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EPIDEMIC MODELS WITH VARYING INFECTIVITY

RAPHAEL FORIEN*, GUODONG PANG', AND ETIENNE PARDOUX ¥

Abstract. We introduce an epidemic model with varying infectivity and general exposed and
infectious periods, where the infectivity of each individual is a random function of the elapsed time
since infection, those function being i.i.d. for the various individuals in the population. This approach
models infection-age dependent infectivity, and extends the classical SIR and SEIR models. We
focus on the infectivity process (total force of infection at each time), and prove a functional law of
large number (FLLN). In the deterministic limit of this FLLN, the evolution of the mean infectivity
and of the proportion of susceptible individuals are determined by a two-dimensional deterministic
integral equation. From its solutions, we then obtain expressions for the evolution of the proportions
of exposed, infectious and recovered individuals. For the early phase, we study the stochastic model
directly by using an approximate (non-Markovian) branching process, and show that the epidemic
grows at an exponential rate on the event of non-extinction, which matches the rate of growth derived
from the deterministic linearized equations. We also use these equations to derive the expression for
the basic reproduction number Ry during the early stage of an epidemic, in terms of the average
individual infectivity function and the exponential rate of growth of the epidemic, and apply our
results to the Covid—19 epidemic.

Key words. epidemic model, varying infectivity, infection-age dependent infectivity, deterministic
integral equations, early phase of an epidemic, basic reproduction number Rg, Poisson random measure

AMS subject classifications. 92D30, 60F17, 60J80

1. Introduction. Most of the literature on epidemic models is based upon ODE
models which assume that the length of time during which a given individual is
infectious follows an exponential distribution. More precisely, those deterministic
models are law of large numbers limits, as the size of the population tends to infinity,
of stochastic models where all transitions from one compartment to the next have
exponential distributions, see [6] for a recent account. However, it is largely recognized
that for most diseases, the durations of the exposed and infectious periods are far
from following an exponential distribution. In the case of influenza, a deterministic
duration would probably be a better approximation. Recently in [21], the last two
authors of the present paper have obtained the functional law of large numbers (FLLN)
limits for SIS, SIR, SEIR and SIRS models where in the stochastic model the duration
of the stay in the I compartment (resp. both in the E and the I, resp. both in the
I and the R compartments) follow a very arbitrary distribution. Of course, in this
case the stochastic model is not a Markov model, which makes some of the proofs
more delicate. Indeed, the fluctuating part of a Markov process is a martingale, and
many tools exist to study tightness and limits of martingales, which are missing in the
non-Markovian setting. Nevertheless, we were able in [21] to use ad hoc techniques in
order to circumvent that difficulty, and we proved not only FLLNs, but also functional
central limit theorems (FCLTs). While the classical “Markovian” deterministic models
are ODEs, our more general and more realistic “non-Markovian” deterministic models
are Volterra type integral equations of the same dimension as the classical ODE models,
i.e., equations with memory. Recently in [11], the authors used the approach in [21] to
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2 R. FORIEN, G. PANG, AND E PARDOUX

describe the Covid-19 epidemic in France. The flexibility of the choice for the law of
the infectious period was very helpful in order to write a realistic model with very few
compartments, and our model follows better the data than Markov models.

The aim of the present paper is to go a step further in the direction of realistic
models of epidemics, and to consider the case where the infectivity of infectious
individuals depends upon their time since infection. It has been established in [14] that
in the case of the Covid-19 disease, the infectivity of infectious individuals decreases
after symptom onset. In fact it is believed that in most infectious diseases, the
infectivity of infectious individuals depends upon the time since infection. This was
already argued almost a century ago by Kermack and McKendrick, two of the founders
of epidemic modeling in [17]. In that paper, the authors assume both an infection
age infectivity, and an infection age recovery rate. The latter can be thought of as
the hazard function of the duration of the infectious period, which then has a general
absolutely continuous distribution. Like in the present paper, their model is a Volterra
integral equation. The same deterministic model has also been described as an “age of
infection epidemic model” in [4] and in the recent book [5, Chapter 4.5]. See also two
recent papers in the study of Covid-19 pandemic [13, 12], which use a transport PDE
model (it is worth noting that PDEs have been commonly used to capture the effect
of age of infection in the epidemic literature, see, e.g., [15, 25, 16, 20]). The novelty of
the present paper is that we prove that our integral equation deterministic model is
the law of large numbers limit of a well specified individual based stochastic model.

The most realistic assumption is probably that this infectivity first increases
continuously from 0, and then decreases back to 0. We shall however allow jumps in
the random infectivity function, in order in particular to include the classical case of a
constant infectivity during the infectious period. We also want to allow a very arbitrary
law for the infectious (or exposed/infectious) period(s), as was done in [21]. In this
work again, the FLLN limiting deterministic model is a Volterra type integral equation,
which is of the same dimension as the corresponding classical ODE model, see Theorem
2.7. We treat only the case of SIR and SEIR models (see also Remark 2.10 on the
SIS and SIRS models), but we intend to extend in later publications our approach
to other types of models, including models with age classes and spatial distribution,
see already [22] for multi-patch models with general exposed and infectious durations.
We have also established in a separate publication the FCLT associated to the FLLN
established in the present paper, see [23].

Our approach in this paper is to assume that in the original stochastic finite
population model, the infectivity of each individual is a random function of the time
elapsed since his/her infection, those functions associated to various individuals being
independent and identically distributed (i.i.d.). The total force of infection at each
time is the aggregate infectivity of all the individuals that are currently infectious.
We assume that the infectivity random functions are piecewise continuous with a
finite number of discontinuities, which includes all the commonly seen examples, in
particular, constant infectivity over a given time interval as a special case. They are
also allowed to start with a value zero for a period of time to generalize the SEIR
model. These random functions then determine the durations of the exposed and
infectious periods, and therefore, their corresponding probability distributions, which
can be very general.

Under the i.i.d. assumptions of these infectivity random functions of the various
individuals, we prove a FLLN for the infectivity process, together with the counting
processes for the susceptible, exposed, infectious and recovered individuals. The
mean infectivity and the proportion of susceptible individuals in the limit are uniquely
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EPIDEMIC MODELS WITH VARYING INFECTIVITY 3

determined by a two-dimensional Volterra integral equation. Given these two functions,
the proportions of exposed, infectious and recovered individuals in the limit are
expressed in terms of the two above quantities. They generalize the integral equations
in the standard SIR/SEIR models with general exposed and infectious periods in [21].
Our proofs are based upon Poisson random measures associated with the infectivity
process, which help us to establish tightness and convergence. This paper further
develops the techniques in [21], since for establishing the mean infectivity equation, we
cannot integrate by parts as was done in [21]. See below Lemmas 4.4 and 4.5, which
give a key argument for the proof of Lemma 4.6.

