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Abstract. We introduce an epidemic model with varying infectivity and general exposed and3
infectious periods, where the infectivity of each individual is a random function of the elapsed time4
since infection, those function being i.i.d. for the various individuals in the population. This approach5
models infection-age dependent infectivity, and extends the classical SIR and SEIR models. We6
focus on the infectivity process (total force of infection at each time), and prove a functional law of7
large number (FLLN). In the deterministic limit of this FLLN, the evolution of the mean infectivity8
and of the proportion of susceptible individuals are determined by a two-dimensional deterministic9
integral equation. From its solutions, we then obtain expressions for the evolution of the proportions10
of exposed, infectious and recovered individuals. For the early phase, we study the stochastic model11
directly by using an approximate (non–Markovian) branching process, and show that the epidemic12
grows at an exponential rate on the event of non-extinction, which matches the rate of growth derived13
from the deterministic linearized equations. We also use these equations to derive the expression for14
the basic reproduction number R0 during the early stage of an epidemic, in terms of the average15
individual infectivity function and the exponential rate of growth of the epidemic, and apply our16
results to the Covid–19 epidemic.17
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1. Introduction. Most of the literature on epidemic models is based upon ODE21

models which assume that the length of time during which a given individual is22

infectious follows an exponential distribution. More precisely, those deterministic23

models are law of large numbers limits, as the size of the population tends to infinity,24

of stochastic models where all transitions from one compartment to the next have25

exponential distributions, see [6] for a recent account. However, it is largely recognized26

that for most diseases, the durations of the exposed and infectious periods are far27

from following an exponential distribution. In the case of influenza, a deterministic28

duration would probably be a better approximation. Recently in [21], the last two29

authors of the present paper have obtained the functional law of large numbers (FLLN)30

limits for SIS, SIR, SEIR and SIRS models where in the stochastic model the duration31

of the stay in the I compartment (resp. both in the E and the I, resp. both in the32

I and the R compartments) follow a very arbitrary distribution. Of course, in this33

case the stochastic model is not a Markov model, which makes some of the proofs34

more delicate. Indeed, the fluctuating part of a Markov process is a martingale, and35

many tools exist to study tightness and limits of martingales, which are missing in the36

non–Markovian setting. Nevertheless, we were able in [21] to use ad hoc techniques in37

order to circumvent that difficulty, and we proved not only FLLNs, but also functional38

central limit theorems (FCLTs). While the classical “Markovian” deterministic models39

are ODEs, our more general and more realistic “non–Markovian” deterministic models40

are Volterra type integral equations of the same dimension as the classical ODE models,41

i.e., equations with memory. Recently in [11], the authors used the approach in [21] to42
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describe the Covid-19 epidemic in France. The flexibility of the choice for the law of43

the infectious period was very helpful in order to write a realistic model with very few44

compartments, and our model follows better the data than Markov models.45

The aim of the present paper is to go a step further in the direction of realistic46

models of epidemics, and to consider the case where the infectivity of infectious47

individuals depends upon their time since infection. It has been established in [14] that48

in the case of the Covid-19 disease, the infectivity of infectious individuals decreases49

after symptom onset. In fact it is believed that in most infectious diseases, the50

infectivity of infectious individuals depends upon the time since infection. This was51

already argued almost a century ago by Kermack and McKendrick, two of the founders52

of epidemic modeling in [17]. In that paper, the authors assume both an infection53

age infectivity, and an infection age recovery rate. The latter can be thought of as54

the hazard function of the duration of the infectious period, which then has a general55

absolutely continuous distribution. Like in the present paper, their model is a Volterra56

integral equation. The same deterministic model has also been described as an “age of57

infection epidemic model” in [4] and in the recent book [5, Chapter 4.5]. See also two58

recent papers in the study of Covid-19 pandemic [13, 12], which use a transport PDE59

model (it is worth noting that PDEs have been commonly used to capture the effect60

of age of infection in the epidemic literature, see, e.g., [15, 25, 16, 20]). The novelty of61

the present paper is that we prove that our integral equation deterministic model is62

the law of large numbers limit of a well specified individual based stochastic model.63

The most realistic assumption is probably that this infectivity first increases64

continuously from 0, and then decreases back to 0. We shall however allow jumps in65

the random infectivity function, in order in particular to include the classical case of a66

constant infectivity during the infectious period. We also want to allow a very arbitrary67

law for the infectious (or exposed/infectious) period(s), as was done in [21]. In this68

work again, the FLLN limiting deterministic model is a Volterra type integral equation,69

which is of the same dimension as the corresponding classical ODE model, see Theorem70

2.7. We treat only the case of SIR and SEIR models (see also Remark 2.10 on the71

SIS and SIRS models), but we intend to extend in later publications our approach72

to other types of models, including models with age classes and spatial distribution,73

see already [22] for multi–patch models with general exposed and infectious durations.74

We have also established in a separate publication the FCLT associated to the FLLN75

established in the present paper, see [23].76

Our approach in this paper is to assume that in the original stochastic finite77

population model, the infectivity of each individual is a random function of the time78

elapsed since his/her infection, those functions associated to various individuals being79

independent and identically distributed (i.i.d.). The total force of infection at each80

time is the aggregate infectivity of all the individuals that are currently infectious.81

We assume that the infectivity random functions are piecewise continuous with a82

finite number of discontinuities, which includes all the commonly seen examples, in83

particular, constant infectivity over a given time interval as a special case. They are84

also allowed to start with a value zero for a period of time to generalize the SEIR85

model. These random functions then determine the durations of the exposed and86

infectious periods, and therefore, their corresponding probability distributions, which87

can be very general.88

Under the i.i.d. assumptions of these infectivity random functions of the various89

individuals, we prove a FLLN for the infectivity process, together with the counting90

processes for the susceptible, exposed, infectious and recovered individuals. The91

mean infectivity and the proportion of susceptible individuals in the limit are uniquely92

This manuscript is for review purposes only.



EPIDEMIC MODELS WITH VARYING INFECTIVITY 3

determined by a two-dimensional Volterra integral equation. Given these two functions,93

the proportions of exposed, infectious and recovered individuals in the limit are94

expressed in terms of the two above quantities. They generalize the integral equations95

in the standard SIR/SEIR models with general exposed and infectious periods in [21].96

Our proofs are based upon Poisson random measures associated with the infectivity97

process, which help us to establish tightness and convergence. This paper further98

develops the techniques in [21], since for establishing the mean infectivity equation, we99

cannot integrate by parts as was done in [21]. See below Lemmas 4.4 and 4.5, which100

give a key argument for the proof of Lemma 4.6.101

Our limiting integral equations can be easily solved numerically. For the standard102

SIR/SEIR model with general exposed and infectious periods, the integral equations103

are implemented to estimate the state of the Covid-19 pandemic in France in [11]. In104

another recent work, Fodor et al. [10] argue that integral equations (in the case of105

deterministic infectious periods) should be used instead of ODEs since the latter may106

significantly underestimate the initial basic reproduction number R0. We claim that107

our model may be used to better predict the trajectory of the epidemic, especially at108

the beginning of the epidemic and when certain control measures like lockdown and109

reopening are implemented.110

We also study the early phase of the epidemic, during which the proportion of111

susceptible individuals remains close to 1, which allows to linearize the system of112

equations. However, typically the epidemic starts with a very small number of infected113

individuals, so that we need to go back to the stochastic model if we want to describe114

that early phase. Thanks to a comparison with (non–Markov) branching processes,115

we are able to show that, conditioned upon non-extinction, the epidemic grows at an116

exponential rate ρ, reaching a given proportion of infected individuals in the population117

after a length of time of the order of ρ−1 log(N), if N is the total population size.118

After that time, we can follow the linearized deterministic model, whose rate of growth119

is the same ρ.120

The rate ρ is easily estimated from the data (if d denote the “doubling time”, i.e.,121

the number of days necessary for the number of cases to double, ρ = d−1 log(2)). It is122

then interesting to express the basic reproduction number R0 in terms of ρ and of the123

average infectivity function, a formula which we deduce from the linearized Volterra124

equation, as was already done by [26], see their formula (2.7). We compute explicitly125

the value of R0 for different values of two unknown parameters for the case of the126

early phase of the Covid–19 epidemic in France, assuming a decrease of the infectivity127

compatible with the results in [14]. We see that the decrease of the infectivity with128

infection–age induces a decrease of R0.129

The paper is organized as follows. In Section 2.1, we formulate our stochastic130

model, and make precise all the assumptions. In Section 2.2, we state the FLLN,131

Theorem 2.7. Section 2.3 is devoted to the early phase of the epidemic: we state132

Theorem 2.11 which describes the behavior of the stochastic model, and Theorem133

2.13, which describes the behavior of the deterministic linearized model. In Section134

2.4, we express R0 in terms of the exponential growth rate and the mean infectivity135

function, and in Section 2.5 we apply our techniques to the French Covid–19 epidemic136

during 2020. Section 3 is devoted to the proofs of Theorem 2.11 and Theorem 2.13,137

and Section 4 to the proof of Theorem 2.7.138

2. Model and Results.139

2.1. Model description. All random variables and processes are defined in140

a common complete probability space (Ω,F ,P). We consider a generalized SEIR141
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epidemic model where each infectious individual has an infectivity that is randomly142

varying with the time elapsed since infection. As usual, the population consists of four143

groups of individuals, susceptible, exposed, infectious and recovered. Let N be the144

population size, and SN (t), EN (t), IN (t), RN (t) denote the sizes of the four groups,145

respectively. We have the balance equation N = SN (t) + EN (t) + IN (t) + RN (t)146

for t ≥ 0. Assume that RN (0) = 0, SN (0) > 0 and EN (0) + IN (0) > 0 such that147

SN (0) + EN (0) + IN (0) = N . Let AN (t) be the cumulative number of individuals148

that become infected in (0, t] for t ≥ 0 and denote the associated event times by τNi ,149

i = 1, . . . , AN (t).150

Note that an infected individual is either exposed or infectious. More precisely,151

he/she is first exposed, then infectious. Let us first consider those individuals who are152

infected after time 0 (i.e. they are in the S compartment at time 0). The i–th infected153

individual is infected at time τNi . He/she is first exposed during the time interval154

[τNi , τ
N
i + ζi). Then he/she is infectious during the time interval (τNi + ζi, τ

N
i + ζi+ηi),155

and finally removed on the time interval [τNi + ζi + ηi,+∞). To this individual is156

attached an infectivity process {λi(t) : t ≥ 0}, which is a random right–continuous157

function such that158

λi(t)


= 0, if 0 ≤ t < ζi,

> 0, if ζi < t < ζi + ηi,

= 0, if t ≥ ζi + ηi.

(2.1)159

160

We shall formulate some assumptions on the functions λi below. Let us just say for161

now that the collection of the functions {λi(·)}i≥1 are i.i.d. Since162

(2.2) ζi = inf{t > 0, λi(t) > 0}, and ζi + ηi = inf{t > 0, λi(r) = 0, ∀r ≥ t},163

the collection of random vectors (ζi, ηi)i≥1 is also i.i.d.164

Each initially exposed individual is associated with an infectivity process λ0
j(t),165

j = 1, . . . , EN (0), with a càdlàg path; the λ0
j ’s are assumed to be i.i.d. and such that166

(2.3)
ζ0
j = inf{t > 0, λ0

j (t) > 0} > 0 a.s. and ζ0
j + η0

j = inf{t > 0, λ0
j (r) = 0, ∀r ≥ t}.167

Each initially infectious individual is associated with an infectivity process λ0,I
k (t),168

k = 1, . . . , IN (0), with a càdlàg path; the λ0,I
k ’s are also assumed to be i.i.d. and such169

that170

(2.4) inf{t > 0, λ0,I
k (t) > 0} = 0 a.s. and η0,I

k = inf{t > 0, λ0,I
k (r) = 0, ∀r ≥ t}.171

We will write (ζ, η) (resp. (ζ0, η0), resp. η0,I) for a vector which has the same law as172

(ζi, ηi) (resp. (ζ0
j , η

0
j ), resp. η0,I

k ). Let H(du, dv) denote the law of (ζ, η), H0(du, dv)173

that of (ζ0, η0) and F0,I the c.d.f. of η0,I . Moreover, we define174

Φ(t) :=

∫ t

0

∫ t−u

0

H(du, dv) = P(ζ + η ≤ t),175

Ψ(t) :=

∫ t

0

∫ ∞
t−u

H(du, dv) = P(ζ ≤ t < ζ + η),176

Φ0(t) :=

∫ t

0

∫ t−u

0

H0(du, dv) = P(ζ0 + η0 ≤ t),177

Ψ0(t) :=

∫ t

0

∫ ∞
t−u

H0(du, dv) = P(ζ0 ≤ t < ζ0 + η0),178
179

This manuscript is for review purposes only.



