,θ〉−
k

∑
j=1

β j(x)
(

e〈h j ,θ〉−1
)
.

We define the map L : R2d 7→ (−∞,+∞] as

L(x,y) = sup
θ∈Rd

`(x,y,θ) .

We let

ÎT (φ) =
∫ T

0
L(φt , φ̇t)dt.

It is not hard to see that the following is an equivalent definition of ÎT (φ):

ÎT (φ) = sup
θ∈C1([0,T ];Rd)

∫ T

0
`(φt , φ̇t ,θt)dt .

We first establish

Proposition 4.2.1. For any φ ∈ D([0,T ] : Rd), IT (φ) = ÎT (φ).

Proof. We note that if y = ∑
k
j=1 c jh j with some c ∈ Rk

+,

`(x,y,θ) =
k

∑
j=1

[
c j〈h j,θ〉−β j(x)

(
e〈h j ,θ〉−1

)]
.

But for any 1≤ j ≤ k,

c j〈h j,θ〉−β j(x)
(

e〈h j ,θ〉−1
)
≤ sup

r∈R
[c jr−β j(x)(er−1)]
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= c j log
(

c j

β j(x)

)
− c j +β j(x)

= g(c j,β j(x)).

The inequality ÎT (φ)≤ IT (φ) for any φ ∈ D([0,T ];Rd) follows readily.
In order to prove the converse inequality, we fix x,y ∈ Rd such that L(x,y) <

∞ (otherwise there is nothing to prove). Let θn be a sequence in Rd such that
L(x,y) = limn→∞ `(x,y,θn). It is clear that for any 1≤ j≤ k such that β j(x)> 0, the
sequence 〈θn,h j〉 is bounded from above. Hence we can and do assume that, after
the extraction of a subsequence, for any 1≤ j≤ k such that β j(x)> 0, the sequence
e〈θn,h j〉→ s j, for some s j ≥ 0. Consequently, as n→ ∞,

〈θn,y〉 → L(x,y)+
k

∑
j=1

β j(x)(s j−1) . (4.2.3)

Differentiating `(x,y,θn) with respect to its last variable, we get

∇θ `(x,y,θn) = y−
k

∑
j=1

β j(x)e〈h j ,θn〉h j

→ y−
k

∑
j=1

β j(x)s jh j,

as n→ ∞. But since θn is a maximizing sequence and the gradients converge, then
since L(x,y)< ∞, their limit must be zero. Consequently

y =
k

∑
j=1

β j(x)s jh j .

Hence, with c j = β j(x)s j, we have

〈θn,y〉=
k

∑
j=1

c j〈θn,h j〉

→
k

∑
j=1

c j log(s j),

with the convention that c j log(s j) = 0 if both c j = 0 and s j = 0. This, combined
with (4.2.3), yields that

L(x,y) =
k

∑
j=1

g(c j,β j(x))

which entails that ÎT (φ)≥ IT (φ). The proposition is established. ut

We have the
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Proposition 4.2.2. For any T > 0, φ ∈D([0,T ];Rd), IT (φ)≥ 0, and IT (φ) = 0 iff φ

solves the ODE (4.2.2).

Proof. It suffices to show that L(x,y) ≥ L(x,∑ j β j(x)h j) = 0, with strict inequality
if y 6= ∑ j β j(x)h j. We first note that

L

(
x,∑

j
β j(x)h j

)
= sup

θ

{
∑

j
β j(x)(〈h j,θ〉− exp〈h j,θ〉+1)

}
= 0,

since z−ez +1≤ 0, with equality at z = 0. Let now y be such that L(x,y) = 0. Then

〈y,θ〉−∑
j

β j(x)(exp〈h j,θ〉−1)≤ 0 for all θ ∈ Rd .

Choosing θ = εei (where ei is the i-th basis vector of Rd) yields

εyi ≤∑
j

β j(x)(exp(εhi
j)−1).

Dividing by ε , then letting ε→ 0 yields yi ≤∑ j β j(x)hi
j, while the opposite inequal-

ity follows if we start with θ =−εei. The result follows. ut

In the next statement, we use the notion of a lower semi-continuous real-valued
function, which is defined in Definition A.7.1 below. In the proof we use the notion
of an equicontinuous collection of functions, which is defined in Definition A.7.2.

Theorem 4.2.3. φ → IT (φ) is lower semi-continuous on D([0,T ];Rd), and for any
R, K > 0, the set {φ ∈ D([0,T ];Rd), sup0≤t≤T |φt | ≤ R, IT (φ)≤ K} is compact.

Proof. The lower semicontinuity property is an immediate consequence of the fact
that, from its second definition, ÎT is a supremum over continuous functions. To
finish the proof, it suffices from the Arzelà–Ascoli theorem (see e.g. Theorem 7.2
in Billingsley [8]) to show that the set of functions satisfying sup0≤t≤T |φt | ≤ R
and IT (φ) ≤ K is equicontinuous. It is clear that if h̄ = sup1≤ j≤k |h j| and β̄R =
sup1≤ j≤k sup0≤t≤T, |x|≤R β j(t,x),

L(x,y)≥ `

(
x,y,

y log(|y|)
h̄|y|

)
≥ |y| log(|y|)

h̄
− kβ̄R|y|.

Now let 0≤ s < t ≤ T , with t− s≤ δ .

|φt −φs| ≤
∫ t

s
|φ̇r|dr

≤ δ
−1/2

∫ t

s
1|φ̇r |≤δ−1/2dr+

∫ t

s
1|φ̇r |>δ−1/2

L(φr, φ̇r)

L(φr, φ̇r)/|φ̇r|
dr
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≤ δ
1/2 +

K
f (δ−1/2)

,

where f (a)= inf|x|≤R, |y|≥a
L(x,y)
|y| . The result follows from the fact that from the above

lower bound of L(x,y), f (a)→ ∞, as a→ ∞. ut

4.2.3 The lower bound

Let η = (η1, . . . ,ηk) be a vector of locally finite measures on [0,T ]×R+. We shall
say that η ∈M k. To x ∈Rd and η ∈M k, we associate Φx

t (η), solution (if it exists)
of the ODE

Φ
x
t (η) = x+

k

∑
j=1

h j

∫ t

0

∫
β j(s,Φx

s−)

0
η j(ds,du).

If η j(ds,du) = f j(s,u)dsdu, 1 ≤ j ≤ k, the above ODE has at least one solution
(possibly up to an explosion time, as the solution of an ODE with continuous coef-
ficients). If moreover

sup
u≥0

f j(·,u) ∈ L1[0,T ], 1≤ j ≤ k,

then the above ODE has a unique solution (as the solution of an ODE with locally
Lipschitz coefficients).

Let φ ∈C([0,T ];Rd) be an absolutely continuous function. We define

Kφ := inf
c∈Ak(φ)

k

∑
j=1

∫ T

0

c j(t)
β j(t,φt)

dt. (4.2.4)

To a pair (φ ,c) with c ∈Ak(φ), we associate for 1 ≤ j ≤ k the measure η j(ds,du)
with the density

f j(s,u) =
c j(s)

β j(s,φs)
1[0,β j(s,φs)](u)+1(β j(s,φs),+∞)(u).

Then, with x = φ0, φt = Φx
t (η).

Moreover, given φ ∈C([0,T ];Rd) and L > 0, we consider the set

Aφ ,L = {(t,x), 0≤ t ≤ T, |x−φt | ≤ L+1},

and define
β (φ ,L) = sup

1≤ j≤k
sup

(t,x)∈Aφ ,L

β j(t,x).

We can now prove the following.



4.2. Large deviations and extinction of an endemic disease 69

Proposition 4.2.4. Let T > 0 be arbitrary. Given (φ ,η) as above, such that in par-
ticular Kφ < ∞, if xN = ZN

0 , for any R, L > 0, there exists a δ ,r > 0 (depending upon
Kφ ) and N0 such that whenever |x− xN | ≤ r, N ≥ N0,

P
(
‖ZN−φ‖T > L, dT,β (Q

N ,η)≤ δ

)
≤ e−NR,

where

dT,β (ν ,η) =
k

∑
j=1

sup
0≤t≤T,0≤u≤β

|ν j([0, t]× [0,u])−η j([0, t]× [0,u])|,

and β := β (φ ,L).

Proof. It is clear that

|ZN
t −φt | ≤ |xN− x|+

k

∑
j=1
|h j|

∣∣∣∣∣
∫ t

0

∫
β j(s,ZN

s−)

0
[QN

j (ds,du)−η j(ds,du)]

∣∣∣∣∣
+

k

∑
j=1
|h j|

∣∣∣∣∣
∫ t

0

∫
β j(s,ZN

s−)∨β j(s,φs)

β j(s,ZN
s−)∧β j(s,φs)

f j(s,u)∨1duds

∣∣∣∣∣
≤ r+

k

∑
j=1
|h j|

∣∣∣∣∣
∫ t

0

∫
β j(s,ZN

s−)

0
[QN

j (ds,du)−η j(ds,du)]

∣∣∣∣∣
+

k

∑
j=1
|h j|C

∫ t

0

(
c j(s)

β j(s,φs)
∨1
)
|ZN

s −φs|ds,

where C is an upper bound of the Lipschitz constants of the β j’s in [0,T ]× [0,β ].

Subdividing [0,T ] into
[

T
ρ

]
+1 intervals of the form [(i−1)ρ, iρ ∧T ] and denoting

β i
j := sup

(i−1)ρ≤s≤iρ
β j(s,Z

N,xN

s− ) , β
i
j := inf

(i−1)ρ≤s≤iρ
β j(s,Z

N,xN

s− ) ,

we define the random sets

Aρ,i
j := [(i−1)ρ, iρ]× [0 , β

i
j], Bρ,i

j := [(i−1)ρ, iρ]× [β i
j , β i

j] .

For all i and j,

k

∑
j=1
|QN

j (A
ρ,i
j )−η j(A

ρ,i
j )| ≤ 2dT,β̄ (Q

N ,η),
k

∑
j=1
|QN

j (B
ρ,i
j )−η j(B

ρ,i
j )| ≤ 4dT,β̄ (Q

N ,η).

Consequently for all 0 ≤ t ≤ T , if h̄ := sup1≤ j≤k |h j|, then on the event
{dT,β (Q

N ,η)≤ δ},
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k

∑
j=1
|h j|

∣∣∣∣∣
∫ t

0

∫
β j(s,ZN,s−)

0

[
QN

j (ds,du)−η j(ds,du)
]∣∣∣∣∣

≤ h̄
k

∑
j=1


[

t
ρ

]
+1

∑
i=1

∣∣∣QN
j (A

ρ,i
j )−η j(A

ρ,i
j )
∣∣∣+

[
t
ρ

]
+1

∑
i=1

{
QN

j

(
Bρ,i

j

)
+η j

(
Bρ,i

j

)}
≤ h̄

k

∑
j=1


[

t
ρ

]
+1

∑
i=1

∣∣∣QN
j (A

ρ,i
j )−η j(A

ρ,i
j )
∣∣∣+

[
t
ρ

]
+1

∑
i=1

∣∣∣QN
j

(
Bρ,i

j

)
−η j

(
Bρ,i

j

)∣∣∣
+2

[
t
ρ

]
+1

∑
i=1

η j

(
Bρ,i

j

)
≤ 6

(
t
ρ
+1
)

h̄δ +2h̄
k

∑
j=1

[
t
ρ

]
+1

∑
i=1

η j

(
Bρ,i

j

)
.

It follows from the two above inequalities and Gronwall’s Lemma that

sup
0≤t≤T

|ZN
t −φt | ≤

(
r+6

(
T
ρ
+1
)

h̄δ +2h̄
k

∑
j=1

[
t
ρ

]
+1

∑
i=1

η j

(
Bρ,i

j

))
exp
[
C(Kφ + kT )h̄

]
.

(4.2.5)
Since the

(
Bρ,i

j

)
i

are disjoints we have for all j

[
T
ρ

]
+1

∑
i=1

η j(B
ρ,i
j ) = η j


[

T
ρ

]
+1⋃

i=1

Bρ,i
j

≤
[

T
ρ

]
+1

∑
i=1

(β̄ i
j−β

i
j)
∫ iρ

(i−1)ρ

c j(s)
β j(φs)

∨1 ds

≤ max
1≤i≤

[
T
ρ

]
+1

(
β i

j−β
i
j

)∫ T

0

c j(s)
β j(φs)

∨1 ds

≤ (Kφ +T ) max
1≤i≤

[
T
ρ

]
+1

(
β i

j−β
i
j

)
.

We note that for every i, j

β i
j−β

i
j ≤C

Xi

N

where Xi is a Poisson random variable of mean ρNβ̄ . For any a > 0, we have with
ā = a

k(Kφ+T ) , using Cramér’s Theorem A.3.1 for the fourth inequality,
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P

 k

∑
j=1

[
T
ρ

]
+1

∑
i=1

η j(B
ρ,i
j )> a

≤ k max
j

P


[

T
ρ

]
+1

∑
i=1

η j(B
ρ,i
j )>

a
k


≤ kP

 max
1≤i≤

[
T
ρ

]
+1

Xi

N
> ā


≤ kP

 ⋃
1≤i≤

[
T
ρ

]
+1

{
Xi

N
> ā
} (4.2.6)

≤ k
(

T
ρ
+1
)

exp
(
−N

[
ā log

ā
ρβ̄

+ ā−ρβ̄

])
= exp

(
−N

[
ā log

ā
ρβ̄

+ ā− 1
N

log
(

k
[

T
ρ
+1
])
−ρβ̄

])
.

We choose ρ =
√

δ . Let δ0 be such that

6
(

T
√

δ0 +δ0

)
h̄≤ L

3
exp
[
−C(Kφ + kT )h̄

]
, and

r =
L
3

exp
[
−C(Kφ + kT )h̄

]
,

a =
L
6h̄

exp
[
−C(Kφ + kT )h̄

]
,

so that from (4.2.5),
k

∑
j=1

[
T
ρ

]
+1

∑
i=1

η j(B
ρ,i
j )≤ a

⊂
{
‖ZN−φ‖T ≤ L

}
. (4.2.7)

R > 0 being arbitrary, we now choose

δ = min

{
δ0,

(
ā
β̄

)2

e−2R/ā,
ā

2β̄

}
, and

N0 =

⌈
2
ā

log
(

k
[

T
ρ
+1
])⌉

.

The result follows from those choices, (4.2.6) and (4.2.7). ut

Before we establish the lower bound, we need to formulate an assumption.

(A.2) We assume that for any φ ∈ C([0,T ];Rd) such that IT (φ) < ∞ and any
ε > 0, there exists a φ ε such that φ ε

0 = φ0, Kφ ε < ∞, ‖φ−φ ε‖T ≤ ε and IT (φ
ε)≤

IT (φ)+ ε .
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Exercise 4.2.5. Consider the SIRS model with fixed population size, and let A :=
{(x,y), 0≤ x,0≤ y,x+y≤ 1}. Show that if φ ∈C([0,T ];A) hits the boundary, then
for any ε > 0, one can find φ ε such that φ ε

0 = φ0, Kφ ε < ∞, ‖φ − φ ε‖ ≤ ε and
IT (φ

ε)≤ IT (φ)+ ε , where φ ε can either remain in the interior of A, or else can hit
the boundary.