Our limiting integral equations can be easily solved numerically. For the standard
SIR/SEIR model with general exposed and infectious periods, the integral equations
are implemented to estimate the state of the Covid-19 pandemic in France in [11]. In
another recent work, Fodor et al. [10] argue that integral equations (in the case of
deterministic infectious periods) should be used instead of ODEs since the latter may
significantly underestimate the initial basic reproduction number Ry. We claim that
our model may be used to better predict the trajectory of the epidemic, especially at
the beginning of the epidemic and when certain control measures like lockdown and
reopening are implemented.

We also study the early phase of the epidemic, during which the proportion of
susceptible individuals remains close to 1, which allows to linearize the system of
equations. However, typically the epidemic starts with a very small number of infected
individuals, so that we need to go back to the stochastic model if we want to describe
that early phase. Thanks to a comparison with (non—-Markov) branching processes,
we are able to show that, conditioned upon non-extinction, the epidemic grows at an
exponential rate p, reaching a given proportion of infected individuals in the population
after a length of time of the order of p~!log(NV), if NV is the total population size.
After that time, we can follow the linearized deterministic model, whose rate of growth
is the same p.

The rate p is easily estimated from the data (if d denote the “doubling time”, i.e.,
the number of days necessary for the number of cases to double, p = d~'log(2)). It is
then interesting to express the basic reproduction number Ry in terms of p and of the
average infectivity function, a formula which we deduce from the linearized Volterra
equation, as was already done by [26], see their formula (2.7). We compute explicitly
the value of Ry for different values of two unknown parameters for the case of the
early phase of the Covid—19 epidemic in France, assuming a decrease of the infectivity
compatible with the results in [14]. We see that the decrease of the infectivity with
infection—age induces a decrease of Ry.

The paper is organized as follows. In Section 2.1, we formulate our stochastic
model, and make precise all the assumptions. In Section 2.2, we state the FLLN,
Theorem 2.7. Section 2.3 is devoted to the early phase of the epidemic: we state
Theorem 2.11 which describes the behavior of the stochastic model, and Theorem
2.13, which describes the behavior of the deterministic linearized model. In Section
2.4, we express Ry in terms of the exponential growth rate and the mean infectivity
function, and in Section 2.5 we apply our techniques to the French Covid-19 epidemic
during 2020. Section 3 is devoted to the proofs of Theorem 2.11 and Theorem 2.13,
and Section 4 to the proof of Theorem 2.7.

2. Model and Results.

2.1. Model description. All random variables and processes are defined in
a common complete probability space (Q2, F,P). We consider a generalized SEIR
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4 R. FORIEN, G. PANG, AND E PARDOUX

epidemic model where each infectious individual has an infectivity that is randomly
varying with the time elapsed since infection. As usual, the population consists of four
groups of individuals, susceptible, exposed, infectious and recovered. Let N be the
population size, and S™(t), EN(t), IV (t), RN (t) denote the sizes of the four groups,
respectively. We have the balance equation N = SV (t) + EN(t) + IN(t) + RN (¢)
for t > 0. Assume that RY(0) = 0, S¥(0) > 0 and EV(0) + IV (0) > 0 such that
SN(0) + EN(0) + IV (0) = N. Let AN(¢) be the cumulative number of individuals
that become infected in (0,¢] for + > 0 and denote the associated event times by 77V,
i=1,...,AN(®).

Note that an infected individual is either exposed or infectious. More precisely,
he/she is first exposed, then infectious. Let us first consider those individuals who are
infected after time O (i.e. they are in the S compartment at time 0). The i-th infected
individual is infected at time 7. He/she is first exposed during the time interval
[TV, 7N + ;). Then he/she is infectious during the time interval (77¥ + ¢;, 7V + ¢ +m:),
and finally removed on the time interval [7 + (; + 7, +00). To this individual is
attached an infectivity process {\;(t) : ¢ > 0}, which is a random right—continuous
function such that

—0, f0<t<(,
(2.1) /\i(t) >0, ifG<t<G+ iy
=0, ift>¢+mn.

We shall formulate some assumptions on the functions A; below. Let us just say for
now that the collection of the functions {\;(+)};>1 are i.i.d. Since

(2.2) ¢ =inf{t >0, \(t) >0}, and {+n =inf{t >0, \;(r) =0, Vr > t},

the collection of random vectors ({;,7;);>1 is also i.i.d.

Each initially exposed individual is associated with an infectivity process )\9 (1),
j=1,...,EN(0), with a cadlag path; the )\?’s are assumed to be i.i.d. and such that
(2.3)

¢) =inf{t >0, AJ(t) >0} >0as. and () +n)=inf{t>0, \)(r) =0, Vr > t}.
Each initially infectious individual is associated with an infectivity process )\2’] (1),
k=1,...,IY(0), with a cadlag path; the )\g’l’s are also assumed to be i.i.d. and such
that
(2.4) inf{t >0, A\27(#) >0} =0 as. and " =inf{t >0, \>'(r) =0, Vr > t}.

We will write (¢,n) (resp. (¢°,n°), resp. %) for a vector which has the same law as
(Ci»mi) (vesp. (¢2,n9), resp. no). Let H(du,dv) denote the law of (¢, n), Ho(du, dv)
that of (¢, n°) and Fy s the c.d.f. of n®{. Moreover, we define

0 ;:/0 /0_ H(du, dv) = P(C + 1 < 1),
vy = [ [ Hldudo) =P(C <t <)
Dy(t) := /Ot Ot“ Ho(du,dv) = P(C° +1° < t),

t [e%s)
Wo(t) = [ [ Holdu.dv) =P <t < O+ of),

t—u
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EPIDEMIC MODELS WITH VARYING INFECTIVITY 5

and Fp ;(t) :=P(n®! <t). We shall also write
H(du,dv) = G(du)F(dv|u), Hy(du,dv) = Go(du)Fo(dv|u),

i.e., G is the c.d.f. of ¢ and F(-|u) is the conditional law of 7, given that ¢ = u, Go
is the c.d.f. of ¢ and Fy(-|u) is the conditional law of 7%, given that (° = u. In the
case of independent exposed and infectious periods, it is reasonable that the infectious
periods of the initially exposed individuals have the same distribution as the newly
exposed ones, that is, Fy = F'. Note that U(t) = G(t) —®(t) and Vo (t) = Go(t) — Po(?).
Also, let GG =1—Go, G°=1-G, Fg;=1—Fyr,and FC=1—F.