EPIDEMIC MODELS WITH VARYING INFECTIVITY 5

and F0,I(t) := P(η0,I ≤ t). We shall also write180

H(du, dv) = G(du)F (dv|u), H0(du, dv) = G0(du)F0(dv|u),181

i.e., G is the c.d.f. of ζ and F (·|u) is the conditional law of η, given that ζ = u, G0182

is the c.d.f. of ζ0 and F0(·|u) is the conditional law of η0, given that ζ0 = u. In the183

case of independent exposed and infectious periods, it is reasonable that the infectious184

periods of the initially exposed individuals have the same distribution as the newly185

exposed ones, that is, F0 = F . Note that Ψ(t) = G(t)−Φ(t) and Ψ0(t) = G0(t)−Φ0(t).186

Also, let Gc0 = 1−G0, Gc = 1−G, F c0,I = 1− F0,I , and F c = 1− F .187

We remark that our framework allows very general random infectivity functions188

λ(t), which can be piecewise continuous (see Assumption 2.1) and can also generate189

dependent and independent ζ and η variables for each individual. We give an example190

of independent ζ and η variables. Let ζ, η and h be random objects so that ζ is191

independent of the pair (η, h), where ζ and η are R+ valued and h is a random element192

of C([0, 1];R+) satisfying h(0) = h(1) = 0 and h(t) > 0 for 0 < t < 1, a.s. (η and h can193

be dependent). We extend h as an element of C(R;R+) by specifying that h(t) = 0 if194

t /∈ [0, 1]. Define λ(t) = h(ζη−1(ζ−1t− 1)) for any t ≥ 0. Then λ(t) = 0 on [0, ζ], and195

again on [ζ + η,+∞), where λ(t) > 0 if ζ < t < ζ + η. By construction, ζ and η are196

independent.197

The total force of infection which is exerted on the susceptibles at time t can be198

written as199

IN (t) =

EN (0)∑
j=1

λ0
j (t) +

IN (0)∑
k=1

λ0,I
k (t) +

AN (t)∑
i=1

λi(t− τNi ) , t ≥ 0.(2.5)200

201

Thus, the instantaneous infectivity rate function at time t is202

ΥN (t) =
SN (t)

N
IN (t), t ≥ 0.(2.6)203

204

The infection process AN (t) can be expressed by205

AN (t) =

∫ t

0

∫ ∞
0

1u≤ΥN (s−)Q(ds, du), t ≥ 0,(2.7)206
207

where Q is a standard Poisson random measure (PRM) on R2
+, and we use 1{·} for208

the indicator function. One may observe that besides the PRM Q, the randomness209

in the epidemic dynamics comes only from the infectivity processes {λ0
j (t)}, {λ

0,I
k (t)}210

and {λi(t)} (the infectious periods {η0
j }, (η0,I

k ) and {ηi} are induced from them).211

The epidemic dynamics of the model can be described by212

SN (t) = SN (0)−AN (t) ,(2.8)213

EN (t) =

EN (0)∑
j=1

1ζ0j>t +

AN (t)∑
i=1

1τNi +ζi>t ,(2.9)214

IN (t) =

EN (0)∑
j=1

1ζ0j≤t<ζ0j+η0j
+

IN (0)∑
k=1

1η0,Ik >t +

AN (t)∑
i=1

1τNi +ζi≤t<τNi +ζi+ηi ,(2.10)215

RN (t) =

EN (0)∑
j=1

1ζ0j+η0j≤t +

IN (0)∑
k=1

1η0,Ik ≤t
+

AN (t)∑
i=1

1τNi +ζi+ηi≤t .(2.11)216

217
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In the case where ζ0
j = 0 and ζi = 0, the model is a generalized SIR model, and218

EN (t) ≡ 0.219

We now make the following assumptions on the infectivity functions and the initial220

quantities. We first state our assumptions on λ0, λ0,I and λ.221

Assumption 2.1. The random functions λ(t) (resp. λ0(t) and resp. λ0,I(t)), of222

which λ1(t), λ2(t), . . . (resp. λ0
1(t), λ0

2(t), . . . and resp. λ0,I
1 (t), λ0,I

2 (t), . . .) are i.i.d.223

copies, satisfy the following assumptions. There exists a constant λ∗ <∞ such that224

supt∈[0,T ] max{λ0(t), λ0,I(t), λ(t)} ≤ λ∗ almost surely, and in addition there exist a225

given number k ≥ 1, a random sequence 0 = ξ0 ≤ ξ1 ≤ · · · ≤ ξk = η and random226

functions λj ∈ C(R+;R+), 1 ≤ j ≤ k such that227

(2.12) λ(t) =

k∑
j=1

λj(t)1[ξj−1,ξj)(t) .228

We define229

ϕT (r) := sup
1≤j≤k

sup
0≤s,t≤T,|t−s|≤r

|λj(t)− λj(s)| .230

It is clear that for each T > 0, ϕT is continuous and ϕT (0) = 0.231

Let λ̄0(t) = E[λ0(t)], λ̄0,I(t) = E[λ0,I(t)] and λ̄(t) = E[λ(t)] for t ≥ 0.232

It is clear that λ̄0(t), λ̄0,I(t) and λ̄(t) are all càdàg, and they are also uniformly233

bounded by λ∗.234

Remark 2.2. We think that λ(t) being continuous is a good model of reality.235

However, the early phase of the function λ(t) is not well known, since patients are236

tested only after symptom onset, and usually (this is the case in particular for the Covid–237

19) they may have been infectious (i.e., with λ(t) > 0) prior to that. Consequently we238

should not exclude the possibility that λ(t) jumps to its maximum at time ζ, and the239

decreases continuously to 0.240

Moreover, in order to include the “classical” models where λ(t) is first 0 during241

the exposed period, and then equal to a positive constant during the infectious period,242

as well as possible models of infectivity that would be piecewise constant, we allow243

λ(t) to have a given number of jumps.244

For one of our results, we shall need the following assumption.245

Assumption 2.3. Assume that246

E

[(∫ ∞
0

λ(t)dt

)2
]
<∞, E

[(∫ ∞
0

λ0(t)dt

)2
]
<∞.247

248

Remark 2.4. The assumption on the second moment of
∫∞

0
λ(t)dt will be necessary249

in order to apply Theorem 3.2 from [9] to the branching process approximation of the250

stochastic model for the early phase of the epidemic. Since we assume that λ(t) ≤ λ∗,251

for this second moment condition to be satisfied, it is sufficient that the duration of252

the infectious period η satisfies E[η2] <∞, which certainly is not a serious restriction253

in practice. In our application to the Covid–19 in Section 2.5, we choose a law with254

compact support for η.255

Let X̄N := N−1XN for any process XN . Let D = D(R+;R) denote the space of256

R–valued càdlàg functions defined on R+. Throughout the paper, convergence in D257

means convergence in the Skorohod J1 topology, see Chapter 3 of [3]. Also, Dk stands258

for the k-fold product equipped with the product topology.259
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Assumption 2.5. Assume that there exist deterministic constants Ē(0), Ī(0) ∈260

[0, 1] such that 0 < Ē(0) + Ī(0) < 1, and (ĒN (0), ĪN (0)) → (Ē(0), Ī(0)) ∈ R2
+ in261

probability as N →∞.262

Finally we make the following independence assumption.263

Assumption 2.6. Assume that the triple (λi(·), i ≥ 1; λ0
j (·), j ≥ 1; λ0,I

k (·), k ≥ 1),264

(EN (0), IN (0)) and Q (the PRM upon which the construction of the process AN (·) is265

based) are independent.266

2.2. FLLN. We now state the main result of this paper.267

Theorem 2.7. Under Assumptions 2.1, 2.5 and 2.6,268

(2.13)
(
S̄N , ĪN , ĒN , ĪN , R̄N

)
→
(
S̄, Ī, Ē, Ī, R̄

)
in D5 as N →∞,269

in probability, locally uniformly in t. The limits S̄ and Ī(t) are the unique solution of270

the following system of Volterra integral equations271

S̄(t) = 1− Ē(0)− Ī(0)−
∫ t

0

S̄(s)Ī(s)ds ,(2.14)272

Ī(t) = Ē(0)λ̄0(t) + Ī(0)λ̄0,I(t) +

∫ t

0

λ̄(t− s)S̄(s)Ī(s)ds ,(2.15)273
274

and the limit (Ē, Ī, R̄) is given by the following integral equations:275

Ē(t) = Ē(0)Gc0(t) +

∫ t

0

Gc(t− s)S̄(s)Ī(s)ds ,(2.16)276

Ī(t) = Ī(0)F c0,I(t) + Ē(0)Ψ0(t) +

∫ t

0

Ψ(t− s)S̄(s)Ī(s)ds ,(2.17)277

R̄(t) = Ī(0)F0,I(t) + Ē(0)Φ0(t) +

∫ t

0

Φ(t− s)S̄(s)Ī(s)ds .(2.18)278
279

The limit S̄ is in C, and the limits Ī, Ē, Ī, R̄ are in D. If λ̄0 and λ̄0,I are continuous,280

then Ī is in C, and if G0 and F0,I are continuous, then Ē, Ī, R̄ are in C.281

Remark 2.8. If we suppose only that Assumptions 2.5 and 2.6 are valid, and282

supt∈[0,T ] max{λ0(t),283

λ0,I(t), λ(t)} ≤ λ∗ almost surely, then Theorem 2.7 remains valid, but with the284

convergence in probability in D5 being replaced by the convergence in probability in285

Lploc(R+;R5), for any p ≥ 1.286

The SEIR/SIR model. Suppose now we do not want to follow the disease287

progression in the detail adopted so far. Rather, we merge the compartments E288

(exposed) and I (infectious) into a single compartment I, where now I stands for289

infected, whether exposed or infectious. Doing this, we do not modify at all our290

model. Each newly infected individual belongs to the I compartment from the time291

of infection τNi until the end of the infectious period τNi + ζi + ηi, where again292

ζi + ηi = inf{t > 0, λi(r) = 0, ∀r ≥ t}. Of course, between time τNi and time τNi + ζi,293

λi(t) = 0 (recall that ζi = inf{t, λi(t) > 0}), so that he/she is not infectious, but294

exposed. Likewise, each initially infected individual belongs to the I compartment295

from time 0 up to time ζ0
j + η0

j , where ζ0
j + η0

j = inf{t ≥ 0 : λ0
j (r) = 0,∀r ≥ t}. Note296
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Fig. 1. Numerical illustration of the FLLN obtained in Theorem 2.7 for the SEIR/SIR model (see
below). Each graphic shows the mean of 1,000 independent simulations of the stochastic SEIR/SIR
model (continuous lines) and the corresponding deterministic solution to (2.14)-(2.18) (black dashed

lines), each started with I
N

(0) = I(0) = 0.05. For each curve, the dark (resp. light) shaded areas
around the curves represent the intervals containing 50% (resp. 95%) of the simulations. The two
compartments E and I have been merged so as not to burden the graphic with another pair of curves
(see below). The population size N = 103 on the left, N = 104 on the right. The model and the
distribution of (ζ, η, λ) are as described in Subsection 2.5 below, with pR = 0.8, α = 0.7.

that ζ0
j = 0 if λ0

j (0) > 0 (if the individual is already infectious at time 0). As a result,297

(2.9) and (2.10) are replaced by298

IN (t) =

IN (0)∑
k=1

1t<ζ0k+η0k
+

AN (t)∑
i=1

1t<τNi +ζi+ηi ,(2.19)299

300

and EN (t) = 0 in all the other equations. The force of infection is then301

IN (t) =

IN (0)∑
k=1

λ0
k(t) +

AN (t)∑
i=1

λi(t− τNi ).(2.20)302

303

We call this model the SEIR/SIR model, since it is an SIR model, but with I meaning304

“infected”, and the state E is implicit, i.e. we do not exclude that individuals, when305

they become infected, are first exposed, then later infectious. Define306

F (t) = P(ζ + η ≤ t), where ζ + η = inf{t > 0, λ(r) = 0, ∀r ≥ t},307

F0(t) = P(ζ0 + η0 ≤ t), where ζ0 + η0 = inf{t > 0, λ0(r) = 0, ∀r ≥ t} .308309

This manuscript is for review purposes only.