We now have, with the notation IT,x(O) = infφ∈O,φ0=x IT (φ),

Theorem 4.2.6. If the assumptions (A.1) and (A.2) are satisfied, then for any open
subset O⊂ D([0,T ];Rd), if xN → x as N→ ∞,

liminf
N→∞

1
N

logP
(
ZN,xN ∈ O

)
≥−IT,x(O).

Proof. It clearly suffices to treat the case where IT,x(O) < ∞. Then for any ε > 0
there exists a φ ∈ O such that φ0 = x and

IT (φ)≤ IT,x(O)+
ε

4
.

It follows from assumption (A.2) that there exists a φ̂ ∈O such that φ̂0 = φ0, K
φ̂
<∞,

‖φ̂ −φ‖T ≤ ε and

IT (φ̂)≤ IT (φ)+
ε

4
.

Now there exists a c ∈Ak(φ) such that ∑
k
j=1
∫ T

0
c j(t)

β j(t,φt )
dt < ∞, and

IT (φ̂ |c)≤ IT (φ̂)+
ε

4
.

If ε has been chosen small enough, there exists an L > 0 be such that
{ψ; ‖ψ− φ̂‖T < L} ⊂ O. From Proposition 4.2.4, if ηc denotes the vector of mea-
sures associated to c, |x− xN | is small enough and N large enough, for any R > 0,
there exists a δ > 0 such that with β̂ = β (φ̂ ,L),

P
(
ZN,xN ∈ O

)
≥ P

(
‖ZN,xN −φ‖T < L

)
≥ P

(
dT,β̂ (Q

N ,ηc)< δ

)
−P

(
‖ZN,xN −φ‖T > L,dT,β̂ (Q

N ,ηc)< δ

)
≥ P

(
dT,β̂ (Q

N ,ηc)< δ

)
− e−NR. (4.2.8)

Let us admit for a moment the next lemma.

Lemma 4.2.7. There exists a sequence of partitions {Ai
n, 1 ≤ i ≤ an} of [0,T ]×

[0, β̂ ] such that supi λ 2(Ai
n)→ 0 as n→ ∞, and a sequence δn ↓ 0 and n0 such that

for all n≥ n0,
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k⋂
j=1

an⋂
i=1

{
QN

j (A
i
n) ∈ (ηc

j (A
i
n)−δn,η

c
j (A

i
n)+δn)

}
⊂ {dT,β̂ (Q

N ,ηc)< δ}.

As a consequence of this lemma, making use of Cramér’s Theorem A.3.1 for the
second inequality,

liminf
N→∞

1
N

logP
(

dT,β̂ (Q
N ,ηc)< δ

)
≥

k

∑
j=1

an

∑
i=1

liminf
N→∞

1
N

logP
(
QN

j (A
i
n) ∈ (ηc

j (A
i
n)−δn,η

c
j (A

i
n)+δn)

)
≥−

k

∑
j=1

an

∑
i=1

(
η

c
j (A

i
n) log

ηc
j (A

i
n)

λ 2(Ai
n)
−η

c
j (A

i
n)+λ

2(Ai
n)

)

≥−
k

∑
j=1

∫ T

0

∫
β̄

0

[
f c

j (s,u) log[ f c
j (s,u)]− f c

j (s,u)+1
]

dsdu− ε

4

=−
k

∑
j=1

∫ T

0

[
c j(s) log

c j(s)
β j(s,φs)

− c j(s)+β j(s,φs)

]
ds− ε

4

=−IT (φ̂ |c)−
ε

4
≥−IT,x(O)− ε,

where

f c
j (s,u) =

c j(s)
β j(s,φs)

1[0,β j(s,φs)](u)+1(β j(s,φs),+∞)(u)

and the second inequality holds true for n chosen large enough as a function of ε .
We let ε → 0, and to combine the resulting inequality with (4.2.8), hence

−IT,x(O)≤ liminf
N→∞

1
N

log
(
P
(
ZN,xN ∈ O

)
+ e−NR)

≤
(

liminf
N→∞

1
N

logP
(
ZN,xN ∈ O

))
∨ (−R).

The result finally follows by letting R→ ∞. ut

We now need to pass to the

Proof of Lemma 4.2.7. For convenience, we replace the partition {Ai
n, 1 ≤ i ≤ an}

by a partition {Ai, j
n , 1 ≤ i, j ≤ n}, which we construct as follows. We first choose

0 = β 0
n < β 1

n < · · ·< β n
n = β̂ such that

sup
1≤ j≤n

η
c([0,T ]× (β j−1

n ,β j
n ])≤

2
n

η
c([0,T ]× [0, β̂ ]).
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We next choose a sequence 0 = t0
n < t1

n < · · · tn
n = T such that, if Ai, j

n = (t i−1
n , t i

n]×
(β j−1

n ,β j
n ],

sup
1≤i≤n

η
c(Ai, j

n )≤ 2
n

η
c([0,T ]× (β j−1

n ,β j
n ])≤

4
n2 η

c([0,T ]× [0, β̂ ]) :=
C
n2 .

For an arbitrary 0≤ t ≤ T and 0≤ α ≤ β̂ , we define the set

∂t,α = {t}× [0, β̂ ]∪ [0,T ]×{α},

which is the “boundary” of [0, t]× [0,α]. We note that |{i, j, Ai, j
n ∩∂t,α 6= /0}| ≤ 2n.

We need to bound∣∣∣QN([0, t]× [0,α])−η
c([0, t]× [0,α])

∣∣∣
≤ ∑

i, j, Ai, j
n ⊂[0,t]×[0,α]

∣∣QN(Ai, j
n )−η

c(Ai, j
n )
∣∣+ ∑

i, j, Ai, j
n ∩∂t,α 6= /0

(
QN(Ai, j

n )+η
c(Ai, j

n )
)

≤ n2
δn +2n

(
2C
n2 +δn

)
≤ δ ,

for all n ≥ n0, provided we choose first n0 ≥ 8C
δ

, and then a sequence δn such that
δn ≤ [2(n2 +2n)]−1δ for each n≥ n0. ut

We now establish a slightly stronger result. Here and below we shall use the
following notation concerning the initial condition of ZN . We fix x ∈ Rd and start
ZN from the point ZN

0 = xN , where the i-th coordinate xi
N of xN is given by xi

N = [xiN]
N .

Here we assume that the process ZN lives in a closed subset A⊂ Rd . We shall need
the following

Definition 4.2.8. We shall say that the compact set of initial conditions K is
adapted to the open set of trajectories O⊂ D([0,T ];A) if

1. K ⊂ {φ0, φ ∈ O}.
2. For any ε > 0, the following holds. For any x ∈K , there exists a φ x ∈ O such

that φ x
0 = x, IT (φ

x)≤ IT,x(O)+ ε and moreover supx∈K Kφ x < ∞.

It follows readily from the proof of Theorem 4.2.6 that the following reinforced
version holds.

Theorem 4.2.9. For any open subset O ⊂ D([0,T ];A) and any compact subset K
of initial conditions which is adapted to O,

liminf
N→∞

1
N

log inf
x∈K

P(ZN,xN ∈ O)≥− sup
x∈K

IT,x(O) .
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4.2.4 The upper bound

In this subsection, we shall again use the notation xN for the vector whose i-
th coordinate is given by xi

N = [xiN]
N . We want to prove that for any closed F ,

F ⊂ D([0,T ];Rd),

limsup
N→∞

logP(ZN,xN ∈ F)≤−IT,x(F). (4.2.9)

Let us recall the concept of exponential tightness.

Definition 4.2.10. The sequence ZN is said to be exponentially tight if for any α > 0,
there exists a compact Kα such that

limsup
N

1
N

logP(ZN ∈ Kc
α)≤−α.

We have the following lemma.

Lemma 4.2.11. If (4.2.9) holds for any compact subset F = K ⊂⊂D([0,T ];A), and
ZN is exponentially tight, then (4.2.9) holds for any closed subset F ⊂ D([0,T ];A).

Proof. Let F be closed and α := IT,x(F). We assume w.l.o.g. that α > 0 (unless the
conclusion below would be obvious). Let Kα be the compact set associated to α by
Definition 4.2.10. It is clear that F ∩Kα is compact and IT,x(F ∩Kα) ≥ α . Hence
from our assumption

limsup
N→∞

1
N

logP(ZN ∈ F ∩Kα)≤−α.

Also from the choice of Kα ,

limsup
N→∞

1
N

logP(ZN ∈ Kc
α)≤−α.

But P(ZN ∈ F)≤ P(ZN ∈ F ∩Kα)+P(ZN ∈ Kc
α), hence

logP(ZN ∈ F)≤ log2+ sup(logP(ZN ∈ F ∩Kα), logP(ZN ∈ Kc
α)),

and we clearly deduce that

limsup
N→∞

1
N

logP(ZN ∈ F)≤−α,

as desired. ut

Let us first establish

Theorem 4.2.12. Let T > 0 and x ∈ Rd be fixed. Let xN → x as N → ∞. For any
compact set K ⊂ D([0,T ];Rd),
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limsup
N→∞

1
N

logP
(
ZN,xN ∈ K

)
≤−IT,x(K) .

Proof. Recall the formula

IT (φ) = sup
θ∈C1([0,T ];Rd)

∫ T

0
`(φt , φ̇t ,θt)dt

= sup
θ∈C1([0,T ];Rd)

L (φ ,θ),

where

L (φ ,θ) = 〈φT ,θT 〉−〈φ0,θ0〉−
∫ T

0
〈φt , θ̇t〉dt−

k

∑
j=1

∫ T

0
β j(φt)

[
e〈h j ,θt 〉−1

]
dt .

For any θ ∈C1([0,T ];Rd), 0≤ s < t ≤ T , we define

MN,θ
s,t =〈ZN,xN

t ,θt〉−〈ZN,xN
s ,θs〉−

∫ t

s
〈ZN,xN

r , θ̇r〉dr−
k

∑
j=1

∫ t

s
〈h j,θr〉β j(r,ZN,xN

r )dr,

Ξ
N,θ
s,t = exp

(
NMN,θ

s,t −N
k

∑
j=1

∫ t

s
τ(〈h j,θr〉)β j(r,ZN,xN

r )dr

)
,

where τ(a) = ea− 1− a, are such that MN,θ
0,t and Ξ

N,θ
0,t are local martingales, the

second being also a supermartingale such that E[Ξ N,θ
0,t ]≤ 1.

We assume that IT,x(K)> 0, since otherwise the result is trivial. We also assume
that IT,x(K)< ∞. The case IT,x(K) = ∞ can be treated in a way which is very similar
to what follows, and we will not repeat the argument. Since φ 7→ IT (φ) is lower
semicontinuous and Kx = {φ ∈ K, φ0 = x} is compact, there exists a φ̂ ∈ K such
that φ̂0 = x and IT (φ̂) = IT,x(K). Let now φ ∈ Kx be arbitrary. First assume that
IT (φ)< ∞. Then there exists a θφ ∈C1([0,T ];Rd) such that

IT (φ)≤L (φ ,θφ )+
ε

2
.

Since ψ 7→L (ψ,θφ ) is continuous on D([0,T ];Rd) equipped with the Skorokhod
topology, there exists a neighbourhood Vφ ,θφ

(ε) of φ in D([0,T ];Rd) such that for
any ψ ∈ Vφ ,θφ

(ε),

|L (φ ,θφ )−L (ψ,θφ )| ≤
ε

2
.

Now

P
(

ZN,xN ∈ Vφ ,θφ
(ε)
)
= E

(
1ZN,xN∈Vφ ,θφ

(ε)

)
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= e−NL (φ ,θφ )E
(

eNL (φ ,θφ )1ZN,xN∈Vφ ,θφ
(ε)

)
≤ e−N[L (φ ,θφ )− ε

2 ]E
(

eNL (ZN,xN ,θφ )
)

≤ e−N[L (φ ,θφ )− ε
2 ]

≤ e−NIT (φ)+Nε , (4.2.10)

where the before last inequality follows the fact that NL (ZN,xN ,θφ ) = log(Ξ
N,θφ

T )

and E[Ξ N,θφ

T ]≤ 1.
The second case is the one where IT (φ) =+∞. Then there exists M > IT,x(K)+1

and θφ ∈ C1([0,T ];Rd) such that L (φ ,θφ ) > M + ε . From the same argument as
above, we deduce that

P
(

ZN,xN ∈ Vφ ,θφ
(ε)
)
≤ e−NM.

Let Kx = {φ ∈ K, φ0 = x}. Since Kx⊂
⋃

φ∈K,φ0=x Vφ ,θφ
(ε) and Kx is compact,

there exists m = m(ε) ≥ 1 and φ1, . . . ,φm ∈ Kx where we assume that φ1 = φ̂ , such
that

Kx ⊂
m⋃

i=1

Vφi,θφi
(ε) .

Now there exists a finite set of functions {φm+1, . . . ,φm+n} ⊂ K\Kx, such that

K ⊂
m+n⋃
i=1

Vφi,θφi
(ε) .

We choose ε small enough for i ≥ m+ 1 such that x 6∈ Vφ ,θφi
(ε). Then for N large

enough, P(ZN,xN ∈ Vφi,θφi
(ε)) = 0 if i≥ m+1. Hence

limsup
N→∞

1
N

logP(ZN,xN ∈ K)≤ limsup
N→∞

1
N

log

(
m+n

∑
i=1

P
(

ZN,xN ∈ Vφi,θφi
(ε)
))

≤ max
1≤i≤m

limsup
N→∞

1
N

logP
(

ZN,xN ∈ Vφi,θφi
(ε)
)

≤− inf
1≤i≤m

IT (φi)+ ε

≤−IT,x(K)+ ε,

where we have used (4.2.10) in the third inequality. It remains to let ε → 0. ut

It remains to establish exponential tightness. Now we need to impose a growth
condition on the β j’s. One natural assumption would be to assume that for some
C > 0, all 1 ≤ j ≤ m and x ∈ Rd , β j(t,x) ≤ C(1+ |x|). However, this condition is
not satisfied in most of our examples, because one of the β j’s is quadratic. We shall
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instead formulate an assumption which is satisfied in our epidemic models. We shall
write 1 for the vector in Rd whose coordinates are all equal to 1, and we exploit the
fact that for those j’s such that β j is quadratic, 〈h j,1〉= 0.

(A.3) We assume that for all starting points xN ∈ Zd
+/N, ZN,xN takes its values in

Rd
+ a.s., and moreover that there exists a Cβ > 0 such that for any 0≤ j ≤ k such

that 〈h j,1〉 6= 0, β j(t,x)≤Cβ (1+ |x|), 0≤ t ≤ T, x ∈ Rd .

We now prove

Proposition 4.2.13. Assume that Conditions (A.1) and (A.3) are satisfied. Let T > 0
and x ∈ Rd be given, as well as a sequence xN → x as N → ∞, such that for all
N ≥ 1, xN ∈ Zd

+/N. Then or all ξ > 0,

lim
δ↓0

limsup
N→∞

1
N

logP

(
sup

0≤s,t≤T, |t−s|≤δ

∣∣∣ZN,xN
t −ZN,xN

s

∣∣∣> ξ

)
=−∞.

Proof. ξ > 0 and T > 0 will be fixed throughout this proof. Consider the stopping
time

σ
N,xN
R = inf{t ∈ [0,T ], |ZN,xN

t |> R}.