We remark that our framework allows very general random infectivity functions
A(t), which can be piecewise continuous (see Assumption 2.1) and can also generate
dependent and independent ¢ and 7 variables for each individual. We give an example
of independent ¢ and 7 variables. Let ¢, n and h be random objects so that ( is
independent of the pair (7, h), where ¢ and n are R valued and h is a random element
of C(]0, 1]; Ry ) satistying h(0) = h(1) = 0 and h(t) > 0 for 0 < ¢ < 1, a.s. (g and h can
be dependent). We extend h as an element of C(R;R) by specifying that h(t) = 0 if
t ¢ [0,1]. Define A(t) = h(¢n~1(¢"'t — 1)) for any ¢ > 0. Then A(¢) = 0 on [0,¢], and
again on [¢ + 1, +00), where A(t) > 0 if { <t < { +n. By construction, ¢ and 7 are
independent.

The total force of infection which is exerted on the susceptibles at time ¢ can be
written as

EN(0) IV (0) AN (1)
(2.5) Wy =D M)+ AV () + Nt =Ny, t>o0.
j=1 k=1 i=1

Thus, the instantaneous infectivity rate function at time ¢ is
SM(t)
N

The infection process AN (t) can be expressed by

(2.6) TN(t) = =——==3N(), t>o0.

t oN]
(27) AN(t) = / / 1u§TN(s*)Q(dS7dU)7 t>0,
0 JoO

where @ is a standard Poisson random measure (PRM) on R%, and we use 1,4 for
the indicator function. One may observe that besides the PRM @, the randomness

in the epidemic dynamics comes only from the infectivity processes {A9(t)}, 01 (1)}

and {\;(¢)} (the infectious periods {77]} (772 Ty and {n;} are induced from them).

The epidemic dynamics of the model can be described by

(2.8) SN(t) = s7(0) — AN (1),

EN(0) AN (#)
(29) EN(t) = Z 1C?>t+ Z 1TiN+Ci>t7
j=1 i=1
EN(0) Y (0) AN (1)
N
(2100 IN() = ) Leoctacoyne + > Loas,+ > LonvgcictarNacitn o
j=1 k=1 i=1
EN(0) IV (0) AN (t)

(2.11) Z Leopmoct + Z Lo, + Z LN ami<t -
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6 R. FORIEN, G. PANG, AND E PARDOUX

In the case where (JQ = 0 and (; = 0, the model is a generalized SIR model, and
EN(t)=0.

We now make the following assumptions on the infectivity functions and the initial
quantities. We first state our assumptions on A%, X\ and A.

Assumption 2.1. The random functions A\(t) (resp. A°(t) and resp. A\%(t)), of
which Ap (), Aa(t), ... (resp. A(t),A3(£),... and resp. A7(¢),A)7(¢),...) are iid.
copies, satisfy the following assumptions. There exists a constant A* < oo such that
sup;eo,7) max{A’(t), NS (#), A(t)} < A* almost surely, and in addition there exist a
given number k > 1, a random sequence 0 = £ < ¢! < ... < €8 = 5 and random
functions M € C(Ry;R,), 1 < j < k such that

k
(2.12) )\(t) = Z)\j(t)l[éj—léj)(t) .

We define
@r(r) == sup sup [N (t) = M (s)].
1<j<k 0<s,t<T,|t—s|<r
It is clear that for each T' > 0, ¢r is continuous and 7 (0) = 0.
Let \O(t) = E[AO(#)], A%1(t) = E[A%!(t)] and A(t) = E[\(t)] for ¢ > 0.
It is clear that \°(¢), A%/ (t) and A(t) are all cadag, and they are also uniformly
bounded by A*.

Remark 2.2. We think that A(¢) being continuous is a good model of reality.
However, the early phase of the function A(¢) is not well known, since patients are
tested only after symptom onset, and usually (this is the case in particular for the Covid—
19) they may have been infectious (i.e., with A(¢) > 0) prior to that. Consequently we
should not exclude the possibility that A(f) jumps to its maximum at time ¢, and the
decreases continuously to 0.

Moreover, in order to include the “classical” models where A(t) is first 0 during
the exposed period, and then equal to a positive constant during the infectious period,
as well as possible models of infectivity that would be piecewise constant, we allow
A(t) to have a given number of jumps.

For one of our results, we shall need the following assumption.

Assumption 2.3. Assume that

()] = sf([ )]

Remark 2.4. The assumption on the second moment of fooo A(t)dt will be necessary
in order to apply Theorem 3.2 from [9] to the branching process approximation of the
stochastic model for the early phase of the epidemic. Since we assume that A(¢) < A*,
for this second moment condition to be satisfied, it is sufficient that the duration of
the infectious period 7 satisfies E[n?] < oo, which certainly is not a serious restriction
in practice. In our application to the Covid—19 in Section 2.5, we choose a law with
compact support for 7.

Let XV := N~'X for any process X"V. Let D = D(R;R) denote the space of
R-valued cadlag functions defined on R;. Throughout the paper, convergence in D
means convergence in the Skorohod .J; topology, see Chapter 3 of [3]. Also, D* stands
for the k-fold product equipped with the product topology.

E
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EPIDEMIC MODELS WITH VARYING INFECTIVITY 7

Assumption 2.5. Assume that there exist deterministic constants E(0),1(0) €
[0,1] such that 0 < E(0) + I(0) < 1, and (EV(0),IN(0)) — (E(0),1(0)) € R% in
probability as N — oc.

Finally we make the following independence assumption.

Assumption 2.6. Assume that the triple (X;(-),7 > 1; AJ(-),j > 1; AT, E> 1),
(EN(0),IV(0)) and @ (the PRM upon which the construction of the process AN (:) is
based) are independent.

2.2. FLLN. We now state the main result of this paper.
THEOREM 2.7. Under Assumptions 2.1, 2.5 and 2.6,
(213) (5.3, ENIN.RY) - (5.3,E.LR) in D° as N oo

in probability, locally uniformly in t. The limits S and J(t) are the unique solution of
the following system of Volterra integral equations

(2.14) S(t) =1 — B(0) — [(0) — /0 ' 5(s)3(s)ds

(2.15) J(t) E(O))\O(t)+f(0)5\0’1(t)+/0 At —5)S(s)3(s)ds

and the limit (E, I, R) is given by the following integral equations:

(2.16) Et)=E0)G§(t) + | G(t—s)S(s)I(s)ds,

0
(2.17) I(t) = I(0)Fg 1 (t) + E(0)Wo(t) + /0 U(t—5)S(s)I(s)ds,
(2.18) R(t)= I(0)Fp 1(t) + E(0)®o(t) + /th)(t —5)8(s)3(s)ds .