EPIDEMIC MODELS WITH VARYING INFECTIVITY 9

With those notations, the deterministic LLN SEIR/SIR model reads as follows.310

S̄(t) = 1− Ī(0)−
∫ t

0

S̄(s)Ī(s)ds ,(2.21)311

Ī(t) = Ī(0)λ̄0,I(t) +

∫ t

0

λ̄(t− s)S̄(s)Ī(s)ds ,(2.22)312

Ī(t) = Ī(0)F c0 (t) +

∫ t

0

F c(t− s)S̄(s)Ī(s)ds ,(2.23)313

R̄(t) = Ī(0)F0(t) +

∫ t

0

F (t− s)S̄(s)Ī(s)ds .(2.24)314
315

Now in the particular case where λ0(·) and λ(·) are such that ζ = ζ0 = 0 a.s. (i.e.,316

an infected individual is immediately infectious), there is no exposed period, then the317

above model is the generalized SIR model with varying infectivity.318

Figure 1 illustrates the FLLN of Theorem 2.7 for the SEIR/SIR model, for two319

values of the population size (103 and 104). Each figure displays the mean of 1,000320

independent simulations, the trajectory of the deterministic equations (2.14)-(2.18),321

and the intervals containing 50% and 95% of the trajectories. The details of the model322

and the distribution of (ζ, η, λ) used in the simulations are described in Subsection 2.5323

below. In each case, the mean of the simulations is almost superposed with the324

solution to the deterministic equations, and for N = 104, the envelopes are very325

concentrated around the means. This is not surprising in view of the FCLT proved in326

[23]. Indeed, this theorem implies that the trajectory of the (renormalised) stochastic327

process (S
N

(t), I
N

(t), I
N

(t), R
N

(t), t ≥ 0) is (with high probability) at a distance of328

the order of N−1/2 from that of the deterministic limit. The simulations obtained329

in Figure 1 confirm this, and the width of the 50% and 95% intervals are exactly330

proportional to N−1/2.331

Remark 2.9. The above result generalizes both our SIR and our SEIR FLLN332

results in [21].333

The SIR model in [21] is the particular case of the present result, where λ(t) =334

λ1t<η, η being the random duration of the infectious period. In this case, λ̄(t) = λF c(t),335

if F is the c.d.f. of η, and F c = 1− F . Note that in this case Ī(t) = λĪ(t). Therefore,336

if we divide the Ī equation by λ, we find equation (2.17), which is also equation (2.4)337

in [21]. If we assume that the law of η is exponential, then we are in the case of the338

classical SIR model.339

The SEIR model in [21] corresponds to the situation where λ(t) = λ1ζ≤t<ζ+η,340

where ζ is the duration of the exposed period (the time when the individual is341

infected, but not yet infectious), and η is as above, while λ0(t) = λ1ζ0≤t<ζ0+η0 . Then342

λ̄(t) = λ[P(ζ ≤ t)− P(ζ + η ≤ t)] = λΨ(t). If we divide the Ī equation by λ, we find343

equation (2.17), which is also (3.15) in [21]. If moreover ζ and η are independent344

exponential random variables, then we are reduced to the classical SEIR model.345

Remark 2.10. For the generalized SIS model, since S̄(t) = 1− Ī(t), it is clear that346

the epidemic dynamics in the FLLN is determined by the two–dimensional functions347
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10 R. FORIEN, G. PANG, AND É PARDOUX(
Ī, Ī
)

via the following integral equations:348

Ī(t) = Ī(0)λ̄0,I(t) +

∫ t

0

λ̄(t− s)(1− Ī(s))Ī(s)ds ,349

Ī(t) = Ī(0)F c0,I(t) +

∫ t

0

F c(t− s)(1− Ī(s))Ī(s)ds .350
351

Recall that as shown in Theorem 2.3 of [21], in the SIS with general infectious periods,352

Ī(s) = λĪ(s), and the epidemic dynamics is determined by the one–dimensional integral353

equation for Ī.354

For the generalized SIRS model, the variables (ζi, ηi) in our setup represent the355

infectious and recovered/immune periods of newly infected individuals, and similarly356

the variables (ζ0
j , η

0
j ) represent the infectious and immune periods of initially infectious357

individuals. We assume that there is no initially immune individuals. Let IN , RN be358

the processes counting infectious and recovered/immune individuals (corresponding to359

the notation EN and IN in the SEIR model). Of course, instead of (2.1), the infectivity360

function λ(t) should be positive only in the infectious periods [0, ζi). Similarly, λ0
j (t)361

should be positive only over [0, ζ0
j ). The definitions of the variables (ζi, ηi), (ζ0

j , η
0
j )362

in (2.2) and (2.3) also need to be modified accordingly in the natural way. The363

distribution functions G0, F0,R are for initially infectious and immune periods, and364

G,F for newly infectious and immune periods, similarly for the notation Ψ,Ψ0,Φ,Φ0.365

Then the epidemic dynamics of the generalized SIRS model in the FLLN is determined366

by the three–dimensional functions
(
Ī, Ī, R̄

)
via the following integral equations:367

Ī(t) = Ī(0)λ̄0(t) +

∫ t

0

λ̄(t− s)
(
1− Ī(s)− R̄(s)

)
Ī(s)ds ,368

Ī(t) = Ī(0)Gc0(t) +

∫ t

0

Gc(t− s)
(
1− Ī(s)− R̄(s)

)
Ī(s)ds ,369

R̄(t) = Ī(0)Ψ0(t) +

∫ t

0

Ψ(t− s)
(
1− Ī(s)− R̄(s)

)
Ī(s)ds .370

371

Also recall that as shown in Theorem 3.3 of [21], in the SIRS model with general infec-372

tious and recovered periods, Ī(s) = λĪ(s), and the epidemic dynamics is determined373

by the two–dimensional integral equation for
(
Ī , R̄

)
.374

2.3. The early phase of the epidemic. Theorem 2.7 shows that the deter-375

ministic system of equations (2.14)-(2.15) accurately describes the evolution of the376

stochastic process defined in Subsection 2.1 when the initial number of infectious377

individuals is of the order of N . But epidemics typically start with only a handful of378

infectious individuals, and it takes some time before the epidemic enters the regime of379

Theorem 2.7. Exactly how long this takes depends on the population size N and on380

the growth rate of the epidemic. To determine this growth rate, we study the behavior381

of the stochastic process when the initial number of infectious individuals is kept fixed382

as N →∞.383

In order to simplify the notations, we shall use the reduced model introduced384

in (2.19) and (2.20), where exposed and infectious individuals are merged in a single385

infected compartment I. We now suppose that IN (0) = I(0) is a fixed random variable386

taking values in {1, . . . , N0} for some N0 ≥ 1, and we take N ≥ N0 throughout this387

section.388
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Let389

R0 =

∫ ∞
0

λ(t)dt,(2.25)390
391

and let ρ ∈ R be the unique solution of392 ∫ ∞
0

λ(t)e−ρtdt = 1.(2.26)393
394

The quantity R0 is the well–known basic reproduction number, i.e., the average number395

of individuals infected by a typical infected individual in a large, fully susceptible396

population. It is also well known that, if R0 ≤ 1, the total number of infections397

remains small as N →∞, i.e., lim supt→∞AN (t) converges in probability as N →∞398

to a random variable Z taking values in N, almost surely, see Corollary 1.2.6 in [6].399

If R0 > 1, however, with positive probability, a major outbreak takes place, i.e., a400

positive fraction of the N individuals is infected at some point during the course of the401

epidemic. The time needed in order to observe this major outbreak has been studied402

for Markovian epidemic models in [1]. More precisely, it has been shown that, starting403

from a fixed number of individuals, on the event that there is a major outbreak, the404

first time at which the proportion of infected individuals is at least ε > 0 is405

1

ρ
log(N) +O(1),406

407

as N →∞, for any ε > 0 small enough, where ρ > 0 is given by (2.26) (it can easily408

be seen that ρ > 0 if and only if R0 > 1). The aim of this section is to extend this409

result to our non–Markovian setting.410

We thus let, for ε ∈ (0, 1),411

TNε := inf{t ≥ 0 : AN (t) ≥ εN}412413

and, for any α ∈ (0, 1),414

T Nα := inf{t ≥ 0 : AN (t) ≥ Nα}.415416

Here and in what follows, we shall use XN ⇒ X to denote the convergence in417

distribution of a sequence of random variables (XN , N ≥ 1) to a random variable X418

as N →∞, i.e., XN ⇒ X if and only if, for any continuous and bounded real-valued419

function Φ, E
[
Φ(XN )

]
→ E [Φ(X)] as N → ∞. We then have the following result,420

which we prove in Section 3.421

Theorem 2.11. Under Assumptions 2.1 and 2.3, for any ε > 0 such that ε <422

1− 1
R0

, as N →∞,423

TNε
log(N)

⇒ 1

ρ
X,424

425

where X = +∞ with probability q and X = 1 otherwise, for some q ∈ (0, 1). Moreover,426

for any α ∈ (0, 1),427

T Nα
log(N)

⇒ α

ρ
X.428

429
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12 R. FORIEN, G. PANG, AND É PARDOUX

Theorem 2.11 essentially says that, on an event of probability close to 1 − q,430

t 7→ AN (t) grows approximately like (a constant times) t 7→ eρt until it becomes of the431

order of N . This exponential growth comes from the fact that, as long as S
N

(t) ≈ 1, the432

infected individuals behave almost like a branching process (which in our case is non–433

Markovian, and is of the type studied in [8, 9]). Since AN (t) ≈ eρt, this approximation434

is good as long as t� 1
ρ log(N), at which time the proportion of susceptible individuals435

is no longer close to one, and the branching process approximation breaks down. We436

shall also see in the proof of Theorem 2.11 that q is equal to the extinction probability437

of this approximating branching process.438

Remark 2.12. The condition ε < 1 − 1
R0

comes from the fact that, as long as439

S(t) < 1
R0

, each infected individual infects on average more than one susceptible440

individual. Hence the proportion of susceptible individuals needs to become lower than441

this threshold for the epidemic to die out (on the event that there is a major outbreak).442

As a result, AN (t) has to exceed εN for some time t <∞ for any ε < 1− 1
R0

.443

The fact that the number of infected individuals grows exponentially at rate ρ as444

long as the proportion of susceptible individuals stays close to one can also be seen445

from the deterministic equations by taking S(t) = 1 in (2.22) (as well as (2.23) and446

(2.24)). This substitution leads to the following (linear) system (recall that in this447

section F is the distribution function of the r.v. ζ + η):448

I(t) = I(0)λ̄0(t) +

∫ t

0

λ̄(t− s)I(s)ds ,

I(t) = I(0)F c0 (t) +

∫ t

0

F c(t− s)I(s)ds ,

R(t) = R(0) + I(0)F0(t) +

∫ t

0

F (t− s)I(s)ds .

(2.27)449

We prove the following in Section 3.450

Theorem 2.13. Assume that Assumption 2.1 holds true. For ρ ∈ R, suppose that451

E
[
e−ρ(ζ+η)

]
<∞ and define452

i :=

∫ ∞
0

F c(s)ρe−ρsds, r := 1− i,(2.28)453
454

and455

λρ(t) :=

∫∞
0
λ(t+ s)e−ρsds∫∞

0
F c(s)e−ρsds

, F cρ (t) :=

∫∞
0
F c(t+ s)e−ρsds∫∞

0
F c(s)e−ρsds

.456

457

Suppose first that R0 > 1 and that ρ > 0 is the solution to (2.26). Then, if λ
0

= λρ458

and F0 = Fρ, the linear system (2.27) admits the following solution459

I(t) = ρ eρt, I(t) = i eρt, R(t) = r eρt t ≥ 0.(2.29)460461

If, however, R0 < 1 and ρ < 0 (still satisfying (2.26)), then the linear system (2.27)462

(with λ
0

= λρ and F0 = Fρ) admits the following solution463

I(t) = −ρeρt, I(t) = −ieρt, R(t) = R(0) + r(1− eρt), t ≥ 0.464465
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The deterministic system (2.27) can be thought of as an approximation of the466

expectation of the stochastic process (IN (t), IN (t), RN (t)) when S
N

(t) ≈ 1. Note that467

if we take the exponentially growing solution (2.29) and if we set468

A(t) := I(t) +R(t)− (I(0) +R(0))469470

(which corresponds to the number of newly infected individuals up to time t), then,471

since i + r = 1, A(t) = eρt − 1 and472

A

(
α

ρ
log(N)

)
= Nα − 1 ∼ Nα.(2.30)473

474

Hence Theorems 2.11 and 2.13 show that the stochastic model and the linear de-475

terministic system (2.27) have the same asymptotical behavior, on the event that476

there is a major outbreak, for times of the form α
ρ log(N), α ∈ (0, 1). This is further477

illustrated in Figure 2, which displays the mean of a subset 1,000 independent copies478

of t 7→ I(0) +AN (t) for which the epidemic didn’t go extinct at the beginning. We see479

on the figure that, after an initial stochastic phase, whose duration may vary between480

different realizations, the cumulative number of infected individuals indeed grows at481

the expected rate ρ. We also see that the slope of t 7→ I(0) +AN (t) starts to decline482

when AN (t) exceeds N/10 (hence when S̄N (t) becomes less than 0.9), which is to be483

expected from the deterministic model.484
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Fig. 2. Exponential growth of the cumulative number of infected individuals t 7→ I(0) +AN (t)
in the stochastic model. The figure shows the mean (blue line), 50% envelope (dark blue region)
and 95% envelope (light blue region) of the subset of 1,000 independent simulations for which the
epidemic did not go extinct at the beginning. Each simulation was started with I(0) = 5 infectious
individuals and a population size of N = 104. The dashed black line shows the expected exponential
growth during this early phase t 7→ I(0)eρt (the factor I(0) arises from the branching property). The
mean of the sample is slightly above the dashed line, owing to the bias resulting from the fact that
only trajectories leading to a major outbreak were kept.