It is clear that

P

(
sup
|t−s|≤δ

∣∣∣ZN,xN
t −ZN,xN

s

∣∣∣> ξ

)
≤ P

(
sup
|t−s|≤δ

∣∣∣∣ZN,xN

t∧σ
N,xN
R

−ZN,xN

s∧σ
N,xN
R

∣∣∣∣> ξ

)
+P

(
σ

N,xN
R < T

)
.

We first consider the first term of the above right-hand side. For that purpose, we
divide [0,T ] into subintervals of length δ , and let i(s) ≤ s < i(s) denote the points
of the grid nearest to s.

P

[
sup
|s−t|≤δ

∣∣∣∣ZN,xN

t∧σ
N,xN
R

−ZN,xN

s∧σ
N,xN
R

∣∣∣∣> ξ

]

= P
[
∃0≤ s < t ≤ T, t− s≤ δ ,

∣∣∣∣ZN,xN

t∧σ
N,xN
R

−ZN,xN

s∧σ
N,xN
R

∣∣∣∣> ξ

]
≤ P

[
∃0≤ s < t ≤ T,t− s≤ δ ,

∣∣∣∣ZN,xN

t∧σ
N,xN
R

−ZN,xN
i(s)

∣∣∣∣+∣∣∣∣ZN,xN
i(s) −ZN,xN

s∧σ
N,xN
R

∣∣∣∣>ξ

]
≤ 2

(
T
δ
+1
)

sup
s∈[0,T ]

P

[
sup

t∈[s,s+2δ [

∣∣∣∣ZN,xN

t∧σ
N,xN
R

−ZN,xN

s∧σ
N,xN
R

∣∣∣∣> ξ/2

]
.

Let {θi , 1≤ i≤ d} (resp. {θi , d +1≤ i≤ 2d}) denote the standard basis of Rd
+

(resp. of Rd
−). Thus for every λ > 0, assuming w.l.o.g. that |z| stands here for

sup1≤i≤d |zi|,
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P

[
sup

t∈[s,s+2δ [

∣∣∣∣ZN,xN

t∧σ
N,xN
R

−ZN,xN

s∧σ
N,xN
R

∣∣∣∣> ξ/2

]

≤
2d

∑
i=1

P

[
sup

t∈[s,s+2δ [

〈ZN,xN
t −ZN,xN

s ,λθi〉 > λξ/2

]

≤
2d

∑
i=1

P

[
sup

t∈[s,s+2δ [

MN,λθi

(s,t)∧σ
N,xN
R

+
k

∑
j=1

∫ t∧σ
N,xN
R

s∧σ
N,xN
R

〈h j,λθi〉β j
(
r,ZN,xN

r
)

dr > λξ/2

]

≤
2d

∑
i=1

P

[
sup

t∈[s,s+2δ [

exp

(
NMN,λθi

(s,t)∧σ
N,xN
R

+N
k

∑
j=1

∫ t∧σ
N,xN
R

s∧σ
N,xN
R

〈h j,λθi〉β j
(
r,ZN,xN

r
)

dr

)
>eNλξ/2

]

≤
2d

∑
i=1

P

[
sup

t∈[s,s+2δ [

Ξ
N,λθi

(s,t)∧σ
N,xN
R

>exp

(
Nλξ/2−N

k

∑
i=1

(
e〈h j ,λθi〉−1

)∫ t∧σ
N,xN
R

s∧σ
N,xN
R

β j(s,ZN,xN
r )dr

)]

≤
2d

∑
i=1

P

[
sup

t∈[s,s+2δ [

Ξ
N,λθi

(s,t)∧σ
N,xN
R

> exp
(

Nλξ/2−2δNkβ̄Reλ h̄
)]

≤ 2d exp
(
−Nλξ/2+2δNkβ̄Reλ h̄

)
,

where β̄R = sup1≤ j≤k sup0≤t≤T, |x|≤R β j(t,x). Optimizing over λ > 0 yields

limsup
N→∞

1
N

logP

[
sup
|s−t|≤δ

∣∣∣∣ZN,xN

t∧σ
N,xN
R

−ZN,xN

s∧σ
N,xN
R

∣∣∣∣> ξ

]
≤− ξ

2h̄

(
log
(

ξ δ−1

4h̄kβ̄R

)
−1
)
.

Consequently for any fixed R > 0,

lim
δ→0

limsup
N→∞

1
N

logP

[
sup
|s−t|≤δ

∣∣∣∣ZN,xN

t∧σ
N,xN
R

−ZN,xN

s∧σ
N,xN
R

∣∣∣∣> ξ

]
=−∞.

It remains to show that

lim
R→∞

limsup
N→∞

1
N

logP
(

σ
N,xN
R < T

)
=−∞ . (4.2.11)

Combing the fact that for all t ≤ T

sup
s≤t
|ZN,xN

s | ≤ sup
s≤t
|〈ZN,xN

s ,1〉|

and that by Gronwall’s Lemma 2.2.9, with h̄ = sup1≤ j≤k |h j| and Cβ the constant
from assumption (A.3),

sup
s≤t
|〈ZN,xN

s ,1〉| ≤
(
|〈x,1〉+ kh̄Ct + sup

s≤t
|MN,1

s |
)

ekh̄Cβ t ,

we deduce that
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sup
s≤t
|ZN,xN

s | ≤
(
|〈x,1〉|+ kh̄Ct + sup

s≤t
|MN,1

s |
)

ekh̄Cβ t . (4.2.12)

By Itô’s formula we have, with M N,1
t a local martingale, and defining AN

s := 1∨
(sup0≤r≤s |M

N,1
r |,

(
MN,1

t

)2N

=N ∑
j;〈h j ,1〉6=0

∫ t

0
β j
(
s,ZN,xN

s
)[(

MN,1
s +

〈h j,1〉
N

)2N

−
(

MN,1
s−

)2N
−2N

(
MN,1

s
)2N−1〈h j,1〉

N

]
ds+M N,1

t

≤ NCβ ∑
j

N(2N−1)
N2 〈h j,1〉2

∫ t

0
(1+ |ZN,xN

s |)
(
|MN,1

s |+
〈h j,1〉

N

)2N−2

ds+M N,1
t

≤ NCβCT

(
1+

h̄
N

)2N ∫ t

0

1+ |ZN,xN
s |

AN
s

(AN
s )

2N−1ds+M N,1
t

≤ NC′T

∫ t

0
(AN

s )
2Nds+M N,1

t , (4.2.13)

where we have used (4.2.12) and the inequality a+ b ≤ a(1+ b) for a ≥ 1, b ≥ 0.
From Doob’s inequality,

E

 sup
s≤t∧σ

N,xN
R

(MN,1
s )2N

≤ ( 2N
2N−1

)2N

E
[
(MN,1

t∧σ
N,xN
R

)2N
]
. (4.2.14)

Since M N,1

t∧σ
N,xN
R

is a martingale, we can take the expectation in the inequality

(4.2.13) at time t ∧σ
N,xN
R , and deduce from the resulting inequality, (4.2.14) and

supN≥1
( 2N

2N−1

)2N
< ∞

E

 sup
s≤t∧σ

N,xN
R

(MN,1
s )2N

≤ NC′′T

∫ t

0
E

[(
AN

s∧σ
N,xN
R

)2N
]

ds.

Since for a≥ 0, (1∨a)2N ≤ 1+a2N , it follows that for all 0≤ t ≤ T ,

E

[(
AN

t∧σ
N,xN
R

)2N
]
≤ 1+NC′′T

∫ t

0
E

[(
AN

s∧σ
N,xN
R

)2N
]

ds.

Hence it follows from Gronwall’s lemma that

E

 sup
t≤T∧σ

N,xN
R

(MN,1
t )2N

≤ exp(CT NT ) . (4.2.15)
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For any 0 < κ < R, denoting

C(R,κ) := (R−κ)e−kh̄CT T −|〈x,1〉|− kh̄CT T ,

we have

limsup
N→+∞

1
N

logP
[
σ

N,xN
R ≤ T

]
≤ limsup

N→+∞

1
N

logP

 sup
t≤T∧σ

N,xN
R

|ZN,x
t |> R−κ


≤ limsup

N→+∞

1
N

logP

 sup
t≤T∧σ

N,xN
R

|MN,1
t |>C(R,κ)


≤ limsup

N→+∞

1
N

logP

 sup
t≤T∧σ

N,xN
R

(MN,1
t )2N > [C(R,κ)]2N


≤−2log [C(R,κ)]+ limsup

N→+∞

1
N

logE

 sup
t≤T∧σ

N,xN
R

(
MN,1

t

)2N


≤−2log [C(R,κ)]+CT,

where we have used (4.2.15) for the last inequality. We deduce (4.2.11) by letting R
tend to +∞. ut

We shall also need the following lemma, where we use the notation

w′ZN (δ ) = inf
{ti}

max
1≤i≤n

wx([ti−1, ti)),

with wx([ti−1, ti)) = supti−1≤s<t<ti) |xt − xs| and the infimum is taken over all se-
quences 0 = t0 < t1 < .. . < tn = T satisfying inf1≤i≤n(ti− ti−1)≥ δ .

Lemma 4.2.14. If Conditions (A.1) and (A.3) are satisfied, then for any N ≥ 1, ρ >
0,

lim
δ→0

P(w′ZN (δ )> ρ) = 0.

Proof. Since the space D([0,T ];Rd) is separable and complete, the law of ZN on
this space is tight, see Theorem 1.3 in Billingsley [8], which implies the lemma,
from Theorem 13.2 of the same reference. ut

We can now deduce the following theorem from Proposition 4.2.13 and Lemma
4.2.14.

Theorem 4.2.15. If Conditions (A.1) and (A.3) is satisfied, then the sequence
{ZN,zN , N ≥ 1} is exponentially tight in D([0,T ];Rd).

Proof. Given R > 0 and a sequence {δ` > 0, ` ≥ 1} the following is a compact
subset of D([0,T ];Rd) (see Theorem 12.3 in Billingsley [8]):
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KR,{δ`} = {x, ‖x‖T ≤ R}
⋂⋂

`≥1

{
x, w′x(δ`)≤ `−1} .

For any α > 0, we need to find Rα and {δ α
` , `≥ 1} such that

limsup
N→∞

1
N

logP

({
‖ZN,zN‖T > Rα

}⋃⋃
`≥1

{
w′ZN (δ

α
` )> `−1})≤−α. (4.2.16)

It is not hard to find Rα such that P(‖ZN‖T > Rα) ≤ e−Nα , for all N ≥ 1. Since
w′x(δ )≤ wx(2δ ), it follows from Proposition 4.2.13 that for each `≥ 1, there exists
a δ` > 0 such that

limsup
N→∞

1
N

logP
(
w′ZN (δ`)> `−1)≤−(α + `).

Consequently, there exists an N` such that for N ≥ N`,

P
(
w′ZN (δ`)> `−1)≤ e−N(α+`).

Combining this with Lemma 4.2.14, we deduce that there exists 0 < δ α
` ≤ δ` such

that for all N ≥ 1,
P
(
w′ZN (δ

α
` )> `−1)≤ e−N(α+`).

It follows that for all N ≥ 1,

P
({
‖ZN,zN‖T > Rα

}⋃⋃{
w′ZN (δ

α
` )> `−1})≤ e−Nα

∑
`≥0

e−N`

≤ (1− e−N)−1e−αN ,

from which (4.2.16) follows. ut

It is not hard to see that a combination of the exact same arguments as used in
the proofs of Theorem 4.2.12, Proposition 4.2.13 and Theorem 4.2.15 yields the
following result.

Theorem 4.2.16. Assume that assumptions (A.1) and (A.3) are satisfied. Then for
any closed subset F ⊂ D([0,T ];Rd) and any compact K ⊂ Rd , we have

limsup
N→∞

1
N

log sup
x∈K

P(ZN,xN ∈ F)≤− inf
x∈K

IT,x(F) .

4.2.5 Time of extinction in the SIRS model

We shall denote by T N
Ext the time of extinction of the disease, and we want to learn

what large deviations can tell us about it. In order to simplify the presentation, we
start with to the two most simple examples of the SIRS model and the SIS model.
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These are models with fixed population size N. We treat the SIRS model in this
section, and the SIS model in the next one. In this section, we shall follow the
arguments from Kratz and Pardoux [21], which itself follows closely the arguments
in Dembo and Zeitouni [9].

The deterministic SIRS Model can be reduced to a 2-dimensional ODE for the
pair (s(t), i(t)) which reads{

i′(t) = λ s(t)i(t)− γi(t),

s′(t) =−λ s(t)i(t)+ρ(1− s(t)− i(t)).
(4.2.17)

This process lives in the compact set A = ASIRS = {(x,y), 0 ≤ x,y, x+ y ≤ 1}. Pro-
vided again R0 = λ

γ
> 1, there is a unique stable endemic equilibrium (i∗,s∗) =(

ρ

λ

λ−γ

ρ+γ
, γ

λ

)
∈ A, while the disease free equilibrium (1,0) is unstable. Here h1 =(

−1
1

)
, β1(x,y) = λxy, h2 =

(
0
−1

)
, β2(x,y) = γy, h3 =

(
1
0

)
, β3(x,y) = ρ(1−x−

y).
The stochastic process (IN(t),SN(t)) may hit {0}× [0,1], and then stays there for

ever (this is how the disease goes extinct). On the other hand, if it hits ∂A\{0}×
[0,1], the process comes back to Å. Similarly, starting form {0}× [0,1], the ODE
stays there for ever (and converges to (0,1)), while starting from ∂A\{0}× [0,1]),
it enters Å instantaneously. We thus define

T N
Ext = inf{t ≥ 0, IN(t) = 0}.

Unfortunately, the theory of Large Deviations will not give us directly results on
T N

Ext, but rather on

T N
δ

= inf{t ≥ 0, IN(t)≤ δ}, for any δ > 0.

An ad hoc argument, which we shall present at the end, allows us to deduce the
desired result concerning T N

Ext. We are interested in the exit time from Aδ := {(x,y)∈
A, x≥ δ} through the boundary ∂Aδ := {(x,y) ∈ A, x = δ}.

We shall write DT,A := D([0,T ];A). In order to formulate our results, we shall
need the following notations (below z stands for (x,y))

V (z,z′,T ) = inf
φ∈DT,A,φ0=z,φT=z′

IT (φ)

V (z,z′) = inf
T>0

V (z,z′,T )

V δ = inf
z∈∂Aδ

V (z∗,z),

V = inf
z∈{0}×[0,1]

V (z∗,z).

We want to prove the



84 Part I. Chapter 4. Open Markov Models

Theorem 4.2.17. Let T N,z
Ext denote the extinction time in the SIRS model starting from

zN = [zN]
N . Given η > 0, for all z ∈ A,

lim
N→∞

P
(

exp{N(V −η)}< T N,z
Ext < exp{N(V +η)}

)
= 1.

Moreover, for all η > 0, z ∈ A and N large enough,

exp{N(V −η)} ≤ E(T N,z
Ext )≤ exp{N(V +η)}.

We shall first establish

Proposition 4.2.18. Given η > 0, for all z ∈ Åδ ,

lim
N→∞

P
(

exp{N(V δ −η)}< T N,z
δ

< exp{N(V δ +η)}
)
= 1.

Moreover, for all η > 0, z ∈ Åδ and N large enough,

exp{N(V δ −η)} ≤ E(T N,z
δ

)≤ exp{N(V δ +η)}.