The limit S is in C, and the limits 3, E,I, R are in D. If;\oi and XL are continuous,
then J is in C, and if Go and Fy 1 are continuous, then E,I, R are in C.

Remark 2.8. If we suppose only that Assumptions 2.5 and 2.6 are valid, and
SUPe(o,7] max{\’(t),
AT, A(#)} < A* almost surely, then Theorem 2.7 remains valid, but with the
convergence in probability in D being replaced by the convergence in probability in
LY (Ri;R5), for any p > 1.

The SEIR/SIR model. Suppose now we do not want to follow the disease
progression in the detail adopted so far. Rather, we merge the compartments E
(exposed) and I (infectious) into a single compartment I, where now I stands for
infected, whether exposed or infectious. Doing this, we do not modify at all our
model. Each newly infected individual belongs to the I compartment from the time
of infection 7V until the end of the infectious period 7V + ¢(; + n;, where agaln
G +mi = inf{t >0, \i(r) =0, Vr > t}. Of course, between time 7V and time 7 + ¢,
Ai(t) = 0 (recall that ¢; = inf{t7 Ai(t) > 0}), so that he/she is not infectious, but
exposed. Likewise, each initially infected individual belongs to the I compartment
from time 0 up to time C;») + 7]?, where CJQ + n? =inf{t >0: /\?(r) =0,Vr > t}. Note

This manuscript is for review purposes only.
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N = 1000 N = 10000
0.12 7 —— Force of infection 0.12 1 —— Force of infection
0.10 A 0.10 1 —
0.08 - 0.08
0.06 - 0.06 1
0.04 0.04
0.02 A 0.02 1
0.00 - 0.00 I
0 10 20 30 40 50 0 10 20 30 40 50
1.0 4 1.0 4
0.8 0.8
0.6 1 Z — Susceptibles 0.6 1 —— Susceptibles
—— Infectious —— Infectious
0.4+ —— Removed 0.4+ —— Removed
0.2 0.2
0.0 0.0 1
0 10 20 30 40 50 0 10 20 30 40 50
time (days) time (days)

Fic. 1. Numerical illustration of the FLLN obtained in Theorem 2.7 for the SEIR/SIR model (see
below). Each graphic shows the mean of 1,000 independent simulations of the stochastic SEIR/SIR
model (continuous lines) and the corresponding deterministic solution to (2.14)-(2.18) (black dashed
lines), each started with TN(O) = I(0) = 0.05. For each curve, the dark (resp. light) shaded areas
around the curves represent the intervals containing 50% (resp. 95%) of the simulations. The two
compartments E and I have been merged so as not to burden the graphic with another pair of curves
(see below). The population size N = 103 on the left, N = 10* on the right. The model and the
distribution of (¢,n,\) are as described in Subsection 2.5 below, with pgr = 0.8, a = 0.7.

297 that (JQ =0 if )\?(0) > 0 (if the individual is already infectious at time 0). As a result,
298 (2.9) and (2.10) are replaced by

1V (0) AN (1)
200 (2.19) N(t) = Z Liccoqno + Z Lo pcimss
300 k=1 =1

301 and EN(t) = 0 in all the other equations. The force of infection is then

IV (0) AN (1)
502 (2.20) Ny =Y NO+ D M=),
303 k=1 =1

304  We call this model the SEIR/SIR model, since it is an SIR model, but with I meaning
5 “infected”, and the state E is implicit, i.e. we do not exclude that individuals, when
6 they become infected, are first exposed, then later infectious. Define

307 Ft)=P(+n<t), where(+n=inf{t >0, \(r)=0, Vr >t},
308 Fo(t) =P(¢° +7° <t), where ¢° +n° =inf{t >0, \°(r) =0, Vr > t}.
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EPIDEMIC MODELS WITH VARYING INFECTIVITY 9

With those notations, the deterministic LLN SEIR/SIR model reads as follows.

(2.21) S(t)=1-1(0)— ) S(s)3(s)ds,

(2.22) 3(t) = TN (t) + Ot At —5)S(s)3(s)ds,
(2.23) I(t) = T(0)F§(t) + /Ot Fe(t — 5)S(s)3(s)ds,
(2.24) R(t) = I‘(O)Fo(t)+/OtF(t—s)§(s)3(s)ds.

Now in the particular case where A°(+) and A(-) are such that ( = ¢ =0 as. (i.e.,
an infected individual is immediately infectious), there is no exposed period, then the
above model is the generalized SIR model with varying infectivity.

Figure 1 illustrates the FLLN of Theorem 2.7 for the SEIR/SIR model, for two
values of the population size (10% and 10%). Each figure displays the mean of 1,000
independent simulations, the trajectory of the deterministic equations (2.14)-(2.18),
and the intervals containing 50% and 95% of the trajectories. The details of the model
and the distribution of (¢,n, \) used in the simulations are described in Subsection 2.5
below. In each case, the mean of the simulations is almost superposed with the
solution to the deterministic equations, and for N = 10%, the envelopes are very
concentrated around the means. This is not surprising in view of the FCLT proved in
[23]. Indeed, this theorem implies that the trajectory of the (renormalised) stochastic
process (EN(t),jN (t)jN (t),EN(t), t > 0) is (with high probability) at a distance of
the order of N—1/2 from that of the deterministic limit. The simulations obtained
in Figure 1 confirm this, and the width of the 50% and 95% intervals are exactly
proportional to N—1/2,

Remark 2.9. The above result generalizes both our SIR and our SEIR FLLN
results in [21].

The SIR model in [21] is the particular case of the present result, where A(t) =
Ali<,, n being the random duration of the infectious period. In this case, A\(t) = AF°(¢),
if F is the c.d.f. of n, and F© =1 — F. Note that in this case J(¢t) = M (t). Therefore,
if we divide the J equation by A, we find equation (2.17), which is also equation (2.4)
n [21]. If we assume that the law of 1 is exponential, then we are in the case of the
classical SIR model.

The SEIR model in [21] corresponds to the situation where A(t) = AM¢<icctn,
where ( is the duration of the exposed period (the time when the individual is
infected, but not yet infectious), and 7 is as above, while A\°(t) = A ¢o<¢ccoymo. Then
A) = AP <t) —P((+n <t)] = AU(t). If we divide the T equation by A, we find
equation (2.17), which is also (3.15) in [21]. If moreover ¢ and n are independent
exponential random variables, then we are reduced to the classical SEIR model.