In the case of Markovian (SIR) epidemic models, Theorem 2 of [1] states that485

the full duration of the epidemic (i.e., the time to extinction of the I population) TN ,486

when starting from a single infected individual, satisfies487

P (TN − a log(N)− c ≥ x)→ (1− q)P (W ≥ x) , N →∞,488489
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14 R. FORIEN, G. PANG, AND É PARDOUX

for some constants a > 0 and c ∈ R, where W is a linear combination of two490

independent Gumbel random variables. Moreover, a = 1
ρ + 1

ρ′ , where ρ is the same491

as in Theorem 2.11 and ρ′ is the rate of decay of the number of infected individuals492

during the final stage of the epidemic. In addition, Theorem 1.1 in [2] shows that the493

stochastic process can be coupled with a branching process so that the two follow494

the same trajectory up to the time min(TN0 , T Nα ), for α = 7/12, except on an event495

of asymptotical negligible probability. Moreover, Theorem 1.1 in [2] also says that,496

for times of the form T Nα + t, for 0 ≤ t ≤ 1−α
ρ log(N) + T , the trajectory of the497

stochastic process is, with high probability, at most at distance kN−γ of the trajectory498

of a solution of the deterministic (non-linear) equations (2.21)–(2.24), whose initial499

condition is of the form500

S(0) = 1− I(0)

N
, I(0) =

I(0)

N
,501

502

up to a time shift which stays of the order of 1 as N →∞, and which accounts for the503

stochastic fluctuations when the number of infected individuals is small. We expect504

that a similar result holds in our non-Markovian setting, but proving this would require505

a careful comparison of the stochastic model with the deterministic model started506

from an O(1/N) initial proportion of infected individuals over timescales of the order507

of log(N), and this would go beyond the scope of this paper.508

The second part of the statement (when R0 < 1) describes what takes place when509

the daily number of new infections is decreasing, either because a large fraction of510

the population has been infected (or vaccinated) or because effective containment511

measures have been put into place (e.g., a strict lockdown). In the former case, S(t) is512

not close to one, and λ should be replaced by S(t)λ in order to determine ρ and λρ513

(assuming that S(t) varies slowly at this point).514

Note that if we replace I(0), R(0), λ
0

and F0 by their values in Theorem 2.13,515

and if we set, for t < 0,516

I(t) = ρeρt, I(t) = ieρt, R(t) = reρt,517518

then we have519

I(t) =

∫ t

−∞
λ(t− s)I(s)ds, I(t) =

∫ t

−∞
F c(t− s)I(s)ds,520

R(t) =

∫ t

−∞
F (t− s)I(s)ds.521

522

Hence (2.27) can also be interpreted as the (expected) behavior of an epidemic which523

has started from an infinitesimal number of infected individuals very far back in the524

past. Incidentally, substituting I(t) = ρeρt in the first equation yields exactly (2.26).525

2.4. Estimating the basic reproduction number for an ongoing an epi-526

demic. The function λ (as well as F ) depends on many factors. Some of these factors527

are related to the evolution of the pathogen inside an infected individual’s organism,528

and how easily it can be transmitted to neighboring individuals, and some of these529

factors depend on the intensity of social contacts in the population, in particular on530

physical contacts between individuals when they meet (hand shaking, kiss, hug, or531

none of those). This function is affected by changes in social contacts and collective532

behaviors, including public policies aimed at mitigating the effects of the epidemic,533
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and the use of face masks. For example, during the Covid-19 pandemic, many coun-534

tries implemented strict lockdowns in order to curb the spread of the disease, which535

drastically reduced the rate of infectious contacts and significantly affected the growth536

rate of the number of newly infected individuals. In order to estimate the impact of537

such policies in terms of the dynamics of the epidemic, we thus need to be able to538

gather some information on the contact rate λ from the available data at some given539

time.540

Let us suppose that λ is only known up to a constant factor µ > 0, i.e.,541

λ(t) = µ g(t), t ≥ 0,542543

where µ is unknown but g is known (for example from medical data on viral shedding).544

We can then estimate µ (and R0) from the growth rate ρ, which can be measured545

easily at the beginning of the epidemic (ρ = log(2)/d, where d is the doubling time546

of the daily number of newly infected individuals), using the relation (2.26). The547

following is thus a corollary of Theorem 2.11.548

Corollary 2.14. Let ρ be the growth rate of the number of infected individuals.549

Then550

µ =

(∫ ∞
0

g(t)e−ρtds

)−1

,551
552

and the basic reproduction number R0 is given by553

R0 =

∫∞
0
g(t)dt∫∞

0
g(t)e−ρtdt

.(2.31)554

555

In the literature, (
∫∞

0
g(t)dt)−1g(t) is called the generation interval distribution556

(it is the distribution of the interval between the time at which an individual is infected557

and the time at which its “children” are infected). The relation (2.31) is thus (2.7)558

in [26]. Note that R0 is the mean multiplicative factor of the epidemic from one559

generation to the next, while ρ is a growth factor in continuous time.560

Note that, by the second part of Theorem 2.13, (2.31) remains valid on any interval561

during which S(t) ≈ S(t0) remains approximately constant (but not necessarily close562

to 1), even when ρ ≤ 0. In that case, one should add a factor S(t0) in front of I(s) on563

the right hand sides of (2.27), and we obtain564

µS(t0)

∫ ∞
0

ḡ(s)e−ρesds = 1.565
566

Hence if we define the effective reproduction number Re by Re := S(t0)
∫∞

0
λ(t)dt567

(i.e., the average number of secondary infections when S(t) = S(t0)), we have568

Re = S(t0)R0 =

∫∞
0
g(s)ds∫∞

0
g(s)e−ρesds

.569

570

Remark 2.15. Note that the exponent ρ is a quantity which is deduced from the
observation of the epidemic (it is closely related to the “doubling time” of the number
of cases). The above results give us µ and R0 in terms of ρ and the function ḡ(t). If
λ(t) is deterministic, so are g(t) and η and thus

R0 =

∫ ζ+η
ζ

g(s)ds∫ ζ+η
ζ

g(s)e−ρsds
.
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If, in addition, ḡ(t) ≡ g > 0 for ζ ≤ t < ζ + η, then this simplifies to the well–known
result

R0 =
ρη

e−ρζ(1− e−ρη)
.

Remark 2.16. Theorem 2.13 and its Corollary generalize Proposition 2 and Corol-571

lary 3 in [11], in the case λ(t) = λ1ζ≤t<ζ+η for some constant λ > 0, and the pair (ζ, η)572

is an arbitrary R2
+–valued random vector. In that case, our formula for R0 reduces to573

R0 =
ρE[η]

E[e−ρζ(1− e−ρη)]
.574

In the particular case where ζ and η are independent exponential random variables,575

with parameters ν and γ, the above formula becomes576

R0 =
(

1 +
ρ

ν

)(
1 +

ρ

γ

)
.577

From this we deduce the formula in the classical SIR case by choosing ν = +∞, i.e.,

R0 = 1 +
ρ

γ
.

2.5. Application to the Covid–19 epidemic. We now want to explain how578

the type of model described in this paper can be used to model the Covid–19 epidemic.579

As we have seen, the increase in realism with respect to the classical “Markovian”580

models (where the infectivity is constant and fixed across the population, and the581

Exposed and Infectious periods follow an exponential distribution) is paid by replacing582

a system of ODEs by a system of Volterra integral equations. However, we have a583

small benefit in that the flexibility induced by the fact that the law of λ is arbitrary584

allows us to reduce the number of compartments in the model, so that we can replace585

a system of ODEs by a system of Volterra type equations of smaller dimension.586

To be more specific, let us describe the SEIRU model of [19]. An individual587

who is infected is first “Exposed” E, then “Infectious” I. Soon after, the infectious588

individual either develops significant symptoms, and then will be soon “Reported” R,589

and isolated so that he/she does not infect any more; while the alternative is that this590

infectious individual is asymptomatic: he/she develops no or very mild symptoms, so591

remains “Unreported” U, and continues to infect susceptible individuals for a longer592

period. Both unreported and reported cases eventually enter the “Removed” (Rem.)593

compartment. In this model, there are 6 compartments: S like susceptible, E like594

exposed, I like infectious, R like reported, U like unreported, and Rem like removed.595

Our approach allows us to have a more realistic version of this model with only 3596

compartments (see Figure 3): S like susceptible, I like infected (first exposed, then597

infectious), R like removed (which includes the Reported individuals, since they do not598

infect any more, and will recover soon or later). As already explained, we do not need599

to distinguish between the exposed and infectious, since the function λ is allowed to600

remain equal to zero during a certain time interval starting from the time of infection.601

More importantly, since the law of λ is allowed to be bimodal, we can accommodate602

in the same compartment I individuals who remain infectious for a short duration603

of time, and others who will remain infectious much longer (but probably with a604

lower infectivity). Moreover, since we know, see [14], that the infectivity decreases605

after a maximum which in the case of symptomatic individuals, seems to take place606

shortly before symptom onset, our varying infectivity model allows us to use a model607
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S E

U

R

RemI

S RI

Susceptible

Exposed

No longer infectious

Infectious

Fig. 3. Flow chart of the SEIRU model of [19] and of our SIR model. We are able to replace the
six compartments of the SEIRU model with only three compartments by using the equations described
in Theorem 2.7.

corresponding to what the medical science tells us about this illness. Note that our608

version of the SEIRU model from [19] is the same as the one which we have already609

used in [11] (except that there we had to distinguish the E and the I compartments).610

However, the main novelty here is that the infectivity decreases after a maximum near611

the beginning of the infectious period.612

ζ ζ+ η
time since infection

g(t)

Fig. 4. Profile of the function g(t) used in our computation of R0 as a function of ζ and η.
The function increases linearly (up to a value 1 or α depending on whether the individual is reported
or unreported) on the interval [ζ, ζ + η/5] and then decreases linearly on [ζ + η/5, ζ + η].