Let us now formulate a set of assumptions which are satisfied in our case, under
which we will prove Proposition 4.2.18. For that sake, we shall rewrite the ODE
(4.2.17) as

dzt

dt
= b(zt), z0 = z. (4.2.18)

Assumption 4.2.19.

(E1) z∗ is the only stable equilibrium point of (4.2.18) in Aδ and the solution zx
t

of (4.2.18) satisfies, for all z0 = z ∈ Aδ ,

zz
t ∈ Åδ for all t > 0 and lim

t→∞
zz

t = z∗.

(E2) V̄ < ∞.
(E3) For all ρ > 0 there exist constants T (ρ), ε(ρ)> 0 with T (ρ),ε(ρ) ↓ 0 as ρ ↓ 0

such that for all z ∈ ∂Aδ ∪{z∗} and all x,y ∈ B(z,ρ)∩A there exists

φ = φ(ρ,x,y) : [0,T (ρ)] 7→ A with φ0 = x,φT (ρ) = y and IT (ρ)(φ)< ε(ρ).

(E4) For all z ∈ ∂Aδ there exists an η0 > 0 such that for all η < η0 there exists a
z̃ = z̃(η) ∈ A\Aδ with |z− z̃|> η .

Note that the conditions (E1) and (E4) would not be satisfied if we replace Aδ

by A.
The proof of Proposition 4.2.18 relies upon the following sequence of lemmas,

whose proofs will be given below, after the proof of the proposition.
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Lemma 4.2.20. For any ε > 0, there exists a ρ0 > 0 such that for all ρ < ρ0,

sup
z∈∂Aδ∪{z∗}

sup
|z′−z|∨|z′′−z|≤ρ

inf
0≤T≤1

V (z′,z′′,T )< ε.

Lemma 4.2.21. For any η > 0, there exists a ρ0 > 0 such that for all ρ < ρ0, there
exists a T0 < ∞ such that

liminf
N→∞

1
N

log inf
|z−z∗|≤ρ

P(T N,z
δ
≤ T0)≥−(V̄ +η).

Let us define for some ρ > 0 small enough, Bρ := B(z∗,ρ) and

σ
N
ρ = inf{t ≥ 0, ZN

t ∈ Bρ ∪{z, z1 ≤ δ}}.

Lemma 4.2.22. If ρ > 0 is such that Bρ ⊂ Åδ , then

lim
t→∞

limsup
N→∞

1
N

log sup
x∈Aδ

P(σN,z
ρ > t) =−∞.

Lemma 4.2.23. Let C be a closed subset of A\Åδ . Then

lim
ρ→0

limsup
N→∞

1
N

log sup
2ρ≤|z−z∗|≤3ρ

P(ZN,z
σN

ρ

∈C)≤− inf
z′∈C

V (z∗,z′).

Lemma 4.2.24. If ρ > 0 is such that Bρ ⊂ Åδ and z ∈ Åδ ,

lim
N→∞

P(ZN,z
σN

ρ

∈ Bρ) = 1.

Lemma 4.2.25. For all ρ,c > 0, there exists a constant T = T (c,ρ)< ∞ such that

limsup
N→∞

1
N

log sup
z∈Aδ

P( sup
0≤t≤T

|ZN,z
t − z| ≥ ρ)≤−c.

We first give the

Proof of Proposition 4.2.18. STEP 1: UPPER BOUND OF T N
δ

We choose η = ε/2,
and ρ , T0 as in Lemma 4.2.21. By Lemma 4.2.22, for any arbitrarily fixed a > 0,
there exists a T1 such that

limsup
N→∞

1
N

log sup
z∈Aδ

P(σN,z
ρ > T1)<−2a < 0.

Let T = T0 +T1. There exists an N0 ≥ 1 such that for all N ≥ N0,
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q := inf
z∈Aδ

P(T N,z
δ
≤ T )≥ inf

z∈Aδ

P(σN,z
ρ ≤ T1) inf

z∈Bρ

P(T N,z
δ
≤ T0)

≥ e−N(V̄δ+η), (4.2.19)

since the second factor is bounded from below by say e−N(V̄δ+η/2) from Lemma
4.2.21, and from the previous estimate, we deduce that for N large enough,

inf
z∈Aδ

P(σN,z
ρ ≤ T1) = 1− sup

z∈Aδ

P(σN,z
ρ > T1)

≥ 1− e−Na

≥ e−Nη/2 .

Next, by the strong Markov property,

P(T N,z
δ

> (k+1)T ) = [1−P(T N,z
δ
≤ (k+1)T |T N,z

δ
> kT )]P(T N,z

δ
> kT )

≤ (1−q)P(T N,z
δ

> kT ).

Iterating, we get
sup
z∈Aδ

P(T N,z
δ

> kT )≤ (1−q)k.

Therefore

sup
z∈Aδ

E(T N,z
δ

)≤ T [1+
∞

∑
k=1

sup
z∈Aδ

P(T N,z
δ

> kT )]≤ T
∞

∑
k=0

(1−q)k =
T
q
,

so from (4.2.19),

sup
x∈Aδ

E[T N,z
δ

]≤ TeN(V̄δ+η), (4.2.20)

and the upper bound for E[T N,z
δ

] follows. From Chebycheff,

P(T N,z
δ
≥ eN(V̄δ+ε))≤ e−N(V̄δ+ε)E[T N,z

δ
]≤ Te−Nε/2,

which tends to 0 as N→ ∞, hence the upper bound for T N
δ

.
STEP 2: LOWER BOUND OF T N

δ
Let ρ > 0 be small enough such that B2ρ :=

B(z∗,2ρ) ⊂ Åδ . We define a sequence of stopping times as follows. θ0 = 0 and
for m≥ 0,

τm = inf{t ≥ θm, ZN
t ∈ Bρ ∪{z, z1 ≤ δ}},

θm+1 = inf{t > τm, ZN
t ∈ (B2ρ)

c},

with the convention that θm+1 = ∞ in case ZN
τm ∈ {z, z1 ≤ δ}.

In case V̄δ = 0, the lower bound is an easy consequence of Lemmas 4.2.24 and
4.2.25. So we assume from now on that V̄δ > 0 and fix ε > 0 arbitrarily small. Since
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{z, z1 ≤ δ} is a closed set, from Lemma 4.2.23, for ρ > 0 small enough,

limsup
N→∞

1
N

log sup
2ρ≤|z−z∗|≤3ρ

P(ZN,z
σN

ρ

∈ {z, z1 ≤ δ})≤−V̄δ +
ε

3
.

Now with c = V̄δ , we let T0 = T (c,ρ) be as in Lemma 4.2.25. Then there exists an
N0 such that for N ≥ N0, and all m≥ 1,

sup
z∈Aδ

P(T N,z
δ

= τm)≤ sup
2ρ≤|z−z∗|≤3ρ

P(ZN,z
σN

ρ

∈ {z, z1 ≤ δ})≤ e−N(V̄δ−ε/2),

while

sup
z∈Aδ

Pz(θm− τm−1 ≤ T0)≤ sup
z∈Aδ

P( sup
0≤t≤T0

|ZN,z
t − z| ≥ ρ)≤ e−N(V̄δ−ε/2).

The event {T N
δ
≤ kT0} implies that either one of the first k+ 1 events {T N

δ
= τm}

occurs, or else at least one of the first k excursions [τm,τm+1] away from Bρ is of
length at most T0. Consequently, from the two preceding estimates,

P(T N
δ
≤ kT0)≤

k

∑
m=0

P(T N
δ

= τm)+P( min
1≤m≤k

(θm− τm−1)≤ T0)

≤ P(T N
δ

= τ0)+2ke−N(V̄δ−ε/2).

Choosing now k = [T−1
0 eN(V̄δ−ε)]+1 yields

P(T N
δ
≤ eN(V̄δ−ε))≤ P(ZN

σN
ρ

6∈ Bρ)+3T−1
0 e−Nε/2.

By Lemma 4.2.24, the right-hand side tends to 0 as N → ∞. We have completed
the proof of the first statement in Proposition 4.2.18. This result combined with
Chebycheff’s inequality and (4.2.20) yields the second result. ut

We now turn to the proofs of the lemmas.

Proof of Lemma 4.2.20. This lemma is a direct consequence of the assumption
(E3). ut

Proof of Lemma 4.2.21. We make use of Lemma 4.2.20 with ε = η/4 and choose
ρ < ρ0. Let z ∈ Bρ . There exists a continuous path ψz such that ψ

z
0 = z, ψ

z
tz = z∗

for some tz ≤ 1 and Itz(ψ
z)≤ η/4. From assumption (E2), there exists a continuous

path φ ∈C([0,T1];A) such that φ0 = z∗, φT1 = z′ ∈ ∂Aδ , and IT1(φ)≤ V̄ +η/4. From
Lemma 4.2.20, there exists a continuous path ψ̃ such that ψ̃0 = z′ and ψ̃sz′ = z′′ ∈
A\Aδ , with sz′ ≤ 1, Isz′ (ψ̃) ≤ η/4 and d(z′′,Aδ ) = ∆ > 0, where ∆ < δ . Finally
let {ξt , 0 ≤ t ≤ 2− tz− sz′} be a solution of (4.2.18) starting from ξ0 = z′′. From
Proposition 4.2.2, I(ξ ) = 0. Concatenating the paths ψz, φ , ψ̃ and ξ , we obtain a
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path φ z ∈C([0,T0];A) (with T0 = T1 +2) starting from z, with IT0(φ
z)≤ V̄ +3η/4.

Let now
Ψ =

⋃
z∈Bρ

{ψ ∈ D([0,T0];A), ‖ψ−φ
z‖T0 < ∆/2}.

Ψ is an open subset of D([0,T0];A), such that Bρ is adapted to Ψ in the sense of
Definition 4.2.8. Hence we can make use of Theorem 4.2.9, hence

liminf
N→∞

1
N

log inf
z∈Bρ

P(ZN,z ∈Ψ)≥− sup
z∈Bρ

inf
φ∈Ψ ,φ0=z

IT0(φ)

≥− sup
z∈Bρ

IT0(φ
z)

>−(V̄ +η).

The results follows from this and {ZN ∈Ψ} ⊂ {T N
δ
≤ T0}. ut

Proof of Lemma 4.2.22. Since σ
N,z
ρ = 0 if z ∈ Bρ , it suffices to restrict ourselves to

z ∈ Aδ\Bρ . For each t > 0, we define the closed set

Ψt := {φ ∈ D([0, t];A), φs ∈ Aδ\Bρ for all 0≤ s≤ t},

so that {σN,z
ρ > t} ⊂ {ZN,z ∈Ψt}. Hence by Theorem 4.2.16,

limsup
N→∞

1
N

log sup
z∈Aδ \Bρ

P(σN,z
ρ > t)≤− inf

φ∈Ψt
It(φ).

It then suffices to show that

inf
φ∈Ψt

It(φ)→ ∞ as t→ ∞. (4.2.21)

Starting from any z ∈ Aδ\Bρ , the solution zz
t of (4.2.18) hits B̊ρ/2 in finite time Tz

which is upper semicontinuous (recall Definition A.7.1) in z, so by compactness
T := supz∈Aδ \Bρ

Tz < ∞, and z· 6∈ΨT as soon as z· solves (4.2.18).
Now if (4.2.21) does not hold, there would exist M > 0 and for each n≥ 1 φn ∈

ΨnT such that InT (φn) ≤ M or all n ≥ 1. Now if φn,k(t) = φn(kT + t), 0 ≤ t ≤ T ,
0≤ k ≤ n−1, we have that

n min
0≤k≤n−1

IT (φn,k)≤
n−1

∑
k=0

IT (φn,k) = InT (φn)≤M.

Hence we would produce a sequence ψn ∈ΨT such that IT (ψn)→ 0 as n→ ∞.
From Theorem 4.2.3, the sequence ψn belongs to a compact set, and IT is lower
semicontinuous (recall Definition A.7.1), so that along a subsequence, ψn → ψ∗,
where ψ∗ ∈ΨT and IT (ψ

∗)≤ liminfn IT (ψn) = 0, and those two last statements are
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contradictory from Proposition 4.2.2 and the fact that ΨT contains no solution of
(4.2.18). ut

Proof of Lemma 4.2.23. We need only consider the case infz∈C V (z∗,z) > 0, since
in the other case the result is trivial. So we can choose ε > 0 such that

V ε
C :=

(
inf
z∈C

V (z∗,z)− ε

)
∧ ε
−1 > 0.

By Lemma 4.2.20, there exists a ρ0 > 0 such that for all 0 < ρ < ρ0,

sup
z∈B3ρ\B2ρ

V (z∗,z)< ε,

hence

inf
z′∈B3ρ\B2ρ ,z∈C

V (z′,z)≥ inf
z∈C

V (z∗,z)− sup
z′∈B3ρ\B2ρ

V (z∗,z′)>V ε
C .

For T > 0, consider the closed set ΦT ⊂ D([0,T ];A) defined as

Φ
T = {φ ∈ D([0,T ];A), φt ∈C for some 0≤ t ≤ T}.

For z′ ∈ B3ρ\B2ρ ,

P(ZN,z′

σN
ρ

∈C)≤ P(σN,z′
ρ > T )+P(ZN,z′ ∈Φ

T ). (4.2.22)

We next bound from above the two terms of the last right-hand side. Concerning the
second term,

inf
φ∈ΦT ,φ0∈B3ρ\B2ρ

IT (φ)≥ inf
z′∈B3ρ\B2ρ ,z∈C

V (z′,z)≥V ε
C .

Hence from Theorem 4.2.16,

limsup
N→∞

1
N

log sup
z′∈B3ρ\B2ρ

P(ZN,z′ ∈Φ
T )≤−V ε

C .

For the first term, we deduce from Lemma 4.2.22 that for some T0 > 0, all T ≥ T0,

limsup
N→∞

1
N

log sup
z′∈B3ρ\B2ρ

P(σN,z′
ρ > T )<−V ε

C .

(4.2.22) together with the last two estimates produces an inequality which, after
letting ε → 0, yields the result. ut

Proof of Lemma 4.2.24. zz
t denoting the solution of (4.2.18) starting from z∈ Åδ , let

Tρ = inf{t > 0, zz
t ∈Bρ/2}. From (E1) it follows that Tρ <∞ and ∆ := inf0≤t≤Tρ

d(zz
t ,∂Aδ )>
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0. Consequently

P
(

ZN,z
σN

ρ

6∈ Bρ

)
≤ P

(
sup

0≤t≤Tρ

|ZN,z
t − zz

t | ≥
∆ ∧ρ

2

)
,

which tends to 0 as N→ ∞ from Theorem 2.2.7. Q.E.D. ut

Proof of Lemma 4.2.25. Let ρ,c > 0 be fixed. For T > 0, N ≥ 1 and z ∈ Aδ ,

P
(

sup
0≤t≤T

|ZN,z
t − z| ≥ ρ

)
= P

(
sup

0≤t≤T

∣∣∣∣∣∑j
h jPj

(
N
∫ t

0
β j(Z,x

s )ds
)∣∣∣∣∣≥ ρ

)

≤ P

(
∑

j
Pj(Nβ̄T )≥ Nρ h̄−1

)
≤ kP(P(Nβ̄T )≥ Nρ h̄−1k−1).