Remark 2.10. For the generalized SIS model, since S(t) = 1 — I(t), it is clear that
the epidemic dynamics in the FLLN is determined by the two—dimensional functions
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10 R. FORIEN, G. PANG, AND E PARDOUX

(j v ) via the following integral equations:

(S]]

(1) = T3 (1) + /O Nt — 5)(1 = I())3(s)ds,

I(t) = I(0)F§ () + /0 Fe(t — s)(1— I(s))3(s)ds.

Recall that as shown in Theorem 2.3 of [21], in the SIS with general infectious periods,
J(s) = M (s), and the epidemic dynamics is determined by the one-dimensional integral
equation for I.

For the generalized SIRS model, the variables ({;,7;) in our setup represent the
infectious and recovered/immune periods of newly infected individuals, and similarly
the variables ( ;-], 77?) represent the infectious and immune periods of initially infectious
individuals. We assume that there is no initially immune individuals. Let IV, RV be
the processes counting infectious and recovered/immune individuals (corresponding to
the notation E~ and IV in the SEIR model). Of course, instead of (2.1), the infectivity
function A(t) should be positive only in the infectious periods [0, (;). Similarly, )\? (t)
should be positive only over [0, C]Q). The definitions of the variables (¢;, n;), (CJQ , 77?)
in (2.2) and (2.3) also need to be modified accordingly in the natural way. The
distribution functions G, Fy g are for initially infectious and immune periods, and
G, F for newly infectious and immune periods, similarly for the notation ¥, ¥y, @, ®.
Then the epidemic dynamics of the generalized SIRS model in the FLLN is determined
by the three—dimensional functions (fi, I, R) via the following integral equations:

J(t) = T(0)A°(t) + /0 At —s)(1—1I(s) — R(s))I(s)ds,
I(t) = I(0)G{(t) + |

R(t) = I1(0)¥o(t) + /0 W(t—s)(1—1(s) — R(s))I(s)ds.

Also recall that as shown in Theorem 3.3 of [21], in the SIRS model with general infec-
tious and recovered periods, J(s) = Al (s), and the epidemic dynamics is determined
by the two-dimensional integral equation for (I , R).

2.3. The early phase of the epidemic. Theorem 2.7 shows that the deter-
ministic system of equations (2.14)-(2.15) accurately describes the evolution of the
stochastic process defined in Subsection 2.1 when the initial number of infectious
individuals is of the order of N. But epidemics typically start with only a handful of
infectious individuals, and it takes some time before the epidemic enters the regime of
Theorem 2.7. Exactly how long this takes depends on the population size N and on
the growth rate of the epidemic. To determine this growth rate, we study the behavior
of the stochastic process when the initial number of infectious individuals is kept fixed
as N — oo.

In order to simplify the notations, we shall use the reduced model introduced
in (2.19) and (2.20), where exposed and infectious individuals are merged in a single
infected compartment I. We now suppose that 1™V (0) = I(0) is a fixed random variable
taking values in {1,..., Ng} for some Ny > 1, and we take N > Ny throughout this
section.
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Let
(2.95) Ro = / N#)dt,
0

and let p € R be the unique solution of

(2.26) /0 h At)e Ptdt = 1.

The quantity Ry is the well-known basic reproduction number, i.e., the average number
of individuals infected by a typical infected individual in a large, fully susceptible
population. It is also well known that, if Ry < 1, the total number of infections
remains small as N — oo, i.e., limsup,_, .. AY(¢) converges in probability as N — oo
to a random variable Z taking values in N, almost surely, see Corollary 1.2.6 in [6].
If Ry > 1, however, with positive probability, a major outbreak takes place, i.e., a
positive fraction of the N individuals is infected at some point during the course of the
epidemic. The time needed in order to observe this major outbreak has been studied
for Markovian epidemic models in [1]. More precisely, it has been shown that, starting
from a fixed number of individuals, on the event that there is a major outbreak, the
first time at which the proportion of infected individuals is at least € > 0 is

% log(N) + O(1),

as N — oo, for any ¢ > 0 small enough, where p > 0 is given by (2.26) (it can easily
be seen that p > 0 if and only if Ry > 1). The aim of this section is to extend this
result to our non-Markovian setting.

We thus let, for € € (0, 1),

TN = inf{t >0: AN(t) > eN}
and, for any a € (0,1),
TN :=inf{t > 0: AN(t) > N}

Here and in what follows, we shall use X~ = X to denote the convergence in
distribution of a sequence of random variables (X~ , N > 1) to a random variable X
as N — 00, i.e., XV = X if and only if, for any continuous and bounded real-valued
function @, E [®(XY)] — E[®(X)] as N — co. We then have the following result,
which we prove in Section 3.

THEOREM 2.11. Under Assumptions 2.1 and 2.3, for any € > 0 such that € <

1 as N — oo,

_ 1

Ro’
N

T! 1

= -X,
log(N) ~ p

where X = 400 with probability g and X =1 otherwise, for some q € (0,1). Moreover,
for any a € (0,1),
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12 R. FORIEN, G. PANG, AND E PARDOUX

Theorem 2.11 essentially says that, on an event of probability close to 1 — ¢,
t — AN(t) grows approximately like (a constant times) ¢ — e”* until it becomes of the

order of N. This exponential growth comes from the fact that, as long as ?N (t) ~ 1, the
infected individuals behave almost like a branching process (which in our case is non—
Markovian, and is of the type studied in [8, 9]). Since AN (t) ~ e, this approximation
is good as long as t < % log(N), at which time the proportion of susceptible individuals
is no longer close to one, and the branching process approximation breaks down. We
shall also see in the proof of Theorem 2.11 that ¢ is equal to the extinction probability
of this approximating branching process.

Remark 2.12. The condition ¢ < 1 — P%o comes from the fact that, as long as

S(t) < R%)? each infected individual infects on average more than one susceptible
individual. Hence the proportion of susceptible individuals needs to become lower than
this threshold for the epidemic to die out (on the event that there is a major outbreak).
As a result, AN (t) has to exceed eN for some time ¢ < oo for any e < 1 — R%)‘

The fact that the number of infected individuals grows exponentially at rate p as
long as the proportion of susceptible individuals stays close to one can also be seen
from the deterministic equations by taking S(t) = 1 in (2.22) (as well as (2.23) and
(2.24)). This substitution leads to the following (linear) system (recall that in this
section F' is the distribution function of the r.v. ¢ +n):

J(t) = I(0)A°(t) + /Ot Mt — 5)3(s)ds,
(227 10 = 10750+ [ 7= 9363,

R(t) = R(0) + I(0)Fy(t) + /0 t F(t — s)3(s)ds .
We prove the following in Section 3.