More precisely, we consider that t 7→ g(t) increases linearly on the interval613

[ζ, ζ + η/5], from 0 to 1 for reported individuals, and from 0 to α for unreported614

individuals, and that it then decreases linearly to 0 on the interval [ζ + η/5, ζ + η],615

as shown on Figure 4. We then take (X1, X2) a pair of independent Beta random616
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18 R. FORIEN, G. PANG, AND É PARDOUX

variables with parameters (2, 2) and we assume that617

ζ = 2 + 2X1, η =

{
3 +X2 for reported individuals,

8 + 4X2 for unreported individuals.
618

619

This joint law of (ζ, η) is the one that was used in [11] to study the Covid–19 epidemic620

in France (where the infectivity was assumed to be constant and uniform among621

individuals in this work), and these values are compatible with the results described622

in [14].623

Numerical results are presented in Figure 5 for three growth rates (0.277, -0.06,624

0.032) which are derived from the doubling/halving times of the number of hospital625

deaths during the first wave (doubling time of 2.5 days), the first lockdown (halving626

time of 11.6 days) and the second wave (doubling time of 21.4 days) of the Covid–19627

epidemic in France [11]. We note that, when ρ > 0 (resp. when ρ < 0), R0 is increasing628

(resp. decreasing) with the proportion of unreported individuals and with α. We also629

note that with the same durations of the exposed and infectious periods, but with λ(t)630

constant, R0 would be larger, which is not surprising, since in the present model the631

decrease of λ̄(t) reduces the effect of the factor e−ρt in the integrals in the denominator,632

which makes R0 > 1 for ρ > 0.633

3. The early phase of the epidemic. The aim of this section is to prove634

Theorem 2.11 and Theorem 2.13. In particular, we assume in this section that635

E
[(∫∞

0
λ(t)dt

)2]
< ∞ and that Assumption 2.1 is satisfied. The first step is to636

couple the stochastic process (AN (t), IN (t), t ≥ 0) with two branching processes such637

that, at least up to some stopping time, the stochastic process AN stays between the638

two branching processes. To do this, we redefine the model of Subsection 2.1 in the639

following way. Let (λ0
k(·), k ≥ 1) be as before and let Q be a PRM on R2

+ ×D with640

intensity ds⊗ du⊗P (dλ), where P is the probability distribution of λ(·). We then set641

IN (t) :=

I(0)∑
k=1

λ0
k(t) +

∫ t

0

∫ ∞
0

∫
D

λ(t− s)1u≤ΥN (s−)Q(ds, du, dλ),642

AN (t) :=

∫ t

0

∫ ∞
0

∫
D

1u≤ΥN (s−)Q(ds, du, dλ),643
644

with ΥN (t) = SN (t)
N IN (t) and SN (t) = N−I(0)−AN (t) as before. Then, for ε ∈ [0, 1),645

we define646

Iε(t) :=

I(0)∑
k=1

λ0
k(t) +

∫ t

0

∫ ∞
0

∫
D

λ(t− s)1u≤(1−ε)Iε(s−)Q(ds, du, dλ),647

Aε(t) :=

∫ t

0

∫ ∞
0

∫
D

1u≤(1−ε)Iε(s−)Q(ds, du, dλ).648
649

Recall that, for any ε ∈ [0, 1),650

TNε = inf{t ≥ 0 : AN (t) ≥ εN}.651652

Lemma 3.1. For each N ≥ N0, the process (IN (t), SN (t), AN (t), t ≥ 0) has the653

same distribution as the one defined in Subsection 2.1. Moreover,654

∀t ≥ 0, IN (t) ≤ I0(t), AN (t) ≤ A0(t),(3.1)655656
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Fig. 5. Heatmap of the value of R0 for three growth rates: 0.277 (doubling time of 2.5 days),
-0.06 (halving time of 11.6 days) and 0.032 (doubling time of 21.4 days), corresponding to three
phases of the Covid–19 epidemic in France. In each graphic, the horizontal coordinate is the factor
α (which is the relative infectivity of unreported individuals compared to reported individuals), and
the vertical coordinate is the proportion of reported individuals pR. Note that the range of values
varies significantly with the growth rate ρ (from 3 up to 6 in the leftmost graphic, from 0.6 to 0.76
in the middle one and from 1.15 up to 1.28 in the rightmost graphic).

and, for all 0 < ε < ε′, for N ≥ N0+1
ε′−ε , almost surely,657

∀t ≤ TNε , IN (t) ≥ Iε′(t), AN (t) ≥ Aε′(t).(3.2)658659

We note that, even though the distribution of (IN , AN , SN ) is the same as in660

Subsection 2.1, this construction yields a different coupling between (IN1 , AN1 , SN1)661

and (IN2 , AN2 , SN2) for N1 6= N2.662

Proof. The fact that this new construction does not change the law of the process663

(IN , SN , AN ) is straightforward. For the second part of the statement, let664

τ0 := inf{t ≥ 0 : IN (t) > I0(t)}.665666

By construction, if τ0 <∞, there exist s ≤ τ0 and u > 0 such that667

Q ({s} × {u} ×D) = 1668669

and670

I0(s−) < u ≤ ΥN (s−).671672
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20 R. FORIEN, G. PANG, AND É PARDOUX

Since ΥN (t) ≤ IN (t), this implies I0(s−) < IN (s−) for some s ≤ τ0. This contradicts673

the definition of τ0, hence τ0 = +∞ and IN (t) ≤ I0(t) for all t ≥ 0. By the definition674

of AN and A0, this also implies AN (t) ≤ A0(t) for all t ≥ 0.675

For the lower bound (3.2), we note that, for t ≤ TNε ,676

ΥN (t) =

(
1− I(0) +AN (t)

N

)
IN (t)677

≥
(

1− N0 + 1

N
− ε
)
IN (t)678

≥ (1− ε′)IN (t),679680

for N ≥ (N0 + 1)/(ε′ − ε). The lower bound then follows by a similar argument as681

above.682

We note that the process Aε(·) does not depend on N , and that it is a branching683

process which belongs to the class of processes studied in [8, 9]. The following result684

is then Theorem 3.2 in [9].685

Lemma 3.2. Under Assumptions 2.1 and 2.3, for each ε ∈ [0, 1), there exists a686

random variable Wε ≥ 0 such that687

Aε(t)e
−ρεt →Wε, almost surely as t→∞,688689

where ρε ∈ R is the (unique) solution to690

(1− ε)
∫ ∞

0

λ(t)e−ρεtdt = 1.(3.3)691
692

Proof. We need to check the conditions of Theorem 3.2 in [9]. First, since λ(t) ≤ λ∗,693

for any p > 1,694 ∫ ∞
0

(λ(t))pdt ≤ (λ∗)p−1

∫ ∞
0

λ(t)dt = (λ∗)p−1R0,695
696

which we have assumed to be finite. On the other hand, if N is the number of offsprings697

of a given individual, then, using the properties of the Poisson distribution,698

E
[
N2
]

= E
[∫ ∞

0

λ(t)dt

]
+ E

[(∫ ∞
0

λ(t)dt

)2
]
<∞,699

700

by assumption (this is also true if the individual was initially infected, replacing λ by701

λ0 above). This concludes the proof.702

Remark 3.3. The condition ε ≤ 1− 1
R0

in Theorem 2.11 ensures that there exists703

a positive solution ρε > 0 to the equation (3.3), i.e., that the branching process Aε(·)704

is supercritical. This will be used in the proof of Theorem 2.11. See also Remark 2.12.705

Lemma 3.4. If ρ satisfies (2.26) and ρε is given by (3.3), then, for all ε ∈ (0, 1),706

0 ≤ ρ− ρε ≤
ε

1− ε

(∫ ∞
0

λ(t)te−ρtdt

)−1

.707
708

Proof. From the definitions of ρ and ρε,709 ∫ ∞
0

λ(t)
(
e−ρεt − e−ρt

)
dt =

ε

1− ε
.710

711

This manuscript is for review purposes only.



EPIDEMIC MODELS WITH VARYING INFECTIVITY 21

Hence it is clear that ρ ≥ ρε. In addition, e−ρεt − e−ρt ≥ te−ρt(ρ− ρε), from which712

the stated inequality follows.713

Lemma 3.5. Let (Wε, ε ∈ [0, 1)) be the family of random variables defined in714

Lemma 3.2. Then715

lim
ε↓0

P(Wε = 0) = P(W0 = 0).716
717

Proof. In [9], it is shown that P(Wε = 0) is the probability of extinction of a718

branching process in which each individual born after time 0 leaves a conditionally719

Poisson number of offsprings with parameter (1 − ε)
∫∞

0
λ(t)dt. Thus if X0 denote720

the random variable corresponding to the number of offsprings of the I(0) individuals721

alive at time 0, then722

P(Wε = 0) = E
[
qX0
ε

]
,(3.4)723724

where qε is the unique fixed point in (0, 1) of the function s 7→ hε(s) defined by725

hε(s) := E
[
sXε
]
,726727

where Xε is conditionally Poisson with parameter (1− ε)
∫∞

0
λ(t)dt. It is then straight-728

forward to see that hε converges to h0 locally uniformly when ε ↓ 0, and, as a result,729

qε → q0. We then conclude from (3.4) and the dominated convergence theorem.730

We can now prove Theorem 2.11.731

Proof of Theorem 2.11. We begin by a lower bound on TNε . By (3.1), for any732

δ ∈ (0, 1),733

AN
(

1− δ
ρ

log(N)

)
≤ A0

(
1− δ
ρ

log(N)

)
.734

735

Noting that ρ0 = ρ, by Lemma 3.2, almost surely, for all N large enough,736

A0

(
1− δ
ρ

log(N)

)
≤ N1−δ(W0 + δ).737

738

But N1−δ(W0 + δ) < εN for N large enough. It follows that, for any δ ∈ (0, 1),739

lim inf
N→∞

TNε
log(N)

≥ 1− δ
ρ

, almost surely.(3.5)740
741

By the same argument, for any δ ∈ (0, α) and α ∈ (0, 1),742

lim inf
N→∞

T Nα
log(N)

≥ α− δ
ρ

.(3.6)743
744

On the event {W0 = 0}, the branching process (A0, I0) goes extinct (i.e., I0(t) = 0745

for all t large enough), and746

lim
t→∞

A0(t) < +∞.747
748

As a result, for any t > 0,749

AN (t log(N)) ≤ A0(t log(N))750

≤ lim
s→∞

A0(s).751
752
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Hence T Nα > t log(N) for all t > 0 for all N such that Nα > limt→∞A0(t). Hence753

lim inf
N→∞

T Nα
log(N)

= +∞,(3.7)754
755

almost surely on the event {W0 = 0} for any α ∈ (0, 1). Since TNε ≥ T Nα for α ∈ (0, 1)756

and N large enough, we also obtain757

lim inf
N→∞

TNε
log(N)

= +∞,(3.8)758
759

almost surely on the same event.760

We now prove the upper bound on T Nα on the event {W0 > 0}. By Lemma 3.1,761

for any δ ∈ (0, 1− α) and ε ∈ (0, 1/2), for N large enough,762

AN
(
α+ δ

ρ
log(N) ∧ TNε

)
≥ A2ε

(
α+ δ

ρ
log(N) ∧ TNε

)
.763

764

By (3.5), TNε ≥ α+δ
ρ log(N) for all N large enough (choosing a different δ in (3.5) if765

needed) and, by Lemma 3.2,766

A2ε

(
α+ δ

ρ
log(N)

)
≥ W2ε

2
N

ρ2ε
ρ (α+δ),767

768

almost surely for N large enough. By Lemma 3.4, we can choose ε small enough that769

ρ2ε

ρ
(α+ δ) > α.770

771

As a result,772

P
({

lim sup
N→∞

T Nα
log(N)

>
α+ δ

ρ

}
∩ {W0 > 0}

)
≤ P ({W2ε = 0} ∩ {W0 > 0}) .(3.9)773

774

Since, by construction, A2ε(t) ≤ A0(t),775

P ({W2ε = 0} ∩ {W0 > 0}) = P(W0 > 0)− P(W2ε > 0).776777

The right hand side can then be made arbitrarily small by choosing ε small enough by778

Lemma 3.5. Since the left hand side in (3.9) does not depend on ε, we conclude that779

lim sup
N→∞

T Nα
log(N)

≤ α+ δ

ρ
,(3.10)780

781

almost surely on {W0 > 0}. Combining (3.6), (3.7) and (3.10), we obtain that, for782

any α ∈ (0, 1), almost surely,783

T Nα
log(N)

→

{
α
ρ if W0 > 0

+∞ otherwise.
784

785

This convergence thus holds in distribution for the original model defined in Subsec-786

tion 2.1.787
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We now prove the upper bound on TNε on the event {W0 > 0} for ε < 1− 1
R0

. To788

do this, we define, for δ ∈ (0, 1), ε′ ∈ (ε, 1− 1
R0

) and η ∈ (0, 1),789

IN− (t) :=

I(0)∑
k=1

λ0
k(t) +

∫ t

0

∫ ∞
0

∫
D

λ(t− s)1u≤qN (s)IN− (s−)Q(ds, du, dλ),790

AN− (t) :=

∫ t

0

∫ ∞
0

∫
D

1u≤qN (s)IN− (s−)Q(ds, du, dλ),791
792

where793

qN (t) =

{
1− η if 0 ≤ t ≤ 1−δ

ρ log(N)

1− ε′ otherwise.
794

795

We note that, for t ≤ 1−δ
ρ log(N), (IN− (t), AN− (t)) = (Iη(t), Aη(t)) and, by a similar796

argument as in Lemma 3.1, for all N large enough, using (3.5),797

∀t ≤ TNε , IN (t) ≥ IN− (t), AN (t) ≥ AN− (t).(3.11)798799

In addition, for any δ′ > 0,800

AN−

(
1 + δ′

ρ
log(N)

)
= Aη

(
1− δ
ρ

log(N)

) AN−

(
1−δ
ρ log(N) + δ+δ′

ρ log(N)
)

Aη

(
1−δ
ρ log(N)

) .801

802

By Lemma 3.2, for all N large enough803

Aη

(
1− δ
ρ

log(N)