Now from Cramér’s Theorem A.3.1

limsup
N→∞

1
N

log sup
z∈Aδ

P( sup
0≤t≤T

|ZN,z
t − z| ≥ ρ)≤− ρ

h̄k
log
(

ρ

h̄kβ̄T

)
+

ρ

h̄k
− β̄T,

and the absolute value of the right-hand side can be made arbitrarily large by choos-
ing T arbitrarily small. ut

It remains finally to turn to the

Proof of Theorem 4.2.17. Since Vδ ↑V as δ ↓ 0, it is clear that the lower bounds for
T N

Ext and its expectation follow from Proposition 4.2.18. It remains to establish the
upper bound. Analyzing carefully the proof of the upper bound, we notice that the
key step, which relies upon Lemmas 4.2.21 and 4.2.22 whose proof do not extend to
our new situation, is the derivation of the inequality (4.2.19). The upper bound both
for the time of exit and its expectation are a direct consequence of (4.2.19), without
any further reference to those assumptions which are not valid any more. We fix

η > 0. Let t > 0 be arbitrary. From Lemma 4.2.26 below, if ct := log
(

λ−γe(γ−λ )t

γ−γe(γ−λ )t

)
,

inf
z∈A\Aδ

P(T N,z
Ext ≤ t)≥ e−dNδect ≥ e−N(δ+N−1

0 )ct , (4.2.23)

provided N ≥ N0. Choose N0 large enough and δ > 0 small enough such that (δ +
N−1

0 )ct ≤ η/2. From (4.2.19), there exists a Tδ > 0 such that, possibly increasing
N0 if necessary, if N ≥ N0,

inf
z∈Aδ

P(T N,z
δ
≤ Tδ )≥ e−N(V̄δ+η/2) ≥ e−N(V̄+η/2) . (4.2.24)

We deduce from (4.2.23), (4.2.24) and the strong Markov property that, with T =
Tδ + t,
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inf
z∈A

P(T N,z
Ext ≤ T )≥ e−N(V̄+η) ,

which is the wished extension of (4.2.19). ut

Lemma 4.2.26. For any t > 0, if ct := log
(

λ−γe(γ−λ )t

γ−γe(γ−λ )t

)
,

inf
z∈A\Aδ

P(T N,z
Ext < t)≥ exp{−dNδect} .

Proof. Since z ∈ A\Aδ implies that z1 ≤ δ , the first component of the process
NZN,x(t) is dominated by the process

dNδe+P1

(
Nλ

∫ t

0
ZN,z

1 (s)ds
)
−P1

(
Nγ

∫ t

0
ZN,z

1 (s)ds
)
,

which is a continuous time binary branching process with birth rate λ and death rate
γ . This process goes extinct before time t with probability(

γ− γe(γ−λ )t

λ − γe(γ−λ )t

)dNδe

,

as can be seen by combining formula (1) from section III.4 of Athreya and Ney
[3] with the formula in section 5 for F(0, t) in the birth and death case. The result
follows readily. ut

We shall need below the following additional results.

Proposition 4.2.27. Under the assumptions of Proposition 4.2.18, if C ⊂ ∂Aδ is a
closed set such that VC := infz∈C V (z∗,z)> V̄δ , then for any z ∈ Åδ , all ε > 0 small
enough

lim
N→∞

P(d(ZN,zN
T N

δ

,C)≤ ε) = 0.

Proof. Fix η < (VC− V̄δ )/3. From Lemma 4.2.23, for ε > O small enough, there
exists a ρ > 0 small enough and N0 large enough such that for all N ≥ N0,

sup
2ρ≤|z−z∗|≤3ρ

P(d(ZN,zN
σN

ρ

,C)≤ ε)≤ e−N(VC−η).

Let c = VC −η and T0 = T (c,ρ) given by Lemma 4.2.25. Then, increasing N0 if
necessary, we deduce from that Lemma that for any N ≥ N0, `≥ 1,

P(τ` ≤ `T0)≤ ` sup
z∈Aδ

P

(
sup

0≤t≤T0

|ZN,zN
t − z| ≥ ρ

)
≤ `e−N(VC−η).

For all z ∈ Bρ , `≥ 1,

P(d(ZN,zN
T N

δ

,C)≤ ε)
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≤ P(T N,z
δ

> τ`)+
`

∑
m=1

P(T N,z
δ

> τm−1)P(d(ZN,zN
τm ,C)≤ ε|T N,z

δ
> τm−1)

≤ P(T N,z
δ

> `T0)+P(τ` ≤ `T0)

+
`

∑
m=1

P(T N,z
δ

> τm−1)E[P(d(Z
N,ZN

θm
σN

ρ

,C)≤ ε|T N,z
δ

> τm−1]

≤ P(T N,z
δ

> `T0)+P(τ` ≤ `T0)+ ` sup
2ρ≤|z−z∗|≤3ρ

P(d(ZN,zN
σN

ρ

,C)≤ ε)

≤ P(T N,z
δ

> `T0)+2`e−N(VC−η).

Increasing further N0 if necessary, we have that (4.2.20) holds for some T > 0 and
all N ≥ N0. We choose `=

[
eN(V̄δ+2η)

]
, hence from our choice of η ,

limsup
N→∞

sup
z∈Bρ

P(d(ZN,zN
T N

δ

,C)≤ ε)≤ limsup
N→∞

(
T
`T0

eN(V̄δ+η)+2`e−N(VC−η)

)
= 0.

It remains to combine Lemma 4.2.24 and the inequality

P(d(ZN,zN
T N

δ

,C)≤ ε)≤ P(ZN,zN
σN

ρ

6∈ Bρ)+ sup
y∈Bρ

P(d(ZN,yN
T N

δ

,C)≤ ε).

ut

The proof of the next important result is a bit lengthy, and we refer to Pardoux
and Samegni-Kepgnou [27] for it.

Corollary 4.2.28. If C ⊂ {z, z1 = 0} is such that VC := infz∈C V (z∗,z)> V̄ , then for
any z ∈ Å,

lim
N→∞

P(ZN,zN
T N

Ext
∈C) = 0.

4.2.6 Time of extinction in the SIS model

While the above results are rather precise, it is frustrating that it does not seem
possible to express the important constant V explicitly in terms of the few constants
of the model. One can only do a numerical evaluation of V . We now simplify the
problem, and consider the SIS model, where when an infectious individual cures,
he immediately becomes susceptible again: there is no immunity. The advantage of
this simplified model is that it can be written in dimension one and, as we shall see
now, we can deduce from the Pontryagin maximum principle, see Section A.6 in the
Appendix, a very simple explicit formula for V .

The deterministic SIS model can be reduced to the following one–dimensional
equation for the proportion of infected individuals

ẋt = λxt(1− xt)− γxt .
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Here the process lives in the interval ASIS = [0,1]. Provided R0 = λ

γ
> 1, there is

a unique stable endemic equilibrium x∗ = 1− γ

λ
∈ (0,1), while the disease free

equilibrium x0 = 0 is unstable. Here h1 = 1, β1(x) = λx(1−x), h2 =−1, β2(x) = γx.
We assume that λ > γ , i.e. R0 > 1. As the reader can easily verify, Theorem

4.2.17 applies to this situation, and now V is the minimal value of the following
control problem. With the notations of Section A.6 below, we are in the situation
d = 1, k = 2, β1(x) = λx(1−x), β2(x) = γx, B =

(
1 −1

)
. The identity (A.6.1) reads

here
λxt(1− xt)(1− ept )+ γxt(1− e−pt ) = 0.

Hence either pt = 0, or else pt = log γ

λ (1−xt )
. It is easy to convince oneself that

pt = 0 does not produce a control which does the wished job. Hence pt = log γ

λ (1−xt )
,

û1(t) = ept β1(xt) = γxt , û2(t) = e−pt β2(xt) = λxt(1− xt). The optimal trajectory
reads

ẋt = γxt −λxt(1− xt). (4.2.25)

From the right-hand side of the identity (A.6.2),

V =
∫ T̂

0
[γxt −λxt(1− xt)] log

γ

λ (1− xt)
dt

=
∫ T̂

0
log

γ

λ (1− xt)
ẋtdt

=
∫ λ−γ

λ

0
log

γ

λ (1− x)
dx

= log
λ

γ
−1+

γ

λ
.

Finally

Proposition 4.2.29. We have the identities

V = logR0−1+R−1
0 , eNV = RN

0 e−N(R0−1)/R0 .

Combining this result with Theorem 4.2.17 adapted to the SIS model yields the
following.

Corollary 4.2.30. Suppose that R0 > 1 and define

T N,z
Ext = inf{t > 0, ZN,z

t = 0}.

Then for any 0 < z≤ 1, and c > 1,

lim
N→∞

P
(
(R0/c)N e−N(R0−1)/R0 < T N,z

Ext < (cR0)
N e−N(R0−1)/R0

)
= 1,

and (R0/c)N e−N(R0−1)/R0 ≤ E(T N,z
Ext )≤ (cR0)

N e−N(R0−1)/R0



94 Part I. Chapter 4. Open Markov Models

for N large enough.

Remark 4.2.31. In fact, the pair (û1(t), û2(t)) is not an optimal control for the above
control problem. Such an optimal control does not exist! The optimal trajectory,
which is the original ODE time reversed, would take an infinite time to leave x∗, and
an infinite time to reach 0. However, our (û1(t), û2(t)) is the limit of a minimizing
sequence obtained by choosing a suboptimal control to drive the system from x∗ to
x∗− δ , then the optimal control to drive the system from x∗− δ to δ , and finally
a suboptimal control to drive the system from δ to 0. log λ

γ
− 1+ γ

λ
is indeed the

minimal cost. Note that T̂ =+∞.

4.2.7 Time of extinction in the SIR model with demography

We now turn to the SIR model with demography, which is the model which has
been formally presented in Example 2.2.2, but where we let ν = +∞ (we suppress
the stage E between S and I), and γ = 0 (there is no loss of immunity). The limiting
ODE reads

ẋt = λxtyt − γxt −µxt ,

ẏt =−λxtyt +µ−µyt .

We assume that λ > γ + µ , in which case there is a unique stable endemic equi-
librium, namely z∗ = (x∗,y∗) = ( µ

γ+µ
− µ

λ
, γ+µ

λ
). The extinction in such a model

has been studied using the Central Limit Theorem for moderate population size in
Section 4.1. We now finally apply Large Deviations to this model. In this model,
ZN

t = (IN
t ,SN

t ) lives in all of R2
+. We note that in the proof of Proposition 4.2.18, the

compactness of the set of possible values for ZN
t has played a crucial role, especially

in the proof of Lemma 4.2.22. However, if we define for each R > 0

T N,R
Ext = T N

Ext∧σ
N
R ,

where σR
N = inf{t > 0, IN

t +SN
t ≥ R}, it is clear that we have reduced our situation

to a bounded state space, and the exact same proofs leading to Proposition 4.2.18
and Theorem 4.2.17, which easily adapted to this new situation. Moreover, we have
the

Lemma 4.2.32. As R→ ∞, VR := infz=x+y≥R V (z∗,z)→ ∞.

Proof. We use the Pontryagin maximum principle and refer to the notations in

Section A.6. Here d = 2 and k = 5, B =

(
1 −1 −1 0 0
−1 0 0 1 −1

)
, β1(x,y) = λxy,

β2(x,y) = γx, β3(x,y) = µx, β4(x,y) = µ , β5(x,y) = µy. The forward-backward
ODE system reads

ẋt = λxtytept−qt − (γ +µ)xte−pt , x0 =
µ

γ +µ
− µ

λ
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ẏt =−λxtytept−qt +µeqt −µyte−qt , y0 =
γ +µ

λ

ṗt = λyt + γ +µ−λyyept−qt − γe−pt −µe−pt ,

q̇t = λxt +µ− xtept−qt −µe−qt , pT̂ = qT̂ .

Condition (A.6.1) at time T̂ together with the condition pT̂ = qT̂ allows us to con-
clude that

pT̂ = qT̂ = log
(

R+
γ

µ
x
)
.

It is clear that ṗT̂ > q̇T̂ . In fact it is not hard to show that, as long as pt ≥ 0, pt < qt .
However, ṗt ≤ λyt +γ +µ ≤ λR+γ +µ . Let a = 1

2
logR

λR+γ+µ
. For any T̂ −a≤ t ≤ T̂ ,

pt ≥ log(R+ γ

µ
xT̂ )−

1
2 logR ≥ 1

2 logR > 0. Next we notice that ẋt + ẏt ≤ µeqt . As
long as T̂ − a ≤ t ≤ T̂ , we both have that pt ≤ qt and qt ≥ 0, hence q̇t ≥ 0, and
0 < qt ≤ qT̂ = log

(
R+ γ

µ
xT̂

)
. Consequently ẋt + ẏt ≤ µ

(
R+ γ

µ
xT̂

)
≤ (γ + µ)R.

Finally, for T̂ −a≤ t ≤ T̂ , xt + yt ≥ R− (γ+µ)R logR
2(λR+γ+µ) ≥

1
2 R, for R large enough.

We can now lowed bound VR. We use the expression on the left of (A.6.2) for the
instantaneous cost. We have

VR =
∫ T̂

0

[
λxtyt(1− ept−qt +(pt −qt)ept−qt )+(µ + γ)xt(1− e−pt − pte−pt )

+µ(1− eqt +qteqt )+µyt(1− e−qt −qte−qt )
]
dt

≥
∫ T̂

T̂−a
µ(xt + yt) inf{1− e−pt − pte−pt ,1− e−qt −qte−qt}dt

≥ µ

8
R logR

λR+µ + γ

→+∞,

as R→ ∞. ut

It follows from Corollary 4.2.28 that as soon as VR > V̂ , the probability that ZN

exits the truncated domain through the “extinction boundary” {z1 = 0} goes to 1 as
N→ ∞. Also, for fixed N, P(T N

Ext < σN
R )→ 1, as R→ ∞.

Theorem 4.2.33. Let T N,z
Ext denote the extinction time in the N–SIR model with de-

mography starting from zN = [zN]
N . Given η > 0, for all z ∈ R2

+ with z1 > 0,

lim
N→∞

P
(

exp{N(V −η)}< T N,z
Ext < exp{N(V +η)}

)
= 1.

Moreover, for all η > 0, z ∈ R2
+ with z1 > 0 and N large enough,

exp{N(V −η)} ≤ E(T N,z
Ext )≤ exp{N(V +η)}.





Appendix

This Appendix presents several mathematical notions, mostly from the theory of
stochastic processes, as well as a couple of notions related to continuity of real-
valued functions, which are used in the previous chapters. Most proofs are given.
Otherwise we refer to existing monographs.

A.1 Branching processes

We present the basic facts about branching processes, which are useful in these
Notes. We give most of the proofs. Those which are missing can be found in classical
monographs on branching processes, see e.g. Athreya and Ney [3] or Jagers [16],
unless we give a precise reference in the text.

A.1.1 Discrete time branching processes

Consider an ancestor (at generation 0) who has ξ0 children, such that

P(ξ0 = k) = qk, k ≥ 0 and ∑
k≥0

qk = 1.

Define m = E[ξ0] = ∑k≥1 k qk and g(s) = E
[
sξ0
]
.

Each child of the ancestor belongs to generation 1. The i-th of those children has
himself ξ1,i children, where the random variables {ξk,i, k ≥ 0, i ≥ 1} are i.i.d., all
having the same law as ξ0. If we define Xn as the number of individuals in generation
n, we have

Xn+1 =
Xn

∑
i=1

ξn,i.