THEOREM 2.13. Assume that Assumption 2.1 holds true. For p € R, suppose that
E[e=?+M] < oo and define

(2.28) 1= / Fe(s)pe~"?ds, r:=1-z1,
0

and

N(t) == Jo At + s)erds
P Fe(s)epeds

IS Fe(t+ s)e™Peds

Fo(t) == T= Fe(s)e ods

Suppose first that Ry > 1 and that p > 0 is the solution to (2.26). Then, ifXO =,
and Fy = F,, the linear system (2.27) admits the following solution
(2.29) J(t)=peft, I(t)=1ie’, R(t)=re” t>0.

If, however, Ry < 1 and p < 0 (still satisfying (2.26)), then the linear system (2.27)
(with P Ay and Fy = F,) admits the following solution

J(t) = —pet, I(t) = —ie’, R(t)=R(0)+r(l—e), t>0.
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The deterministic system (2.27) can be thought of as an approximation of the

expectation of the stochastic process (JV(¢), IV (t), RN (¢)) when 5V (t) =~ 1. Note that
if we take the exponentially growing solution (2.29) and if we set

A(t) :==I(t) + R(t) — (1(0) + R(0))

(which corresponds to the number of newly infected individuals up to time t), then,
sincet+r =1, A(t) = e’ — 1 and

(2.30) A (j log(N)> = N®—1~ N

Hence Theorems 2.11 and 2.13 show that the stochastic model and the linear de-
terministic system (2.27) have the same asymptotical behavior, on the event that
there is a major outbreak, for times of the form %log(N), a € (0,1). This is further
illustrated in Figure 2, which displays the mean of a subset 1,000 independent copies
of t — I(0) + AN (¢t) for which the epidemic didn’t go extinct at the beginning. We see
on the figure that, after an initial stochastic phase, whose duration may vary between
different realizations, the cumulative number of infected individuals indeed grows at
the expected rate p. We also see that the slope of ¢~ I(0) + AN (t) starts to decline
when AN (t) exceeds N/10 (hence when S (t) becomes less than 0.9), which is to be
expected from the deterministic model.

N = 10000

10 4 ,
--- 1(0)ert

103 4

102 4

101 4

Cumulative number of infected individuals

0 10 20 30 40 50
time (days)

FIG. 2. Ezponential growth of the cumulative number of infected individuals t — I(0) + AN (t)
in the stochastic model. The figure shows the mean (blue line), 50% envelope (dark blue region)
and 95% envelope (light blue region) of the subset of 1,000 independent simulations for which the
epidemic did not go extinct at the beginning. Fach simulation was started with I1(0) = 5 infectious
individuals and a population size of N = 10%. The dashed black line shows the expected exponential
growth during this early phase t — 1(0)eft (the factor I(0) arises from the branching property). The
mean of the sample is slightly above the dashed line, owing to the bias resulting from the fact that
only trajectories leading to a major outbreak were kept.

In the case of Markovian (SIR) epidemic models, Theorem 2 of [1] states that
the full duration of the epidemic (i.e., the time to extinction of the I population) Ty,
when starting from a single infected individual, satisfies

P(Ty —alog(N)—c>z) > (1—q)P(W>z), N — o0,
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14 R. FORIEN, G. PANG, AND E PARDOUX

for some constants a > 0 and ¢ € R, where W is a linear combination of two
independent Gumbel random variables. Moreover, a = % + %, where p is the same
as in Theorem 2.11 and p’ is the rate of decay of the number of infected individuals
during the final stage of the epidemic. In addition, Theorem 1.1 in [2] shows that the
stochastic process can be coupled with a branching process so that the two follow
the same trajectory up to the time min(7{¥, 7V), for o = 7/12, except on an event
of asymptotical negligible probability. Moreover, Theorem 1.1 in [2] also says that,
for times of the form TN + ¢, for 0 < ¢ < 1*To‘log(N) + T, the trajectory of the
stochastic process is, with high probability, at most at distance kN~ of the trajectory
of a solution of the deterministic (non-linear) equations (2.21)—(2.24), whose initial
condition is of the form

— 1(0) - 1(0)

S(0) = N 1(0) =
up to a time shift which stays of the order of 1 as N — oo, and which accounts for the
stochastic fluctuations when the number of infected individuals is small. We expect
that a similar result holds in our non-Markovian setting, but proving this would require
a careful comparison of the stochastic model with the deterministic model started
from an O(1/N) initial proportion of infected individuals over timescales of the order
of log(NN), and this would go beyond the scope of this paper.

The second part of the statement (when Ry < 1) describes what takes place when
the daily number of new infections is decreasing, either because a large fraction of
the population has been infected (or vaccinated) or because effective containment
measures have been put into place (e.g., a strict lockdown). In the former case, S(t) is
not close to one, and X should be replaced by S(t)A in order to determine p and A,
(assuming that S(t) varies slowly at this point).

Note that if we replace 1(0), R(0), 2 and Fy by their values in Theorem 2.13,
and if we set, for ¢ < 0,

J(t) = pe, I(t) = e, R(t) = ret,

then we have

j(t):/ Nt — 8)3(s)ds, I(t):// Fe(t — s)3(s)ds,

— 00

R(t) = t F(t—s)3(s)ds.

Hence (2.27) can also be interpreted as the (expected) behavior of an epidemic which
has started from an infinitesimal number of infected individuals very far back in the
past. Incidentally, substituting J(¢) = pe”® in the first equation yields exactly (2.26).

2.4. Estimating the basic reproduction number for an ongoing an epi-
demic. The function A (as well as F') depends on many factors. Some of these factors
are related to the evolution of the pathogen inside an infected individual’s organism,
and how easily it can be transmitted to neighboring individuals, and some of these
factors depend on the intensity of social contacts in the population, in particular on
physical contacts between individuals when they meet (hand shaking, kiss, hug, or
none of those). This function is affected by changes in social contacts and collective
behaviors, including public policies aimed at mitigating the effects of the epidemic,

This manuscript is for review purposes only.
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and the use of face masks. For example, during the Covid-19 pandemic, many coun-
tries implemented strict lockdowns in order to curb the spread of the disease, which
drastically reduced the rate of infectious contacts and significantly affected the growth
rate of the number of newly infected individuals. In order to estimate the impact of
such policies in terms of the dynamics of the epidemic, we thus need to be able to
gather some information on the contact rate A from the available data at some given
time.
Let us suppose that A is only known up to a constant factor p > 0, i.e.,

X(t) =pg(t), t=0,

where p is unknown but g is known (for example from medical data on viral shedding).
We can then estimate p (and Rp) from the growth rate p, which can be measured
easily at the beginning of the epidemic (p = log(2)/d, where d is the doubling time
of the daily number of newly infected individuals), using the relation (2.26). The
following is thus a corollary of Theorem 2.11.