)
≥ Wη

2
N

ρη
ρ (1−δ).(3.12)804

805

Next we note that we can write, for t ≥ 0,806

AN−

(
1− δ
ρ

log(N) + t

)
=

Aη( 1−δ
ρ log(N))∑
i=1

Ãi(t),807

808

where (Ãi(t), t ≥ 0)i≥1 is a family of i.i.d. branching processes of the form809

Ãi(t) =

∫ t

0

∫ ∞
0

∫
D

1u≤(1−ε′)Ĩi(s−)Q̃i(ds, du, dλ),810

Ĩi(t) = λ̃0
i (t) +

∫ t

0

∫ ∞
0

∫
D

λ(t− s)1u≤(1−ε′)Ĩ(s−)Q̃i(ds, du, dλ),811
812

where {Q, Q̃1, Q̃2, . . .} are i.i.d., and Q is the PRM which was used in the definition of813

the branching process Aη up to time 1−δ
ρ log(N). Since ε′ < 1− 1

R0
, Ãi is supercritical814

and has growth rate ρε′ > 0. Moreover, by Lemma 3.2, e−ρε′ tÃi(t)→ W̃i as t→∞,815

where the W̃i are i.i.d. and such that P(W̃i > 0) > 0. As a result, on {Wη > 0}, from816

(3.12),817

Aη

(
1− δ
ρ

log(N)

)
→∞818

819
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and, by the law of large numbers, as N →∞,820

AN−

(
1−δ
ρ log(N) + δ+δ′

ρ log(N)
)

Aη

(
1−δ
ρ log(N)

) N−
ρ
ε′
ρ (δ+δ′) → E[W̃1] > 0.821

822

Hence on the event {Wη > 0}, for some constant C > 0 and for N large enough,823

AN−

(
1 + δ′

ρ
log(N)

)
≥ CWη

4
N

ρη
ρ (1−δ)+

ρ
ε′
ρ (δ+δ′).824

825

But by Lemma 3.4, for any δ′ > 0 and ε′ < 1− 1
R0

(which ensures that ρε′ > 0), we826

can choose η and δ small enough that827

ρη
ρ

(1− δ) +
ρε′

ρ
(δ + δ′) > 1.828

829

For such a choice of η and δ,830

AN−

(
1 + δ′

ρ
log(N)

)
> N831

832

for all N large enough, almost surely on the event {Wη > 0}. By (3.11), this implies833

P
({

lim sup
N→∞

TNε
log(N)

>
1 + δ′

ρ

}
∩ {W0 > 0}

)
≤ P(W0 > 0)− P(Wη > 0),834

835

for all η > 0 small enough. Letting η → 0 and using Lemma 3.5, we thus obtain836

lim sup
N→∞

TNε
log(N)

≤ 1 + δ′

ρ
,837

838

almost surely on {W0 > 0}, for any δ′ > 0. Combining this with (3.5) and (3.8) yields839

the result.840

Let us now prove Theorem 2.13.841

Proof of Theorem 2.13. Plugging (2.29) into (2.27), and replacing λ
0

and F0 by842

λρ and Fρ, we obtain843

I(0)λ
0
(t) +

∫ t

0

λ(t− s)I(s)ds =

∫ ∞
0

λ(t+ s)ρe−ρsds+

∫ t

0

λ(t− s)ρeρsds ,844

I(0)F c0 (t) +

∫ t

0

F c(t− s)I(s)ds =

∫ ∞
0

F c(t+ s)ρe−ρsds+

∫ t

0

F c(t− s)ρeρsds .845
846

Changing variables in each integral and then summing them together, we obtain847 ∫ ∞
0

λ(t+ s)ρe−ρsds+

∫ t

0

λ(t− s)ρeρsds =

∫ ∞
t

λ(s)ρeρ(t−s)ds+

∫ t

0

λ(s)ρeρ(t−s)ds848

= ρeρt,849850

where we have used (2.26) in the last line. The same calculation with F c instead of λ851

yields852 ∫ ∞
0

F c(t+ s)ρe−ρsds+

∫ t

0

F c(t− s)ρeρsds =

∫ ∞
0

F c(s)ρeρ(t−s)ds = ieρt,853
854
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using the definition of i in (2.28). In the case ρ < 0, these calculations are unchanged,855

and we simply multiply each line by −1. Finally, the equation for R(t) follows from856

the fact that857

I(t) +R(t) = I(0) +R(0) +

∫ t

0

I(s)ds858

= R(0) + I(0) +

∫ t

0

|ρ|eρsds.859
860

Subtracting I(t) = |i|eρt, we obtain861

R(t) = R(0) + sign(ρ)(1− i)(eρt − 1).862863

Since r = 1− i, this concludes the proof (we choose R(0) = r in the case ρ > 0).864

4. Proof of the FLLN. In this section, for a sequence {XN , N ≥ 1} of random865

elements of D, and X a random element of D, XN ⇒ X in D means that XN866

converges weakly (i.e., in law) towards X in D, that is, for any Φ ∈ Cb(D;R),867

E[Φ(XN )]→ E[Φ(X)] as N →∞.868

4.1. Convergence of (S̄N , ĪN ).. For the process AN (t), we have the decompo-869

sition870

AN (t) = MN
A (t) +

∫ t

0

ΥN (s)ds,(4.1)871
872

where

MN
A (t) =

∫ t

0

∫ ∞
0

1u≤ΥN (s−)Q(ds, du),

with Q(ds, du) = Q(ds, du)− dsdu being the compensated PRM. It is clear that the873

process {MN
A (t) : t ≥ 0} is a square-integrable martingale (see, e.g., [7, Chapter VI])874

with respect to the filtration {FNt : t ≥ 0} defined by875

FNt := σ

{
EN (0), IN (0), {λ0

j (·)}j≥1, {λ0,I
k (·)}k≥1, {λi(·)}i≥1,876 ∫ t′

0

∫ ∞
0

1u≤ΥN (s−)Q(ds, du) : t′ ≤ t
}
.877

878

It has a finite quadratic variation

〈MN
A 〉(t) =

∫ t

0

ΥN (s)ds, t ≥ 0.

Under Assumption 2.1, we have879

(4.2) 0 ≤ N−1

∫ t

s

ΥN (u)du ≤ λ∗(t− s), w.p. 1 for 0 ≤ s ≤ t.880

Thus, this implies that, in probability as N →∞,

〈MN

A 〉(t) = N−2

∫ t

0

ΥN (s)ds→ 0 in D,
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and by Doob’s inequality,881

(4.3) M
N

A (t)→ 0882

in mean square, locally uniformly in t, hence in probability in D. As a consequence,883

we obtain the following lemma.884

Lemma 4.1. Under Assumptions 2.1, 2.5 and 2.6, the sequence {(ĀN , S̄N )}N≥1 is885

tight in D2. The limit of any converging subsequence of {ĀN}, denoted by Ā, satisfies886

(4.4) Ā = lim
N→∞

ĀN = lim
N→∞

∫ ·
0

ῩN (u)du,887

and888

(4.5) 0 ≤ Ā(t)− Ā(s) ≤ λ∗(t− s), w.p. 1 for 0 ≤ s ≤ t.889

Given the limit Ā of a converging subsequence of {ĀN}, along the same subsequence,890

S̄N ⇒ S̄ := S̄(0)− Ā = 1− Ī(0)− Ā in D as N →∞.891

Let892

ĪN0,1(t) := N−1

IN (0)∑
k=1

λ0,I
k (t), ĪN0,2(t) := N−1

EN (0)∑
j=1

λ0
j (t), t ≥ 0.893

894

895

Lemma 4.2. Under Assumptions 2.1 and 2.5, as N →∞,896 (
ĪN0,1, Ī

N
0,2

)
→
(
Ī0,1, Ī0,2

)
in D2 in probability,(4.6)897898

where899

Ī0,1(t) := Ī(0)λ̄0,I(t), Ī0,2(t) := Ē(0)λ̄0(t), t ≥ 0.900901

Proof. Define the processes902

ĨN0,1(t) := N−1

NĪ(0)∑
k=1

λ0,I
k (t), ĨN0,2(t) := N−1

NĒ(0)∑
j=1

λ0
j (t), t ≥ 0.(4.7)903

904

By the i.i.d. assumptions for the sequences {λ0
j (t)} and {λ0,I

k (t)}, and their indepen-905

dence, and by the LLN for random elements in D (see Theorem 1 in [24] or Corollary906

7.10 in [18]), we directly obtain that, as N →∞,907 (
ĨN0,1, Ĩ

N
0,2

)
→
(
Ī0,1, Ī0,2

)
in D2 in probability.908909

It then suffices to show that, as N →∞,910 (
ĨN0,1 − ĪN0,1, Ĩ

N
0,2 − ĪN0,2

)
→ 0 in D2 in probability.(4.8)911912

We have913

ĨN0,1(t)− ĪN0,1(t) = sign(Ī(0)− ĪN (0))N−1

N(ĪN (0)∨Ī(0))∑
k=N(ĪN (0)∧Ī(0))

λ0,I
k (t),(4.9)914

915
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and thus916

sup
0≤t≤T

∣∣ĨN0,1(t)− ĪN0,1(t)
∣∣ ≤ λ∗∣∣ĪN (0)− Ī(0)

∣∣.917

918

By the convergence ĪN (0)− Ī(0)→ 0 in probability under Assumption 2.5, we obtain919

that ĨN0,1 − ĪN0,1 → 0 in D in probability. A similar argument yields the convergence920

ĨN0,2 − ĪN0,2 → 0 in D in probability. This completes the proof.921

Let922

ĪN1 (t) := N−1

AN (t)∑
i=1

λi(t− τNi ), t ≥ 0.923

924

Before we prove the convergence of ĪN1 in D, let us first establish three technical925

results which will be useful in the next proof. The first of those results was implicitly926

used in [21].927

Lemma 4.3. Let {XN}N≥1 be a sequence of random elements in D. If the two928

conditions929

(i) for all ε > 0, 0 ≤ t ≤ T , P
(
|XN (t)| > ε

)
→ 0, as N →∞, and930

(ii) for all ε > 0, lim supN sup0≤t≤T
1
δP
(

sup0≤u≤δ |XN (t+u)−XN (t)| > ε
)
→ 0,931

as δ → 0932

are satisfied for all T > 0, then XN (t)→ 0 in probability locally uniformly in t.933

Proof. We partition the interval [0, T ] into subintervals of length δ, that is, we934

define ti = iδ ∧ T , i = 0, 1, . . . , bT/δc, and obtain935

sup
t∈[0,T ]

|XN (t)| ≤ sup
i=0,...,bT/δc

|XN (ti)|+ sup
i=0,...,bT/δc

sup
u∈[0,δ]

|XN (ti + u)−XN (ti)| .936

937

We immediately obtain the following inequality938

P
(

sup
0≤t≤T

|XN (t)| > ε

)
≤
bT/∆c∑
i=0

P(|XN (ti)| > ε/2)939

+

(
T

δ
+ 1

)
sup

0≤t≤T
P
(

sup
0≤u≤δ

|XN (t+ u)−XN (t)| > ε/2

)
.940

941

From condition (i), lim supN of the first term on the right is zero for any δ > 0, while942

by condition (ii), lim supN of the second term tends to zero as δ → 0. The result943

follows.944

In the next statement, D↑(R+) (resp. C↑(R+)) denotes the set of real-valued945

nondecreasing function on R+, which belong to D(R+) (resp. C(R+)).946

Lemma 4.4. Let f ∈ D(R+) and {gN}N≥1 be a sequence of elements of D↑(R+)947

which is such that gN → g locally uniformly as N →∞, where g ∈ C↑(R+). Then, for948

any t > 0, as N →∞,949 ∫
[0,t]

f(s)gN (ds)→
∫

[0,t]

f(s)g(ds) .950

Proof. The assumption implies that the sequence of measures gN (ds) converges951

weakly, as N → ∞, towards the measure g(ds). Since, moreover, f is bounded and952

the set of discontinuities of f is of g(ds) measure 0, the convergence is essentially a953

minor improvement of the Portmanteau theorem, see Theorem 2.1 in [3].954
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Lemma 4.5. Let {XN , N ≥ 1} be a sequence of random elements in D, which is955

such that for all k ≥ 1, 0 ≤ t1 < t2 < · · · < tk, as N →∞, (XN (t1), . . . , XN (tk))⇒956

(X(t1), . . . , X(tk)), and moreover the sequence {XN} satisfies condition (ii) of Lemma957

4.3. Then XN ⇒ X in D, and moreover X ∈ C a.s. If, in addition, for all t ≥ 0,958

XN (t)→ X(t) in probability, then XN (t)→ X(t) in probability locally uniformly in t.959