97
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We have g(0) = q0, g(1) = 1, g′(1) = m, g′(s)> 0, g′′(s)> 0, for all 0≤ s≤ 1 (we
assume that q0 > 0 and q0 +q1 < 1). Let us compute the generating function of Xn:
gn(s) = E[sXn ].

gn(s) = E
[

s∑
Xn−1
i=1 ξn−1,i

]
= E

[
E
[

s∑
Xn−1
i=1 ξn−1,i

∣∣∣Xn−1

]]
= E

[
g(s)Xn−1

]
= gn−1 ◦g(s).

If we iterate this argument, we obtain

gn(s) = g◦ · · · ◦g(s),

and also

P(Xn = 0) = g◦n(0)

= g
[
g◦(n−1)(0)

]
.

Hence if zn = P(Xn = 0), zn = g(zn−1), and z1 = q0. We have zn ↑ z∞, where z∞ =
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Fig. A.1.1 Graphs of g in case m > 1 (left) and in case m ≤ 1 (right). The successive heights of
the dashed line are the successive values of P(Xn = 0).

P(Xn = 0 from some n). The proof of the following Proposition is essentially clear
from Figure A.1.1.

Proposition A.1.1. If m≤ 1, then P(Xn = 0)→ 1 as n→ ∞, and z∞ = 1.
If m > 1, P(Xn = 0)→ z∞ = q as n→ ∞, where q is the smallest solution of the

equation z = g(z).



A.1. Branching processes 99

Note that on the event ∪∞
n=0{Xn = 0}, which has probability one in the first

case, the population goes extinct after a finite number of generations, and the to-
tal progeny is finite.

In the second case, with probability 1− z∞, the branching process does not go
extinct.

Let us show that Wn = m−n Xn is a martingale.

E(Wn+1|Xn) = m−nE

(
m−1

Xn

∑
1

ξn,i|Xn

)
= m−nXn

=Wn.

One can show that Wn→W a.s. as n→ ∞, and moreover, provided ∑ j≥1 q j j log j <
∞,

E[W ] = 1, and P(W > 0) = P({the branching process does not go extinct}).

In the case ∑ j≥1 q j j log j = ∞, then P(W = 0) = 1.

A.1.2 Continuous time branching processes

We shall consider only binary continuous time branching processes, i.e. where at
most one child is born at a given time. This process starts with a single ancestor
born at time t = 0. This ancestor is characterized by a pair (L0,{N0(t), t ≥ 0}),
where L0 is the life length of the ancestor, and N0(t) is the number of children of
the ancestor born on the time interval [0, t]. We assume that N0(∞) = N0(L0), that is
the ancestor does not give birth to offspring after his death. We now assume that the
individuals are numbered in the order of their birth. To the individual i is attached
a pair (Li,{Ni(t)}), such that the sequence of pairs {(Li,{Ni(t)})}i≥0 is i.i.d. If the
individual i is born at time Bi, the offspring of individual i are born at the jump times
of the process {Ni(t−Bi), Bi ≤ t ≤ Bi +Li}. Note that since Bi depends only upon
the pairs {(L j,{N j(t)})}0≤ j<i, Bi and (Li,{Ni(t)}) are independent.

Let Xt denote the number of individuals in the population alive at time t. This
process is Markovian if and only if the law of the pair (Li,Ni(t)) is such that Li and
{Ni(t), t ≥ 0} are independent, Li is an exponential random variable with parameter
d, and Ni(t) is a rate b Poisson process. We first assume that we are in this situation.
We shall denote by Xk

t the number of descendants at time t of k ancestors at time 0.
The branching property implies that {Xk

t , t ≥ 0} is the sum of k independent copies
of {Xt , t ≥ 0}. We have the following result.



100 Part I. Appendix

Proposition A.1.2. The generating function of the process X is given by

E
(

sXk
t
)
= ψt(s)k, s ∈ [0,1], k ≥ 1,

where
∂ψt(s)

∂ t
= Φ(ψt(s)), ψ0(s) = s,

and the function Φ is defined by

Φ(s) = d(1− s)+b(s2− s)

= (b+d)(h(s)− s), s ∈ [0,1],

where h is the generating function of the probability measure d
b+d δ0 +

b
d+b δ2.

Proof. The process Xt is a continuous time Z+-valued jump Markov process. De-
note by Q its infinitesimal generator. The non-zero elements of the n-th row of Q
are given by

Qn,m =


nd, if m = n−1,
−n(b+d), if m = n;
nb, if m = n+1.

Define f : N→ [0,1] by f (k) = sk, s ∈ [0,1]. Then ψt(s) = Pt f (1) := E[ f (X1
t )]

(we use the unusual notation X1 = X to stress the fact that the process starts from
X0 = 1). It follows from the backward Kolmogorov equation for the process X (see
e.g. Theorem 3.2, Chapter 7 in Pardoux [25]) that

dPt f (1)
dt

= (QPt f )(1)

∂ψt(s)
∂ t

= Q1,0 +Q1,1ψt(s)+Q1,2ψt(s)2

= d− (b+d)ψt(s)+bψt(s)2

= Φ(ψt(s)).

ut

Corollary A.1.3. We have

E[Xk
t ] = kert , where r = b−d.

Proof. Differentiating with respect to s the above equation for ψt(s) yields

∂

∂ t

(
∂

∂ s
ψt(s)

)
= Φ

′(ψt(s))
∂

∂ s
ψt(s)

= (b+d)(h′(s)−1)
∂

∂ s
ψt(s).
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The last equation at s = 1 yields

d
dt
E[Xt ] = rE[Xt ],

where Xt = X1
t . The result follows for k = 1, and then the general case, since the

mean number of offspring of k ancestors equals k times the mean number of off-
spring of one ancestor. ut

The quantity r is often referred to as the Malthusian parameter. It is the mean
number of births minus the mean number of death per unit time. Another important
quantity is the mean number of offspring of each individual, which is equal to m =
b/d. The process Xk

t is said to be subcritical if m < 1, i.e. r < 0. In that case Xk
t → 0

in L1(Ω), and it is easy to show that Xk
t = 0 for t large enough. This last conclusion

holds in the critical case (m = 1, i.e. r = 0) as well. In those two cases, the total
progeny is finite a.s. We now study the large time behaviour of Xk

t in the supercritical
case. In the next proposition, we again write Xt for X1

t .

Proposition A.1.4. If m > 1, or equivalently r > 0, there exists a non-negative ran-
dom variable W such that Xt ∼Wert almost surely, as t→ ∞. Moreover {W = 0}=
{∃t > 0 such that Xt = 0} and

P(W = 0) = P({∃t > 0 such that Xt = 0}) = d
b
.

Proof. The first part of the result follows readily from the fact that e−rtXt is a posi-
tive martingale, which converges a.s. to a limit W as t→ ∞. Moreover it is not hard
to show that supt>0E[e−2rt(Xt)

2] < ∞, hence the convergence holds in L1(Ω), so
E[W ] = 1. Now clearly {∃t > 0 s.t. Xt = 0} ⊂ {W = 0}. If we start with k ances-
tors, the limiting W is clearly the sum of k i.i.d. copies of W when starting with one
ancestor, and Pk(W = 0) = (P1(W = 0))k. It is now easy to deduce that

P1(W = 0|Xt) = P1(W = 0))Xt .

Taking the expectation in this identity and writing q = P1(W = 0), we obtain q =
E[qXt ]. Differentiating that identity at t = 0 and taking advantage of Proposition
A.1.2, we deduce that q solves bq2− (b+d)q+d = 0. Moreover since E(W ) = 1,
q < 1, hence q = d/b. Finally P(Xt = 0) = ψt(0) is the solution of the ODE ẋ(t) =
bx(t)2− (b+ d)x(t)+ d, x(0) = 0. It is clear that as t → ∞, ψt(0) increases to the
smallest solution of the equation bs2− (b+d)s+d = 0, again d/b. ut

We now consider non-Markovian continuous time binary branching processes.
The non-Markovian continuous time branching processes which we have described
at the beginning of this section are called Crump–Mode–Jagers processes. Now the
law of the pairs (Li,{Ni(t)}) can be quite general. For the application to epidemics
models, we can consider the case where Li and {Ni(t)} are independent, Ni being a
Poisson process, but the law of Li is no longer exponential. We denote again by m =
E[N0(L0)] the mean number of offspring of each individual. Of course, the process is
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subcritical, critical, or supercritical according as m < 1, m = 1 or m > 1. We denote
again by Xt the number of individuals alive at time t. We define F(t) = E[N(t)]
and G(t) = P(L ≤ t). We assume that F is non-lattice, and F(0+) < 1. Doney [10]
showed the following two results.

Proposition A.1.5. If 1 < m < ∞, then there exists a unique r > 0 such that∫
∞

0
e−rtF(dt) = 1

and E[Xt ]∼ aert , where

0 < a =

∫
∞

0 (1−G(t))e−rtdt∫
∞

0 te−rtF(dt)
< ∞.

Again r is called the Malthusian parameter. In the next statement, we use the
notation

Y =
∫

∞

0
e−rtN(dt).

It is clear that
E[Y ] =

∫
∞

0
e−rtF(dt) = 1.

Theorem A.1.6. Suppose that 1 < m < ∞. Then, as t→ ∞

Xt

E[Xt ]
→W in law.

W is not identically 0 if and only if E[Y log(Y )] < ∞, in which case E[W ] = 1 and
P(W = 0) = P({∃t > 0 s.t. Xt = 0}). Moreover, the law of W has an atom at 0 and
is absolutely continuous on (0,∞).

A.2 The Poisson process and Poisson point process

The Poisson process is central in this whole volume. Let λ > 0 be given. A rate λ

Poisson (counting) process is defined as

Pt = sup{k ≥ 1, Tk ≤ t},

where 0 = T0 < T1 < T2 < · · ·< Tk < · · ·< ∞, the random variables {Tk−Tk−1, k≥
1} being independent and identically distributed, each following the law Exp(λ ).
We have

Proposition A.2.1. For all n ≥ 1, 0 < t1 < t2 < · · · < tn, the random variables
Pt1 ,Pt2 − Pt1 , . . . ,Ptn − Ptn−1 are independent, and for all 1 ≤ k ≤ n, Ptk − Ptk−1 ∼
Poi[λ (tk− tk−1)].
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Proof. Let us first prove that for all t,s > 0,

P(Pt+s−Pt = 0|Pt = k,T1,T2, . . . ,Tk) = exp(−λ s).

Indeed

P(Pt+s−Pt = 0|Pt = k,T1,T2, . . . ,Tk)

= P(Tk+1 > t + s|Pt = k,Tk)

= P(Tk+1−Tk > t + s−Tk|Tk+1−Tk > t−Tk > 0)
= P(Tk+1−Tk > s)

= exp(−λ s).

Let now n ≥ 1. For 1 ≤ i ≤ n, we define Xn,i = 1{Pt+is/n−Pt+(i−1)s/n≥1}, and finally
Sn = Xn,1+Xn,2+ · · ·+Xn,n. It follows from the first part of the proof that condition-
ally upon σ{Pr, 0 ≤ r ≤ t}, the random variables Xn,1,Xn,2, . . . ,Xn,n are i.i.d., each
Bernoulli with parameter 1− e−λ s/n. Then conditionally upon σ{Pr, 0 ≤ r ≤ t},
Sn is binomial with parameters (n,1− e−λ s/n). But Sn → Pt+s−Pt a.s. as n→ ∞,
while its conditional law given σ{Pr, 0 ≤ r ≤ t} converges towards the Poisson
distribution with parameter λ s, according to the following lemma. The proposition
follows. ut

We have used the following well-known result. Recall the notation Bin(n, p) for
the binomial law with parameters n and p, where n≥ 1 and 0 < p < 1.

Lemma A.2.2. For all n≥ 1, let Un be a Bin(n, pn) random variable. If npn→ λ as
n→ ∞, with λ > 0, then Un converges in law towards Poi(λ ).

A Poisson process will be called standard if its rate is 1. If P is a standard Poisson
process, then {P(λ t), t ≥ 0} is a rate λ Poisson process.

We will also use the following

Exercise A.2.3. Let {Pt , t ≥ 0} be a rate λ Poisson process, and {Tk, k ≥ 1} the
random points of this Poisson process, i.e. for all t > 0, Pt = sup{k ≥ 1, Tk ≤ t}.
Let 0 < p < 1. Suppose that each Tk is selected with probability p, not selected
with probability 1− p, independently from the others. Let P′t denote the number of
selected points on the interval [0, t]. Then {P′t , t ≥ 0} is a rate λ p Poisson process.

A rate λ Poisson process (λ > 0) is a counting process {Rt , t ≥ 0} such that
Rt −λ t is a martingale. Let {P(t), t ≥ 0} be a standard Poisson process (i.e. with
rate 1). Then P(λ t)−λ t is martingale, and it is not hard to show that {P(λ t), t ≥ 0}
is a rate λ Poisson process. Let now {λ (t), t ≥ 0} be a measurable and locally
integrable R+-valued function. Then the process {Rt := P

(∫ t
0 λ (s)ds

)
, t ≥ 0} is

called a rate λ (t) Poisson process. Clearly Rt −
∫ t

0 λ (s)ds is a martingale.
We now want to consider the case where λ is random. For that purpose, it is

convenient to give an alternative definition of the above process Rt .
Consider a standard Poisson random measure Q on R+

2 , which is defined as fol-
lows. M is the counting process associated to a random cloud of points in R2

+. One
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way to construct that cloud of points is as follows. We can consider R2
+ = ∪∞

i=1Ai,
where the Ai’s are disjoint squares with Lebesgue measure 1. Let Ki, i ≥ 1 be i.i.d.
mean one Poisson random variables. Let {X i

j, j ≥ 1, i≥ 1} be independent random
points of R2

+, which are such that for any i≥ 1, the X i
j’s are uniformly distributed in

Ai. Then

Q(dx) =
∞

∑
i=1

Ki

∑
j=1

δX i
j
(dx).

λ (t) denoting a positive-valued measurable function, the above {Rt , t ≥ 0} has the
same law as

Rt =
∫ t

0

∫
λ (s)

0
Q(ds,du).

Now let {λ (t), t ≥ 0} be an R+-valued stochastic process, which is assumed to
be predictable, in the following sense. Let for t ≥ 0,

Ft = σ{Q(A), A Borel subset of [0, t]×R+},

and consider the σ -algebra of subset of [0,∞)×Ω generated by the subsets of the
form 1(s,t]1F , where 0≤ s< t and F ∈Fs, which is called the predictable σ -algebra.
Note that if Xt is Ft -progressively measurable and left-continuous, then it is pre-
dictable. If Xt is progressively measurable and right-continuous, then Xt− is pre-
dictable.

We assume moreover that E
∫ t

0 λ (s)ds < ∞ for all t > 0. We now define the pro-
cess Rt as above:

Rt =
∫ t

0

∫
λ (s)

0
Q(ds,du).

We have (see the next subsection for the definition of a martingale)

Lemma A.2.4. Rt −
∫ t

0 λ (s)ds is a martingale.