Corollary 2.14. Let p be the growth rate of the number of infected individuals.

Then
o] -1
u= ([ ateras)
0

and the basic reproduction number Ry is given by

I, g(t)dt
fooo g(t)e—rtdt

In the literature, ([, g(t)dt)~'g(t) is called the generation interval distribution
(it is the distribution of the interval between the time at which an individual is infected
and the time at which its “children” are infected). The relation (2.31) is thus (2.7)
in [26]. Note that Ry is the mean multiplicative factor of the epidemic from one
generation to the next, while p is a growth factor in continuous time.

Note that, by the second part of Theorem 2.13, (2.31) remains valid on any interval
during which S(¢) ~ S(tg) remains approximately constant (but not necessarily close
to 1), even when p < 0. In that case, one should add a factor S(to) in front of J(s) on
the right hand sides of (2.27), and we obtain

(2.31) Ry =

ug(to)/ g(s)e P%ds = 1.
0

Hence if we define the effective reproduction number R by R. := S(to) [~ A(t)dt
(i.e., the average number of secondary infections when S(t) = S(¢y)), we have

_ fooo g(s)ds
T g(s)ereods

Remark 2.15. Note that the exponent p is a quantity which is deduced from the
observation of the epidemic (it is closely related to the “doubling time” of the number
of cases). The above results give us g and Ry in terms of p and the function g(¢). If
A(t) is deterministic, so are ¢g(t) and n and thus

R. = S(to)Ro

S g(s)ds
Ro = ¢+n —ps e
c g(s)e=rsds

This manuscript is for review purposes only.
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16 R. FORIEN, G. PANG, AND E PARDOUX

If, in addition, g(¢t) = g > 0 for ¢ <t < { + 7, then this simplifies to the well-known

result
m

Ry=—7—7—"—.
0 e=PS(1 —e—rm)

Remark 2.16. Theorem 2.13 and its Corollary generalize Proposition 2 and Corol-

lary 3 in [11], in the case A(t) = Al¢<t¢<¢yn for some constant A > 0, and the pair (¢, n)

is an arbitrary R3 —valued random vector. In that case, our formula for Ry reduces to

pE[n]
Ele (1 —e )]

Ry =

In the particular case where ¢ and 7 are independent exponential random variables,
with parameters v and +, the above formula becomes

R0:<1+§) <1+f;>.

From this we deduce the formula in the classical SIR case by choosing v = +0o0, i.e.,
Ro=1+ B
v

2.5. Application to the Covid—19 epidemic. We now want to explain how
the type of model described in this paper can be used to model the Covid-19 epidemic.
As we have seen, the increase in realism with respect to the classical “Markovian”
models (where the infectivity is constant and fixed across the population, and the
Exposed and Infectious periods follow an exponential distribution) is paid by replacing
a system of ODEs by a system of Volterra integral equations. However, we have a
small benefit in that the flexibility induced by the fact that the law of A is arbitrary
allows us to reduce the number of compartments in the model, so that we can replace
a system of ODEs by a system of Volterra type equations of smaller dimension.

To be more specific, let us describe the SEIRU model of [19]. An individual
who is infected is first “Exposed” E, then “Infectious” I. Soon after, the infectious
individual either develops significant symptoms, and then will be soon “Reported” R,
and isolated so that he/she does not infect any more; while the alternative is that this
infectious individual is asymptomatic: he/she develops no or very mild symptoms, so
remains “Unreported” U, and continues to infect susceptible individuals for a longer
period. Both unreported and reported cases eventually enter the “Removed” (Rem.)
compartment. In this model, there are 6 compartments: S like susceptible, E like
exposed, I like infectious, R like reported, U like unreported, and Rem like removed.

Our approach allows us to have a more realistic version of this model with only 3
compartments (see Figure 3): S like susceptible, I like infected (first exposed, then
infectious), R like removed (which includes the Reported individuals, since they do not
infect any more, and will recover soon or later). As already explained, we do not need
to distinguish between the exposed and infectious, since the function A is allowed to
remain equal to zero during a certain time interval starting from the time of infection.
More importantly, since the law of X is allowed to be bimodal, we can accommodate
in the same compartment I individuals who remain infectious for a short duration
of time, and others who will remain infectious much longer (but probably with a
lower infectivity). Moreover, since we know, see [14], that the infectivity decreases
after a maximum which in the case of symptomatic individuals, seems to take place
shortly before symptom onset, our varying infectivity model allows us to use a model
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[ Susceptible

[] Exposed

[ Infectious

[l Nolonger infectious

F1G. 3. Flow chart of the SEIRU model of [19] and of our SIR model. We are able to replace the
siz compartments of the SEIRU model with only three compartments by using the equations described
in Theorem 2.7.

corresponding to what the medical science tells us about this illness. Note that our
version of the SEIRU model from [19] is the same as the one which we have already
used in [11] (except that there we had to distinguish the E and the I compartments).
However, the main novelty here is that the infectivity decreases after a maximum near
the beginning of the infectious period.

— g(t)

¢ ¢+n
time since infection

F1G. 4. Profile of the function g(t) used in our computation of Ro as a function of ¢ and 7.
The function increases linearly (up to a value 1 or a depending on whether the individual is reported
or unreported) on the interval [, ¢ + n/5] and then decreases linearly on [ +n/5,¢ + n].

More precisely, we consider that ¢ — g¢(t) increases linearly on the interval
[¢,¢ + n/5], from 0 to 1 for reported individuals, and from 0 to « for unreported
individuals, and that it then decreases linearly to 0 on the interval [¢ + /5, + 7],
as shown on Figure 4. We then take (X7, X3) a pair of independent Beta random
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variables with parameters (2, 2) and we assume that

3+ Xo for reported individuals,

=2+42Xy, =
¢ ' K {8 44X,  for unreported individuals.

This joint law of (¢, n) is the one that was used in [11] to study the Covid—-19 epidemic
in France (where the infectivity was assumed to be constant and uniform among
individuals in this work), and these values are compatible with the results described
in [14].

Numerical results are presented in Figure 5 for three growth rates (0.277, -0.06,
0.032) which are derived from the doubling/halving times of the number of hospital
deaths during the first wave (doubling time of 2.5 days), the first lockdown (halving
time of 11.6 days) and the second wave (doubling time of 21.4 days) of the Covid-19
epidemic in France [11]. We note that, when p > 0 (resp. when p < 0), Ry is increasing
(resp. decreasing) with the proportion of unreported individuals and with . We also
note that with the same durations of the exposed and infectious periods, but with A(t)
constant, Ry would be larger, which is not surprising, since in the present model the
decrease of A(t) reduces the effect of the factor e ¢ in the integrals in the denominator,
which makes Ry > 1 for p > 0.