Proof. Define the modulus of continuity on [0, T ] of a function x as960

ωx(T, δ) = sup
0≤s<t≤T, t−s≤δ

|x(t)− x(s)| .961

It is clear (see the proof of Theorem 7.4 in [3]) that962

P(ωXN (T, δ) > 3ε) ≤ sup
0≤t≤T

(
T

δ
+ 1

)
P
(

sup
0≤u≤δ

|XN (t+ u)−XN (t)| > ε

)
963

Since the “D–modulus of continuity” ω′x(T, δ) satisfies ω′x(T, δ) ≤ ωx(T, 2δ) (see (12.7)964

in [3]), we conclude from Theorem 13.2 and its Corollary in [3] that {XN} is tight in D.965

Since all finite dimensional distributions of XN converge to those of X, all converging966

subsequences of the sequence {XN} converge to X, and the whole sequence converges967

to X. Moreover, it follows from our assumptions that for any T > 0, ωX(T, δ)→ 0,968

as δ → 0, hence X ∈ C a.s. Concerning the convergence in probability, we note that969

under the additional assumption, Y N (t) := XN (t)−X(t) satisfies the conditions of970

Lemma 4.3, hence the result.971

Lemma 4.6. Under Assumptions 2.1 and 2.6, if Ā is the limit of a converging972

subsequence of {ĀN}, then along the same subsequence,973

ĪN1 ⇒ Ī1 in D as N →∞,(4.10)974975

where976

Ī1(t) :=

∫ t

0

λ̄(t− s)dĀ(s), t ≥ 0.977
978

Proof. Let979

ĬN1 (t) := N−1

AN (t)∑
i=1

λ̄(t− τNi ) =

∫ t

0

λ̄(t− s)dĀN (s), t ≥ 0.(4.11)980

981

The proof will be split in two steps.982

Step 1. Convergence of ĬN1983

Under Assumption 2.1, applying Lemmas 4.1 and 4.4 and the continuous mapping984

theorem, we obtain that, as N →∞, all finite dimensional distributions of ĬN1 converge985

to those of Ī1. It remains to establish condition (ii) from Lemma 4.3 in order to deduce986

from Lemma 4.5 that987

ĬN1 ⇒ Ī1 in D as N →∞.(4.12)988989

That is, we need to show that990

(4.13) lim
δ→0

lim sup
N→∞

1

δ
sup
t∈[0,T ]

P

(
sup
u∈[0,δ]

∣∣ĬN1 (t+ u)− ĬN1 (t)
∣∣ > ε

)
= 0.991
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We have for t, u ≥ 0,992

∣∣ĬN1 (t+ u)− ĬN1 (t)
∣∣ ≤

∣∣∣∣∣∣N−1

AN (t)∑
i=1

(
λ̄(t+ u− τNi )− λ̄(t− τNi )

)∣∣∣∣∣∣993

+N−1

AN (t+u)∑
i=AN (t)+1

λ̄(t+ u− τNi )994

=: ∆N,1
t,u + ∆N,2

t,u .995996

We first note that by (4.2),997

sup
0≤u≤δ

∆N,2
t,u ≤ λ∗

(
ĀN (t+ δ)− ĀN (t)

)
998

≤ (λ∗)2δ + λ∗
(
M̄N
A (t+ δ)− M̄N

A (t)
)
,9991000

so that by (4.3), for any T > 0, ε > 0, provided δ < ε/(4(λ∗)2),1001

P
(

sup
0≤u≤δ

∆N,2
t,u > ε/2

)
≤ P

(∣∣M̄N
A (t+ δ)− M̄N

A (t)
∣∣ > ε/4λ∗

)
1002

→ 0, as N →∞,10031004

and consequently,1005

(4.14) lim sup
N→∞

1

δ
sup
t∈[0,T ]

P
(

sup
u∈[0,δ]

∣∣∆N,2
t,u

∣∣ > ε/2

)
= 0.1006

We now consider the first term ∆N,1
t,u . Let1007

Λδ(t) := sup
u≤δ
|λ̄(t+ u)− λ̄(t)| .1008

We have1009

sup
u≤δ

∆N,1
t,u ≤

∫ t

0

Λδ(t− s)dĀN (s) ,1010

and1011

P
(

sup
u≤δ
|∆N,1

t,u | >
ε

2

)
≤ P

(∫ t

0

Λδ(t− s)dĀN (s) >
ε

2

)
1012

≤ P
(∣∣∣∣∫ t

0

Λδ(t− s)dM̄N
A (s)

∣∣∣∣ > ε

4

)
1013

+ P
(∫ t

0

Λδ(t− s)ῩN (s)ds >
ε

4

)
.1014

1015

It is not hard to show that for any δ > 0,1016

lim sup
N→+∞

1

δ
sup
t∈[0,T ]

P
(∣∣∣∣∫ t

0

Λδ(t− s)dM̄N
A (s)

∣∣∣∣ > ε

4

)
= 0 .1017
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Next we note that for any t ∈ [0, T ],1018 ∫ t

0

Λδ(t− s)ῩN (s)ds ≤ λ∗
∫ t

0

Λδ(t− s)ds1019

≤ λ∗
∫ T

0

Λδ(s)ds .1020
1021

Since λ̄ is right continuous and bounded by λ∗, this last expression tends to 0 as δ → 0.1022

Consequently, for δ > 0 small enough,1023

sup
N

sup
t∈[0,T ]

P
(∫ t

0

Λδ(t− s)ῩN (s)ds >
ε

4

)
= 0 .1024

It follows that (4.14) holds true with ∆N,2
t,u replaced by ∆N,1

t,u . We have completed the1025

proof of (4.13), hence of (4.12).1026

Step 2. IN1 − ĬN1 → 01027

Now it remains to show that, as N →∞,1028

(4.15) V N := ĪN1 − ĬN1 → 0 in D in probability.1029

We have1030

V N (t) = N−1

AN (t)∑
i=1

χNi (t), χNi (t) := λi(t− τNi )− λ̄(t− τNi ).1031

1032

χNi (t) clearly satisfies E
[
χNi (t)

]
= 0 and E

[
χNi (t)χNj (t)|τNi , τNj ] = 0. Thus,1033

E
[
V N (t)2

]
= N−2E

[
AN (t)∑
i=1

ν(t− τNi )

]
= N−1E

[ ∫ t

0

ν(t− s)dĀN (s)

]
,1034

1035

where ν(t) := E[(λi(t) − λ̄(t))2] and ν(t) < (λ∗)2 under Assumption 2.1. We easily
obtain that for each t ≥ 0,

V N (t)→ 0 in probability, as N →∞ .

It remains to establish condition (ii) of Lemma 4.3, i.e., that for any T > 0, ε > 0,1036

lim
δ→0

lim sup
N→∞

1

δ
sup
t∈[0,T ]

P

(
sup
u∈[0,δ]

∣∣V N (t+ u)− V N (t)
∣∣ > ε

)
= 0.(4.16)1037

1038

We have for t, u ≥ 0,1039

∣∣V N (t+ u)− V N (t)
∣∣ ≤

∣∣∣∣∣∣N−1

AN (t)∑
i=1

(
λi(t+ u− τNi )− λi(t− τNi )

)∣∣∣∣∣∣1040

+

∣∣∣∣∣∣N−1

AN (t)∑
i=1

(
λ̄(t+ u− τNi )− λ̄(t− τNi )

)∣∣∣∣∣∣1041

+

∣∣∣∣∣∣N−1

AN (t+u)∑
i=AN (t)+1

(
λi(t+ u− τNi )− λ̄(t+ u− τNi )

)∣∣∣∣∣∣ .1042

1043
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The second term has already been treated in Step 1, and the treatment of the third1044

term is the same as that of the second term in the analogous inequality in Step 1 in1045

(4.14). It remains to treat the first term, which we denote by ΦN,1t,u . By Assumption 2.1,1046

ΦN,1t,u ≤ N−1

AN (t)∑
i=1

k∑
j=1

|λji (t+ u− τNi )− λji (t− τ
N
i )|1ξj−1

i ≤t−τNi <t+u−τNi <ξ
j
i

1047

+ λ∗N−1

AN (t)∑
i=1

k∑
j=1

1t−τNi ≤ξ
j
i<t+u−τNi

1048

≤ ϕT+δ(u)ĀN (t) + λ∗
k∑
j=1

N−1

AN (t)∑
i=1

1t−τNi ≤ξ
j
i<t+u−τNi

.1049

1050

The right hand side being nondecreasing in u, we deduce that1051

sup
0≤u≤δ

ΦN,1t,u ≤ ϕT+δ(δ)Ā
N (t) + λ∗

k∑
j=1

N−1

AN (t)∑
i=1

1t−τNi ≤ξ
j
i<t+δ−τNi

.1052

1053

The first term on the right is the same as the one which appeared in the upper bound1054

of ∆N,1
t,u in Step 1. We need only consider the second term. We have1055

P

(
λ∗

k∑
j=1

N−1

AN (t)∑
i=1

1t−τNi ≤ξ
j
i<t+δ−τNi

> ε

)
1056

≤ 1

ε2
E

[(
λ∗

k∑
j=1

N−1

AN (t)∑
i=1

1t−τNi ≤ξ
j
i<t+δ−τNi

)2]
1057

≤ 2

ε2
E

[(
λ∗

k∑
j=1

N−1

∫ t

0

∫ ∞
0

∫ t+δ−s

t−s
1u≤ΥN (s−)Qj(ds, du, dξ)

)2]
1058

+
2

ε2
E

[(
λ∗

k∑
j=1

N−1

∫ t

0

(
Fj(t+ δ − s)− Fj(t− s)

)
ΥN (s)ds

)2]
,(4.17)1059

1060

where Qj(ds, du, dξ) is a PRM on R+×R+×R+ with mean measure dsduFj(dξ), and1061

Qj(ds, du, dξ) is the corresponding compensated PRM. Observe that1062

E

(N−1

∫ t

0

∫ ∞
0

∫ t+δ−s

t−s
1u≤ΥN (s−)Qj(ds, du, dξ)

)2
1063

= N−2E
[∫ t

0

(
Fj(t+ δ − s)− Fj(t− s)

)
ΥN (s)ds

]
1064

≤ N−1λ∗
∫ t

0

(
Fj(t+ δ − s)− Fj(t− s)

)
ds,1065

1066
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which tends to 0 as N →∞, for any δ > 0. Moreover,1067

E

[(
N−1

∫ t

0

(
Fj(t+ δ − s)− Fj(t− s)

)
ΥN (s)ds

)2
]

1068

≤
(
λ∗
∫ t

0

(
Fj(t+ δ − s)− Fj(t− s)

)
ds

)2

1069

≤

(
λ∗

(∫ t+δ

t

Fj(u)du−
∫ δ

0

Fj(u)du

))2

1070

≤ (λ∗δ)2 .10711072

We deduce that for any ε > 0,1073

(4.18) lim sup
N→∞

1

δ
sup
t∈[0,T ]

P
(

sup
u∈[0,δ]

∣∣ΦN,1t,u

∣∣ > ε

)
→ 0, as δ → 0.1074

We have proved (4.16). This completes the proof of the lemma.1075

From the proof of Lemma 4.6, clearly (ĀN , ĬN1 )⇒ (Ā, Ī1) along a subsequence. It1076

also follows from Lemma 4.2 and the proof of Lemma 4.6 that ĪN − ĬN1 → Ī0,1 + Ī0,21077

in probability in D, as N →∞. Hence (ĀN , IN )⇒ (Ā, Ī) along the same subsequence1078

as above, where Ī = Ī0,1 + Ī0,2 + Ī1. It follows that, along that subsequence,1079 ∫ ·
0

ῩN (s)ds =

∫ ·
0

S̄N (s)ĪN (s)ds⇒
∫ ·

0

S̄(s)Ī(s)ds in D,(4.19)1080
1081

and also1082

ĀN ⇒ Ā =

∫ ·
0

S̄(s)Ī(s)ds in D.(4.20)1083
1084

Therefore, the limits
(
S̄, Ī

)
satisfy the integral equations (2.14) and (2.15) in Theorem1085

2.7. Finally, the existence and uniqueness of a deterministic solution to the integral1086

equations follows from applying Gronwall’s inequality in a straightforward way, and the1087

whole sequence converges in probability. This completes the proof of the convergence1088

of
(
S̄N , ĪN

)
→
(
S̄, Ī

)
in D2 in probability.1089

4.2. Convergence of (ĒN , ĪN , R̄N ) . The proof for the convergence of the1090

processes (ĒN , ĪN , R̄N ) in D3 will be similar to the previous step.1091

For the initially exposed and infectious individuals, let1092

ĒN0 (t) := N−1

EN (0)∑
j=1

1ζ0j>t ,1093

ĪN0,1(t) := N−1

IN (0)∑
k=1

1η0,Ik >t , ĪN0,2(t) := N−1

EN (0)∑
j=1

1ζ0j+η0j>t
,1094

R̄N0,1(t) := N−1

IN (0)∑
k=1

1η0,Ik ≤t
, R̄N0,2(t) := N−1

EN (0)∑
j=1

1ζ0j+η0j≤t .1095

1096

By the FLLN for empirical processes, we obtain the following lemma.1097
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Lemma 4.7. Under Assumption 2.5, as N →∞,1098

(
ĒN0 , Ī

N
0,1, Ī

N
0,2, R̄

N
0,1, R̄

N
0,2

)
→
(
Ē0, Ī0,1, Ī0,2, R̄0,1, R̄0,2

)
in D5 in probability,

(4.21)

10991100

where1101

Ē0(t) = Ē(0)Gc0(t), Ī0,1(t) = Ī(0)F c0,I(t), Ī0,2(t) = Ē(0)Ψ0(t),1102

R̄0,1(t) = I(0)F0,I(t), R̄0,2(t) = Ē(0)Φ0(t).11031104

Proof. Recall the definition of
(
ĨN0,1, Ĩ

N
0,2) in (4.7). Similarly, define

(
ẼN0 , Ĩ

N
0,1, Ĩ

N
0,2,

R̃N0,1, R̃
N
0,2

)
by replacing EN (0) and IN (0) with NĒ(0) and NĪ(0), respectively, in the

definitions of
(
ĒN0 , Ī

N
0,1, Ī

N
0,2, R̄

N
0,1,

R̄N0,2
)
. By the i.i.d. assumption of {λ0,I

k }k≥1 and the definition of η0,I
k from λ0,I

k in
(2.4), we obtain that, as N →∞,(

ĨN0,1, Ĩ
N
0,1, R̃

N
0,1

)
→
(
Ī0,1, Ī0,1, R̄0,1

)
in D3 in probability.