Proof. For any δ > 0, let

Rδ
t =

∫ t

0

∫
λ (s−δ )

0
Q(ds,du),

where λ (s) = 0 for s < 0. It is not hard to show that Rδ
t −

∫ t
0 λ (s−δ )ds is a martin-

gale which converges in L1(Ω) to Rt −
∫ t

0 λ (s)ds. Indeed, it suffices to show that if
0 < s < t with t− s≤ δ , the restriction of the random measure M to (s, t]× (0,+∞)
is independent of {λ (r−δ ), s < r ≤ t}, which is Fs measurable hence

EFs(Rδ
t −Rδ

s ) = EFs

∫ t

s
λ (r−δ )dr.

The result follows. ut

The process Rt is sometimes called “a doubly stochastic Poisson process” or a
Cox process. Of course the increments of Rt are not Poisson distributed. If we let
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σ(t) = inf{r > 0,
∫ r

0 λ (s)ds > t}, we have that P(t) := Rσ(t) is a standard Poisson
process, and it is clear that Rt = P

(∫ t
0 λ (s)ds

)
.

In particular, the process which counts the new infections, which appears in Sec-
tion 2.2, takes the form

P
(

λ

N

∫ t

0
I(r)S(r)dr

)
=
∫ t

0

∫
∞

0
1u≤ λ

N I(r−)S(r−)Q(ds,du).

If we let Q(ds,du) = Q(ds,du)−ds×du and M(t) := P(t)− t, it is clear that, as a
consequence of the above Lemma, we have

Corollary A.2.5. Define M(·) by

M
(

λ

N

∫ t

0
I(r)S(r)dr

)
=
∫ t

0

∫
∞

0
1u≤ λ

N I(r−)S(r−)Q(ds,du)

=
∫ t

0

∫
∞

0
1u≤ λ

N I(r−)S(r−)Q(ds,du)− λ

N

∫ t

0
I(r)S(r)dr.

Then M(t) is a martingale (see Definition A.4.7 below).

Note that
∫ t

0 I(r−)S(r−)dr =
∫ t

0 I(r)S(r)dr since the two integrands coincide dr
a.e. since they differ on each interval [0, t] at most at finitely many points. We use
the second formulation, since it is simpler.

A.3 Cramér’s theorem for Poisson random variables

In order to explain what Large Deviations is about, let us first establish Cramér’s
Theorem, in the particular case of Poisson random variables. Let X1,X2, . . . ,Xn, . . .
be mutually independent Poi(µ) random variables. The Law of Large Numbers tells
us that

1
N

N

∑
i=1

Xi→ µ a.s. as N→ ∞.

Let us first define, for X ∼ Poi(µ) the logarithm of its Laplace transform

Λ(λ ) = logE[exp(λX)] = µ(eλ −1),

and the Fenchel–Legendre transform of the latter

Λ
∗(x) = sup

λ∈R
{λx−Λ(λ )}= x log

(
x
µ

)
− x+µ.

Note that the minimum of Λ ∗ is achieved at x = µ , and Λ ∗ is zero at that point.
Let νN denote the law of the random variable 1

N ∑
N
i=1 Xi. We can now state

Cramér’s theorem.
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Theorem A.3.1. Let F ⊂ R be a closed set.

For any N ≥ 1, νN(F)≤ exp
(
−N inf

x∈F
Λ
∗(x)

)
.

Hence limsup
N→∞

1
N

logνN(F)≤− inf
x∈F

Λ
∗(x).

Let G⊂ R be an open set.

For any N ≥ 1, νN(G)≥ exp
(
−N inf

x∈G
Λ
∗(x)

)
.

Hence liminf
N→∞

1
N

logνN(G)≥− inf
x∈G

Λ
∗(x).

Proof. FIRST STEP. PROOF OF THE UPPER BOUND Let X1,X2, . . . ,Xn, . . . be mutu-
ally independent Poi(µ) random variables. For σ > µ , we want to estimate

P

(
1
N

N

∑
i=1

Xi ≥ σ

)
,

which is the probability of a Large Deviation from the LLN, since we know that for
large N, 1

N ∑
N
i=1 Xi ' µ .

For any λ > 0, using Chebycheff’s inequality,

P

(
1
N

N

∑
i=1

Xi ≥ σ

)
= P

(
exp

{
λ

(
N

∑
i=1

Xi−Nσ

)}
≥ 1

)

≤ Eexp

{
λ

(
N

∑
i=1

Xi−Nσ

)}
= exp [−N(λσ −Λ(λ )] .

The best possible upper bound is then (since with σ > µ , Λ ∗(σ) is obtained by
taking the supremum over λ > 0)

P

(
1
N

N

∑
i=1

Xi ≥ σ

)
≤ e−NΛ∗(σ)

= exp
[
−N

(
σ log

(
σ

µ

)
−σ +µ

)]
.

Similarly, if σ < µ , for any λ < 0,

P

(
1
N

N

∑
i=1

Xi ≤ σ

)
≤ Eexp

{
λ

(
N

∑
i=1

Xi−Nσ

)}
= exp [−N(λσ −Λ(λ )] .
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Since with σ < µ , Λ ∗(σ) is obtained by taking the supremum over λ < 0, the above
computation leads again to

P

(
1
N

N

∑
i=1

Xi ≤ σ

)
≤ exp

[
−N

(
σ log

(
σ

µ

)
−σ +µ

)]
.

It is not hard to see that the upper bound follows from the two above estimates.
SECOND STEP. PROOF OF THE LOWER BOUND For any δ > 0,

νN((−δ ,δ ))≥ νN({0}) = e−Nµ , hence
1
N

logνN((−δ ,δ ))≥−µ =−Λ
∗(0).

Since transforming X into Y = X − x results in Λ and Λ ∗ being transformed into
ΛY (λ ) = Λ(λ )−λx and Λ ∗Y (·) = Λ ∗(·+ x), the above yields that for all x > 0,

1
N

logνN((x−δ ,x+δ ))≥−Λ
∗(x).

The lower bound follows readily. ut

A.4 Martingales

A.4.1 Martingales in discrete time

(Ω ,F ,P) being our standing probability space, let be given an increasing sequence
{Fn, n≥ 0} of sub-σ -algebras of F .

Definition A.4.1. A sequence {Xn, n≥ 0} of random variables is called a martingale
if

1. For all n≥ 0, Xn is Fn-measurable and integrable,
2. For all n≥ 0, E(Xn+1|Fn) = Xn a. s.

A sub-martingale is a sequence which satisfies the first condition and
E(Xn+1|Fn)≥ Xn. A super-martingale is a sequence which satisfies the first condi-
tion and E(Xn+1|Fn)≤ Xn.

It follows readily from Jensen’s inequality for conditional expectations the

Proposition A.4.2. If {Xn, n≥ 0} is a martingale, and ϕ : R→R is a convex func-
tion such that ϕ(Xn) is integrable for all n ≥ 0, then {ϕ(Xn), n ≥ 0} is a sub-
martingale.

We shall need the notion of stopping time

Definition A.4.3. A stopping time τ is an Z+ ∪ {+∞}-valued random variable
which satisfies {τ = n} ∈Fn, for all n≥ 0.
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We also let

Fτ = {B ∈F , B∩{τ = n} ∈Fn, ∀n ∈ Z+}.

We have Doob’s optional sampling theorem:

Theorem A.4.4. If {Xn, n≥ 0} is a martingale (resp. a sub-martingale), and τ1, τ2
two stopping times s.t. τ1 ≤ τ2 ≤ N a.s., then Xτi is Fτi measurable and integrable,
i = 1,2, and moreover

E(Xτ2 |Fτ1) = Xτ1

(resp. E(Xτ2 |Fτ1)≥ Xτ1).

Proof. For all A ∈B, n≥ 0,

{Xτi ∈ A}∩{τi = n}= {Xn ∈ A}∩{τi = n} ∈Fn,

and moreover

|Xτi | ≤
N

∑
k=1
|Xk|,

which establishes the first part of the statement.
Let A ∈Fτ1 . Then

A∩{τ1 < k ≤ τ2}= A∩{τ1 ≤ k−1}∩{τ2 ≤ k−1}c ∈Fk−1.

Indeed, we have

A∩{τ1 ≤ k−1}= ∪k−1
j=1A∩{τ1 = j} ∈Fk−1, and {τ2 ≤ k−1}c ∈Fk−1.

Let ∆k = Xk−Xk−1. We have, with A ∈Fτ1 ,∫
A
(Xτ2 −Xτ1)dP=

∫
A

n

∑
k=1

1{τ1<k≤τ2}∆kdP

=
n

∑
k=1

∫
A∩{τ1<k≤τ2}

∆kdP

= 0

or else ≥ 0, depending upon whether {Xn, n ≥ 0} is a martingale or a sub-
martingale. ut

We have a first Doob’s inequality

Proposition A.4.5. If X1, . . . ,Xn is a sub-martingale, then for all α > 0,

P
(

max
1≤i≤n

Xi ≥ α

)
≤ 1

α
E(X+

n ).
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Proof. Define the stopping time τ = inf{0≤ k≤ n, Xk≥α} and let Mk =max1≤i≤k Xi.
We have

{Mn ≥ α}∩{τ ≤ k}= {Mk ≥ α} ∈Fk.

Hence {Mn ≥ α} ∈Fτ . From the optional sampling Theorem,

αP(Mn ≥ α)≤
∫
{Mn≥α}

Xτ dP

≤
∫
{Mn≥α}

XndP

≤
∫
{Mn≥α}

X+
n dP

≤ E(X+
n ).

ut

We have finally a second Doob’s inequality

Proposition A.4.6. If M1, . . . ,Mn is a martingale, then

E

[
sup

0≤k≤n
|Mk|2

]
≤ 4E

[
|Mn|2

]
.

Proof. Let Xk = |Mk|. From Proposition A.4.2, X1, . . . ,Xn is a sub-martingale. It fol-
lows from the proof of Proposition A.4.5 that, with the notation X∗k = sup0≤k≤n Xk,

P(X∗n > λ )≤ 1
λ
E
(
Xn1X∗n >λ

)
.

Consequently ∫
∞

0
λP(X∗n > λ )dλ ≤

∫
∞

0
E
(
Xn1X∗n >λ

)
dλ

E
(∫ X∗n

0
λdλ

)
≤ E

(
Xn

∫ X∗n

0
dλ

)
1
2
E
[
|X∗n |2

]
≤ E(XnX∗n )

≤
√

E(|Xn|2)
√

E(|X∗n |2),

from which the result follows. ut
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A.4.2 Martingales in continuous time

We are now given an increasing collection {Ft , t ≥ 0} of sub-σ -algebras in contin-
uous time.

Definition A.4.7. A process {Xt , t ≥ 0} is called a martingale if

1. for all t ≥ 0, Xt is Ft -measurable and integrable;
2. for all 0≤ s < t, E(Xt |Fs) = Xs a. s.

A sub-martingale is a process which satisfies the first condition and E(Xt |Fs) ≥ Xs.
A super-martingale is a process which satisfies the first condition and E(Xt |Fs) ≤
Xs.

Suppose {Mt , t ≥ 0} is a right-continuous martingale. For any n ≥ 1, 0 = t0 <
t1 < · · · < tn, (Mt0 ,Mt1 , . . . ,Mtn) is a discrete time martingale, to which Proposition
A.4.6 applies. Since

sup
0≤s≤t

|Ms|= sup
Partitions of [0,t]

sup
1≤k≤n

|Mtk |,

Proposition A.4.6 implies readily

Proposition A.4.8. If {Mt , t ≥ 0} is a right-continuous martingale,

E
[

sup
0≤s≤t

|Ms|2
]
≤ 4E

[
|Mt |2

]
.

We now establish a particular (essentially obvious) instance of Itô’s formula. Re-
call that an R-valued function of t has locally bounded variations if and only if it is
the difference of an increasing and a decreasing function. This class of functions ex-
cludes all non-zero continuous martingales, e.g. Brownian motion. But all processes
considered in these Notes, except for the limit in the functional central limit theo-
rem, are locally of bounded variations. Given such a locally bounded variation right-
continuous 1-dimensional process Xt , we define the bracket [X ,X ]t =∑0≤s≤t |∆Xs|2,
where ∆Xs = Xs−Xs− is the jump of X at time s. It follows from the fact that X has
bounded variation on any compact interval that the set {s ≥ 0, ∆Xs 6= 0} is at most
countable, hence the above sum makes sense. If X and Y are two processes of the
above type, then

[X ,Y ]t = ∑
0≤s≤t

∆Xs∆Ys =
1
2
([X +Y,X +Y ]t − [X ,X ]t − [Y,Y ]t) .

Now we have what we call Itô’s formula. If Xt and Yt are right-continuous and have
left limits at any t, have bounded variations on any compact interval, then for any
t > 0,

XtYt = X0Y0 +
∫ t

0
Xs−dYs +

∫ t

0
Ys−dXs +[X ,Y ]t . (A.4.1)



A.5. Tightness and weak convergence in path space 111

In case all jumps of X and Y are isolated, which is the only situation treated in
these Notes, the result follows clearly by analyzing the evolution of both sides of
the identity between the jumps, and at the jump times. The result in the more general
situation is easily deduced by approximation.

If Mt is a right-continuous R-valued martingale with locally bounded variation,
we define as above its quadratic variation as

[M,M]t = ∑
0≤s≤t

|∆Ms|2,

and 〈M,M〉t as the unique increasing predictable process such that [M,M]t −
〈M,M〉t is a martingale. Note that both M2

t − [M,M]t and M2
t −〈M,M〉t are mar-

tingales. Consequently, we have in particular

Proposition A.4.9. Let Mt be a square–integrable right-continuous R-valued mar-
tingale with finite variation such that M0 = 0. Then for all t > 0,

E
(
M2

t
)
= E

(
∑

0≤s≤t
|∆Ms|2

)
.

A.5 Tightness and weak convergence in path space

In these Notes we consider continuous time processes with values in Rd . Most of
our processes are discontinuous. Their trajectories belong to the set D([0,+∞);Rd)
of functions which are right continuous and have left limits at any point t ∈ [0,+∞).
It is not very convenient to use the topology of locally uniform convergence on this
set, since we would like for instance the two Heaviside type functions 1[1,+∞)(t) and
1[1+ε,+∞)(t) to be close for ε small. The Skorokhod topology essentially says that
two functions are close if after a time change which is close to the identity, they are
(at least locally) close in the supremum topology. The only weak convergence (i.e.
convergence in law) results we consider in these Notes are convergence results to-
wards a continuous process. In this case, convergence in the sense of the Skorokhod
topology is equivalent to locally uniform convergence.

Note also that weak convergence of a sequence of processes Xn towards X is
equivalent to the two following facts:

1. The sequence {Xn}n≥1 is tight, as a sequence of random elements of
D([0,+∞);Rd) equipped with the Skorokhod topology.

2. For any k ≥ 1, 0≤ t1 < t2 < · · ·< tk, (Xn
t1 , . . . ,X

n
tk)⇒ (Xt1 , . . . ,Xtk), in the sense

of weak convergence in Rd×k.

If only 2 is satisfied, then one has convergence in the sense of finite-dimensional
distributions.
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What do we mean by tightness? A sequence {Xn}n≥1 of random variables with
values in a topological space S is said to be tight if for any ε > 0, there exists a
compact set K ⊂ S such that P(Xn ∈ K)≥ 1− ε for all n≥ 1.

Consider the product XnYn, where Xn and Yn are real-valued. If one of the two se-
quences is tight and the other tends to 0 in probability, then XnYn→ 0 in probability.
This easy result is used in the proof of Theorem 2.3.2.