Similarly, by the i.i.d. assumption of {λ0
j}j≥1 and the definition of (ζ0

j , η
0
j ) from1105

λ0
j in (2.3), we obtain that, as N →∞,1106 (

ẼN0 , Ĩ
N
0,2, R̃

N
0,2

)
→
(
Ē0, Ī0,2, R̄0,2

)
in D3 in probability.1107

Then it remains to show that, as N →∞,1108 (
ẼN0 −ĒN0 , ĨN0,1− ĪN0,1, ĨN0,2− ĪN0,2, R̃N0,1−R̄N0,1, R̃N0,2−R̄N0,2

)
→ 0 in D5 in probability.1109

Similarly as in the proof of Lemma 4.2, we have1110

ĨN0,2(t)− ĪN0,2(t) = sign(Ē(0)− ĒN (0))N−1

N(ĒN (0)∨Ē(0))∑
j=N(ĒN (0)∧Ē(0))

1ζ0j+η0j>t
,1111

1112

and1113

E

[
N−1

N(ĒN (0)∨Ē(0))∑
j=N(ĒN (0)∧Ē(0))

1ζ0j+η0j>t

∣∣∣∣∣FN0
]
≤ Ψ0(t)|Ē(0)− ĒN (0)| → 0 as N →∞.1114

1115

The other convergences follow by a similar argument. This completes the proof.1116

For the newly infected individuals, let1117

ĒN1 (t) := N−1

AN (t)∑
i=1

1τNi +ζi>t , ĪN1 (t) := N−1

AN (t)∑
i=1

1τNi +ζi≤t<τNi +ζi+ηi ,1118

R̄N1 (t) := N−1

AN (t)∑
i=1

1τNi +ζi+ηi≤t .1119

1120

Lemma 4.8. Under Assumptions 2.1 , 2.5 and 2.6, as N →∞,1121 (
ĒN1 , Ī

N
1 , R̄

N
1

)
→
(
Ē1, Ī1, R̄1

)
in D3 in probability,(4.22)11221123
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where1124

Ē1(t) :=

∫ t

0

Gc(t− s)S̄(s)Ī(s)ds , Ī1(t) :=

∫ t

0

Ψ(t− s)S̄(s)Ī(s)ds ,1125

R̄1(t) :=

∫ t

0

Φ(t− s)S̄(s)Ī(s)ds .1126
1127

Proof. We first note that we have the two identities ĀN (t) = ĒN1 (t)+ĪN1 (t)+R̄N1 (t)1128

and Ā(t) = Ē1(t) + Ī1(t) + R̄1(t), which reflects the two facts:1129

1 = 1ζi≤t−τNi <ζi+ηi + 1ζi>t−τNi + 1ζi+ηi≤t−τNi ,1130

1 = Ψ(t− s) +Gc(t− s) + Φ(t− s) .11311132

Consequently, since we already know that ĀN (t)→ Ā(t) in probability locally uniformly1133

in t, we only need to establish the two convergences ĒN1 → Ē1 and R̄N1 → R̄1, from1134

which the convergence ĪN1 → Ī1 will follow as a corollary.1135

We shall apply the same argument as in Lemma 4.6, but now we know that1136

ĀN → Ā in probability. Define1137

ĔN1 (t) := N−1

AN (t)∑
i=1

Gc(t− τNi ) =

∫ t

0

Gc(t− s)dĀN (s) ,1138

R̆N1 (t) := N−1

AN (t)∑
i=1

Φ(t− τNi ) =

∫ t

0

Φ(t− s)dĀN (s) .1139

1140

Let us establish that ĒN1 → Ē1. We shall then discuss why the same arguments work1141

in the case of R̄N1 .1142

Step 1 It follows from Lemma 4.4 that for all t > 0, ĔN1 (t)→ Ē1(t) in probability.1143

In order to establish that the convergence is in fact locally uniform in t, according to1144

Lemma 4.5, it remains to prove that condition (ii) in Lemma 4.3 is satisfied, namely1145

that1146

(4.23) lim
δ→0

lim sup
N→∞

1

δ
sup
t∈[0,T ]

P

(
sup
u∈[0,δ]

∣∣ĔN1 (t+ u)− ĔN1 (t)
∣∣ > ε

)
= 0.1147

We have1148

ĔN1 (t+ u)− ĔN1 (t) =

∫ t

0

[Gc(t+ u− s)−Gc(t− s)]dĀN (s)1149

+

∫ t+u

t

Gc(t+ u− s)dĀN (s) ,1150

sup
0<u≤δ

|ĔN1 (t+ u)− ĔN1 (t)| ≤
∫ t

0

[Gc(t− s)−Gc(t+ δ − s)]dĀN (s)1151

+ ĀN (t+ δ)− ĀN (t) .11521153

The second term in the right hand side satisfies1154

ĀN (t+ δ)− ĀN (t) ≤ λ∗δ + M̄N
A (t+ δ)− M̄N

A (t),1155
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and since M̄N
A tends to 0 locally uniformly in t,1156

lim sup
N

sup
t∈[0,T ]

1

δ
P
(
ĀN (t+ δ)− ĀN (t) > ε

)
= 0,1157

as soon as δ < ε/λ∗. Moreover1158

P
(∫ t

0

[Gc(t− s)−Gc(t+ δ − s)]dĀN (s) > ε

)
1159

≤ P
(∣∣∣∣∫ t

0

[Gc(t− s)−Gc(t+ δ − s)]dM̄N
A (s)

∣∣∣∣ > ε/2

)
1160

+ P
(∫ t

0

[Gc(t− s)−Gc(t+ δ − s)]ῩN (s)ds > ε/2

)
.1161

1162

It is not hard to show that for any δ > 0,1163

lim sup
N

1

δ
sup
t∈[0,T ]

P
(∣∣∣∣∫ t

0

[Gc(t− s)−Gc(t+ δ − s)]dM̄N
A (s)

∣∣∣∣ > ε/2

)
= 0 .1164

Next we note that for any t ∈ [0, T ],1165 ∫ t

0

[Gc(t− s)−Gc(t+ δ − s)]ῩN (s)ds ≤ λ∗
∫ t

0

[Gc(s)−Gc(s+ δ)]ds1166

≤ λ∗
∫ T

0

[Gc(s)−Gc(s+ δ)]ds .1167
1168

Since Gc is right continuous and bounded by 1, this last expression tends to 0 as δ → 0.1169

Consequently, for δ > 0 small enough,1170

sup
N

sup
t∈[0,T ]

P
(∫ t

0

[Gc(t− s)−Gc(t+ δ − s)]ῩN (s)ds > ε/2

)
= 0 .1171

Thus, (4.23) has been established, hence ĔN1 (t)→ Ē1(t) in probability locally uniformly1172

in t. It remains to consider ĒN1 − ĔN1 , which we do in the next step.1173

Step 2 Consider1174

WN (t) := ĒN1 (t)− ĔN1 (t) =
1

N

AN (t)∑
i=1

(
1ζi>t−τNi −G

c(t− τNi )
)
.1175

It is not hard to see that if i 6= j,1176

E
[(
1ζi>t−τNi −G

c(t− τNi )
)(
1ζj>t−τNj −G

c(t− τNj )
)∣∣∣τNi , τNj ] = 0 .1177

Consequently,1178

E
[ (
WN (t)

)2 ]
=

1

N2
E

[
AN (t)∑
i=1

Gc(t− τNi )(1−Gc(t− τNi ))

]
1179

=
1

N
E
[ ∫ t

0

Gc(t− s)(1−Gc(t− s))dĀN (s)

]
1180

→ 0, as N →∞ .11811182
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It remains to show that condition (ii) of Lemma 4.3 holds, namely that1183

lim
δ→0

lim sup
N→∞

1

δ
sup
t∈[0,T ]

P

(
sup
u∈[0,δ]

∣∣WN (t+ u)−WN (t)
∣∣ > ε

)
= 0.(4.24)1184

1185

We have1186

|WN (t+ u)−WN (t)| ≤ 1

N

AN (t)∑
i=1

(
1ζi>t−τNi − 1ζi>t+u−τNi

)
1187

+
1

N

AN (t)∑
i=1

(
Gc(t− τNi )−Gc(t+ u− τNi )

)
1188

+

∣∣∣∣∣∣ 1

N

AN (t+u)∑
i=AN (t)+1

(
1ζi>t+u−τNi −G

c(t+ u− τNi )
)∣∣∣∣∣∣ .1189

1190

The second term has already been treated in Step 1, as well as ĀN (t+ δ)− ĀN (t),1191

which bounds the third term. It remains to treat the first term. Let1192

∆N
1 (t, u) : =

1

N

AN (t)∑
i=1

1t−τNi <ζi≤t+u−τNi ,1193

sup
u≤δ

∆N
1 (t, u) =

1

N

AN (t)∑
i=1

1t−τNi <ζi≤t+δ−τNi ,1194

P
(

sup
u≤δ

∆N
1 (t, u) > ε

)
≤ 1

ε2
E

[(
1

N

AN (t)∑
i=1

1t−τNi <ζi≤t+δ−τNi

)2]
.1195

1196

Let P (ds, du, dζ) be a PRM on R+ ×R+ ×R+ with mean measure dsduG(dζ), and P̄1197

the associated compensated measure. We have1198

E

[(
1

N

AN (t)∑
i=1

1t−τNi <ζi≤t+δ−τNi

)2]
1199

= E

( 1

N

∫ t

0

∫ ∞
0

∫ t+δ−s

t−s
1u≤ΥN (s−)P (ds, du, dζ)

)2
1200

≤ 2E

( 1

N

∫ t

0

∫ ∞
0

∫ t+δ−s

t−s
1u≤ΥN (s−)P̄ (ds, du, dζ)

)2
1201

+ 2E

[(
1

N

∫ t

0

(Gc(t− s)−Gc(t+ δ − s))ΥN (s)ds

)2
]
.1202

1203

The first term is of ordre N−1, and tends to 0 as N →∞. The second term is bounded1204

by 2(λ∗)2 times1205 (∫ t

0

(G(t+ δ − s)−G(t− s))ds
)2

≤

(∫ t+δ

t

G(u)du−
∫ δ

0

G(u)du

)2

1206

≤ δ2 .12071208

This manuscript is for review purposes only.



EPIDEMIC MODELS WITH VARYING INFECTIVITY 37

Consequently1209

lim sup
N

1

δ
sup
t≤T

P
(

sup
u≤δ

∆N
1 (t, u) > ε

)
→ 0, as δ → 0 .1210

Step 3. The case of R̄N1 . Essentially the same argument will work in the case1211

of R̄N1 (Gc was decreasing, Φ is increasing). The details are left to the reader.1212

Remark 4.9. A proof of Lemma 4.8 can be found in [21]. There the authors use1213

the fact that the integral of Gc(t − s) (resp. Φ(t − s)) can be integrated by parts,1214

since Gc (resp. Φ) is decreasing (resp. increasing), thus simplifying step 1 of the proof.1215

However, the present version of step 1, which follows the same argument as Lemma1216

4.6, allows to shorten step 2.1217
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