In the proof of Lemma 2.3.4, we use the following argument: a sequence of
continuous time martingales Mn

t satisfying Mn
0 = 0 is tight as soon as the associated

sequence of predictable increasing processes 〈Mn,Mn〉t is C–tight, in the sense that
both it is tight, and any weak limit of a converging sub–sequence is continuous, see
e.g. Theorem VI.4.13 in Jacod and Shiryaev [15]. In the situation of Lemma 2.3.4,
〈Mn,Mn〉t = t which is C–tight, since it does not depend upon n and is continuous.

A.6 Pontryagin’s maximum principle

In this section, we present the Pontryagin maximum principle in optimal control,
which is useful in order to compute or give some estimates for the exponent in the
asymptotic evaluation of the time to extinction derived from large deviation theory.
We refer the reader for a more general presentation, proofs and references to Trélat
[37] and Pontryagin et al. [31].

The quantity of interest, denoted by V in Section 4.2.5 and the following pages,
is the value function of an optimal control problem which is of the following type.
x ∈C([0,∞);Rd) solves the controlled ODE

ẋt = But , x0 = x∗,

where B is a d× k matrix, and u ∈ L1([0,∞);Rk
+) is to be chosen together with the

final time T such as to minimize a cost functional

C(u) =
k

∑
j=1

∫ T

0
g(u j(t),β j(xt))dt,

while the following constraint must be satisfied: xT ∈M1, where M1 is some affine
subspace of Rd . The function g is the one which appears in Section 4.2.2, namely
g(a,b) = a log(a/b)− a+ b, while the β j’s are some mappings from Rd into R+,
which, like the matrix B, depend upon the particular model we consider. Note that
in our case all entries of B are either 1, 0, or −1.

We associate to this optimal control problem a Hamiltonian which takes the form

H(x, p,u) = 〈p,Bu〉−
k

∑
j=1

g(u j,β j(x)),
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where p ∈C([0,T ];Rd) is the adjoint state. The next statement constitutes Pontrya-
gin maximum principle, applied to our particular situation.

Theorem A.6.1. If (û, T̂ ) is an optimal pair, then there exists an adjoint state, such
that the following is satisfied

ẋt = Bût , x0 = x∗, xT̂ ∈M1,

ṗt =
k

∑
j=1

[
∇β j(xt)− û j(t)

∇β j(xt)

β j(xt)

]
, pT̂ ⊥M1,

H(xt , pt , ût) = max
v∈Rk

+

H(xt , pt ,v) = 0, 0≤ t ≤ T̂ .

Of course, the first equation could be of the more general form ẋ = f (x,u). The
general form of the adjoint equation reads ṗ = −∇xH. The Hamiltonian is zero at
time T̂ since the final time is not fixed and there is no final cost. The Hamiltonian is
constant along the optimal trajectory because none of the coefficients depends upon
t.

Since u → (B∗p) ju− g(u,β j(x)) is concave, the maximum is the zero of its
derivative if it is non-negative. Hence

û j = e(B
∗p) j β j(x),

and the two above equations can be written as

ẋt =
k

∑
j=1

e(B
∗pt ) j β j(xt)h j, ṗt =

k

∑
j=1

(1− e(B
∗pt ) j)∇β j(xt),

and the Hamiltonian along the optimal trajectory reads

H(xt , pt , ût) =
k

∑
j=1

β j(xt)(e(B
∗pt ) j −1) = 0. (A.6.1)

Finally the instantaneous cost takes the form

k

∑
j=1

(
1−e(B

∗pt ) j+(B∗pt) je(B
∗pt ) j

)
β j(xt) =

k

∑
j=1

(B∗pt) je(B
∗pt ) j β j(xt), (A.6.2)

where this identity follows from (A.6.1).
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A.7 Semi- and equicontinuity

Let X be a metric space, equipped with a distance d, and f be a mapping from X
into R∪{−∞,∞}.

Definition A.7.1. f is said to be lower (resp. upper) semi-continuous if for any x0 ∈
X ,

liminf
x→x0

f (x)≥ f (x0) (resp. limsup
x→x0

f (x)≤ f (x0)).

Clearly f is continuous if and only if it is both lower and upper semi-continuous.
A lower (resp. upper) semi-continuous (−∞,∞]-valued (resp. [−∞,∞)-valued)

function achieves its minimum (resp. maximum) on a compact subset of X .
The pointwise supremum (resp. infimum) of a collection of continuous functions

is lower (resp. upper) semi-continuous.

Let now { fi, i ∈ I} be a collection of elements of C(X ) (i.e. of continuous
functions from X into R), where I is an arbitrary index set.

Definition A.7.2. The collection { fn, n≥ 1} is said to be equicontinuous if for any
x0 ∈X , supi∈I | fi(x)− fi(x0)| → 0, as x→ x0. The same collection is said to be
uniformly equicontinuous if supi∈I supd(x,y)≤δ | fi(x)− fi(y)| → 0, as δ → 0.

Note that when X is compact, equicontinuity and uniform equicontinuity are
equivalent.

A.8 Solutions to selected exercises

Solution to Exercise 1.1.2. R0 = λE(I) = λ/γ = 1.8. The escape probability
from a given under infected individual equals E(e−λ I/N) = γ/(γ + λ/N), since
ψI(−λ/N) = γ/(γ + λ/N) when I ∼ Exp(γ). For λ = 1.8, γ = 1, N = 100 we
get 0.9823.

Solution to Exercise 1.1.3. For the Reed–Frost epidemic we hence have the same
R0 = λE(I) = 1.8. As for the escape probability we get

P(avoid infection from an infective) = e−λι/N = 0.9822.

The escape probabilities are not identical, but very similar for the two models.

Solution to Exercise 1.2.1. If I ≡ 1, then X ∼ Poi(R0). If I ∼ Exp(1/ι), then X ∼
MixPoi(λ I). So

P(X = k) =
∫

∞

0
P(X = k|I = s)e−s/ι/ιds = (R0/(R0 +1))k(1/(R0 +1)),
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so X ∼ Geo(p = 1/(R0 +1)).

Solution to Exercise 1.2.8. The probability of a minor outbreak corresponds to the
probability of extinction in the approximating branching process. This probability
q was derived in Section A.1 by conditioning on the number k infected in the first
generation, the offspring distribution: if k get infected these all start new indepen-
dent branching processes so the probability that all go extinct equals qk. The general
equation is hence

q =
∞

∑
k=0

qkP(X = k).

The offspring distribution X depends on the infectious period distribution I. Given
that I = s, X has a Poisson distribution with mean λ s, so X ∼MixPoi(λ I). In situa-
tion 2 (cont-time R-F) I ≡ 1 so X ∼ Poi(λ = 1.5). This gives the following equation

q =
∞

∑
k=0

qk λ ke−λ

k!
= ...= e−R0(1−q) = e−1.5(1−q).

If this equation is solved numerically it gives the result that q = 1−0.583 = 0.417.
So for the Reed–Frost case the probability of a major outbreak, equals 0.583.

As for the Markovian SIR, where I ∼ Exp(1) we get

P(X = k) =
∫

∞

0
P(X = k|I = s) fI(s)ds

=
∫

∞

0

(λ s)ke−λ s

k!
e−sds = · · ·= 1

1+λ

(
λ

1+λ

)k

i.e. the geometric distribution, which should not come as a surprise (each time, the
event is either infection or recovery, and the latter has probability 1/(λ + 1)). We
then get

q =
∞

∑
k=0

qkP(X = k) = qk
(

λ

λ +1

)k 1
λ +1

=
1

1+(1−q)λ
.

As a consequence, the probability of a minor outbreak for the Markovian SIR hence
equals q = 1/λ = 1/R0 = 1/1.5 = 0.67. The probability of a major outbreak is
hence only 0.33. The randomness of the infectious period hence reduces the risk for
a major outbreak. It can actually be proven that having a constant infectious period
maximizes the outbreak probability among all distributions of the infectious period.

Solution to Exercise 1.2.9. The exponential growth rate (or decay rate if R < 1)
r is the solution to Equation (1.2.1), where h(s) is the average rate of infectious
contacts s units after infection: h(s) = λP(L ≤ s ≤ L+ I). For the Markovian SIR
(for which L≡ 0 and I ∼ Exp(γ = 1/ι)) we hence have h(s) = λe−s/ι = 1.5e−s, and
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the solution equals r = λ−1/ι For R0 = 1.5 and γ = ι = 1 this gives the exponential
growth rate r = 0.5.

For the continuous time Reed–Frost model we have h(s) = λ1(s<ι). The equa-
tion then becomes

∫
ι

0 e−rsλds = λ

r (1− e−rι) = 1. The equation is hence r/λ =

1− e−(r/λ )R0 . When R0 = 1.5 we numerically get r/λ = 0.583, so r = 0.874 for
the continuous time Reed–Frost model. This epidemic hence grows quicker than
the Markovian SIR epidemic with the same parameters. The main reason for this
is that even if the two infectious periods have equal mean ι = 1, the average time
of the infectious contacts are not the same. For the Reed–Frost the mean time to a
randomly selected infectious contact (the mean of the generation time distribution)
is of course 0.5 (the generation time distribution is uniform on [0, 1], whereas for
the Markovian SIR it equals 1 (the generation time distribution is Exp(1)).

For the third case, with exponentially distributed latency and infectious periods,
we have h(s) = P(L < s < L+ I) = λν

γ−ν
(e−νs− e−γs). Solving

∫
∞

0 e−rsh(s)ds = 1
gives the solution

r =

√
ν(λ − γ)+

(
γ +ν

2

)2

− γ +ν

2
≈ 0.2247.

Of course, adding a latency period before the infectious period will reduce the
growth rate r of the epidemic.

Solution to Exercise 1.4.2. vc = 1−1/R0 = 0.5. When v = 0.33, zv solves the equa-
tion 1−zv = e−(1−v)R0zv , and the numerical solution equals zv = 0.4544. The over-all
fraction infected is hence (1− v)zv = 0.3029. As for the probability of a major out-
break we have that for the Markovian SIR P(major outbreak) = 1− 1/Rv = 0.25,
since Rv = (1− v)R0 = 0.67 ·2 = 1.33.

Solution to Exercise 1.4.3. The new rate at which an infectious individual makes
infectious contacts when v = 33% are vaccinated is λ ′ = λ pv+ λ (1− v) where
p = 0.2 (this is true irrespective of whether the infector was vaccinated or not).
Since the average infectious period equals E(I) = 1 we have Rv = λ ′E(I) = 1.467
(instead of R0 = 2 when no one is vaccinated).

Solution to Exercise 2.1.2. R0 = 1.5: 0.583, R0 = 3: 0.940, R0 = 15: 1.000 (of
course not exactly, but to this precision).

Solution to Exercise 3.1.1.

p(3)3 = p3 +

(
3
2

)
p2(1− p)∗ (1− (1− p)2)

+

(
3
1

)
p(1− p)2 ∗ p2 +

(
3
1

)
p(1− p)2 ∗

(
2
1

)
p(1− p)∗ p.
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Solution to Exercise 3.3.3 The limiting mean equals Nz where z solves 1−z= e−R0z

so with R0 = λι = 1.5 we get z = 0.583 and the limiting mean equals 583 for both

scenarios. The limiting variance of ZN equals N z(1−z)(1+r2(1−z)R2
0)

(1−(1−z)R0)2 , where r is the
coefficient of variation of the infectious period. For the Reed–Frost case with non-
random infectious period we have r = 0 implying that the limiting variance equals
1737, so the standard deviation equals 41.7, so one can expect that the final size will
be somewhere in the interval 583±80 with about 95% probability. The Markovian
SIR has exponential infectious period which has r = 1 giving a variance of 3367
and standard deviation 58.0. So, the fact that the infectious period is exponential as
compared to fixed makes the standard deviation of the final size increase by close to
50%.

Solution to Exercise 3.4.1. The numerical values are: the final size equals z= 0.583
and R0(1− z) = 0.626 < 1.

Solution to Exercise 3.4.2. Computing the two leading terms is equivalent to com-
puting r and r∗. For the Markovian SIR we have r = 0.5 and r∗ = −0.3742, for
the continuous time Reed–Frost we get r = 0.8742 and r∗ = −0.8741, and for the
Markovian SEIR we have r = 0.2247 and r∗ =−0.2089.

Solution to Exercise 4.1.3. Denoting by U(t) the vector of the Gaussian fluctuations

around
(

s(t)
i(t)

)
, deduce from Theorem 2.3.2 that this vector solves the linear SDE

U(t) =
∫ t

0
A(r)U(r)dr+

∫ t

0
C(r)dBr,

where B(t) is a standard five-dimensional Brownian motion and

A(t) = µ

(
−1− R0

ε
i(t) −R0

ε
s(t)

R0
ε

i(t) ε−1(R0s(t)−1)

)
,

C(t) = µ

√µ −
√

µR0
ε

s(t)i(t) −
√

µs(t) 0

0
√

µR0
ε

s(t)i(t) 0 −
√

µ

ε
i(t)

 .

Show that, as t→ ∞,

A(t)→ µ

(
−R0 −1/ε

R0−1 0

)
, C(t)C∗(t)→ µ

R0

(
2R0 −(R0−1)

−(R0−1) 2(R0−1)

)
.

Show that the eigenvalues of A = limt→∞ A(t) are complex, as soon as ε < 4/R0,
and that the real parts of those eigenvalues are negative. Conclude from a combina-
tion of Exercise 2.3.8 and Lemma 2.3.7 that the covariance matrix of the stationary
distribution of U(t) reads
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R0

+ 1
εR2

0
− 1

R0

− 1
R0

1
R0
− 1

R2
0
+ ε

)
.

Conclude by taking into account that we expect to have ε << R−1
0 .

Solution to Exercise 4.1.4. The relative length of the infectious period ε affects
the critical community size Nc much more than R0 does, since it is squared in the
approximation of Nc. As an illustration, if the infectious period is doubled (with
half infectivity per unit of time thus keeping R0 fixed) Nc will decrease by a factor
4, whereas if the basic reproduction number is doubled (keeping everything else
fixed) only decreases Nc by a factor close to 2.

Solution to Exercise 4.1.5. There are two effects of this vaccination strategy. The
first is that vaccinated individuals can be ignored, so the relevant population (of
unvaccinated people) is now N(unvacc) = N(1− v). Secondly, since infected individ-
uals have contact with both types of individuals, the rate of having contact with the
population of interest is reduced to λ (1−v) implying that the reproduction number
is changed to Rv = R0(1− v). The critical population size of unvaccinated people
N(unvacc)

c is then simply obtained in the same way, but for these new parameters, so

N(unvacc)
c =

9
ε2(1− 1

Rv
)2Rv

=
9

ε2(1− 1
(1−v)R0

)2(1− v)R0
.

However, a more interesting quantity is the critical community size counting all
individuals, hence also vaccinated. Since N = N(unvacc)(/1−v), the critical commu-
nity size for a population in which a fraction v of the new-born are continuously
being vaccinated is given by

N(v)
c =

9
(1− v)2ε2(1− 1

(1−v)R0
)2R0

.

By numerical studies it is easily shown that the critical community size grows very
big with v, also agreeing with empirical evidence since e.g. measles is no longer en-
demic in England (or anywhere else in the world having high vaccination coverage).
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