3. The early phase of the epidemic. The aim of this section is to prove
Theorem 2.11 and Theorem 2.13. In particular, we assume in this section that

E {(fooo )\(t)dt)ﬂ < oo and that Assumption 2.1 is satisfied. The first step is to

couple the stochastic process (AN (¢), 3V (t),t > 0) with two branching processes such
that, at least up to some stopping time, the stochastic process AN stays between the
two branching processes. To do this, we redefine the model of Subsection 2.1 in the
following way. Let (A)(-),k > 1) be as before and let @ be a PRM on R% x D with
intensity ds ® du ® P(d)\), where P is the probability distribution of A(-). We then set

1(0) t o0
() = Z A (t) +/0 /0 /D At = 8)1y<yrn(s-)Q(ds, du, d)),
k=1

t o]
AN(t) Z:/O /0 /DlugTN(s—)Q<d3aduad/\)7

with TN () = %31\7(1&) and SN (t) = N —1(0)— AN (t) as before. Then, for € € [0, 1),
we define
1(0)

t o0
T.(8) = SN + / / / At — ) Luc(t—oyo. (o) Q(ds, du, dN),
o1 oJo Jp

t [ee]
Aty= [ [ [ tuciono Qs duan),

Recall that, for any € € [0, 1),
TN =inf{t > 0: AN (t) > eN}.

LEMMA 3.1. For each N > Ny, the process (IV(t), SN (t), AN (t),t > 0) has the
same distribution as the one defined in Subsection 2.1. Moreover,

(3.1) vt >0, IV(t) <To(t), AN(t) < Ag(t),
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o Ro as a function of pg and a when p=0.277 10 Ro as a function of pg and a when p=-0.060
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Fic. 5. Heatmap of the value of Ro for three growth rates: 0.277 (doubling time of 2.5 days),
-0.06 (halving time of 11.6 days) and 0.032 (doubling time of 21.4 days), corresponding to three
phases of the Covid—19 epidemic in France. In each graphic, the horizontal coordinate is the factor
a (which is the relative infectivity of unreported individuals compared to reported individuals), and
the vertical coordinate is the proportion of reported individuals pr. Note that the range of values
varies significantly with the growth rate p (from 3 up to 6 in the leftmost graphic, from 0.6 to 0.76
in the middle one and from 1.15 up to 1.28 in the rightmost graphic).

and, for all0 < e <&, for N > %_ial, almost surely,
(3.2) ve< TN, V@) > 3.), AN(E) > Al(b).

We note that, even though the distribution of (JV, AN, S¥V) is the same as in
Subsection 2.1, this construction yields a different coupling between (JVt, AN §N1)
and (jNQ,AN2,SN2) for N]_ 7& NQ.

Proof. The fact that this new construction does not change the law of the process
g
(3N, SN AN) is straightforward. For the second part of the statement, let

1o :=inf{t > 0:IV(t) > Jo(t)}.
By construction, if 79 < oo, there exist s < 79 and v > 0 such that
Q({s} x {u} x D) =1
and

Jo(s7) <u < YN(s7).
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Since YN (t) < IV (t), this implies Jo(s~) < IV (s7) for some s < 7. This contradicts
the definition of 79, hence 79 = +o0o and IV (t) < Jg(¢) for all t > 0. By the definition
of AN and Ay, this also implies AV (t) < Ag(t) for all ¢ > 0.

For the lower bound (3.2), we note that, for ¢t < TN,

N
TN(f) = (1 - W) N (¢)

> (1—N°+1—s>jN(t)

> (1-€)3% (),

for N > (No +1)/(¢' — €). The lower bound then follows by a similar argument as
above. a

We note that the process A.(-) does not depend on N, and that it is a branching
process which belongs to the class of processes studied in [8, 9]. The following result
is then Theorem 3.2 in [9)].

LEMMA 3.2. Under Assumptions 2.1 and 2.3, for each ¢ € [0,1), there exists a
random variable W, > 0 such that

A.(t)e Pt - W,  almost surely as t — oo,

where p. € R is the (unique) solution to

(3.3) (1—¢) /OOO At)e Petdt = 1.

Proof. We need to check the conditions of Theorem 3.2 in [9]. First, since A(¢) < \*,
for any p > 1,

/ T )t < ()L / T Xt)dt = (V)P R,
0 0

which we have assumed to be finite. On the other hand, if N is the number of offsprings
of a given individual, then, using the properties of the Poisson distribution,

( /0 h )\(t)dt> 2] < o0,

by assumption (this is also true if the individual was initially infected, replacing A by
A% above). This concludes the proof. O

E[N?] =E [/OOO /\(t)dt} +E

Remark 3.3. The condition e <1 — R%) in Theorem 2.11 ensures that there exists

a positive solution p. > 0 to the equation (3.3), i.e., that the branching process A.(-)
is supercritical. This will be used in the proof of Theorem 2.11. See also Remark 2.12.

LEMMA 3.4. If p satisfies (2.26) and p. is given by (3.3), then, for all e € (0,1),

o] -1
0<p—p. < — (/ )\(t)teptdt> .
1-¢e\Up

Proof. From the definitions of p and p.,

| R et ey a=

1—¢
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Hence it is clear that p > p.. In addition, e=?* — e™?* > te=?*(p — p.), from which
the stated inequality follows. 0

LEMMA 3.5. Let (W.,e € [0,1)) be the family of random variables defined in
Lemma 3.2. Then

lim P(W. = 0) = P(W, = 0).
0

Proof. In [9], it is shown that P(W. = 0) is the probability of extinction of a
branching process in which each individual born after time 0 leaves a conditionally
Poisson number of offsprings with parameter (1 — ) fooo A(t)dt. Thus if X, denote
the random variable corresponding to the number of offsprings of the I(0) individuals
alive at time 0, then

(3.4) P(W. =0) =E [¢°],
where ¢. is the unique fixed point in (0, 1) of the function s — h.(s) defined by
he(s) :==E [s¥<],

where X, is conditionally Poisson with parameter (1 —¢) [;° A(t)dt. It is then straight-
forward to see that h. converges to hg locally uniformly when ¢ | 0, and, as a result,
ge — go- We then conclude from (3.4) and the dominated convergence theorem. O

We can now prove Theorem 2.11.
Proof of Theorem 2.11. We begin by a lower bound on T~. By (3.1), for any

5 €(0,1),
AN (1 ; d log(N)) < A <1 ; 0 log(N)> .

Noting that pg = p, by Lemma 3.2, almost surely, for all NV large enough,

Ao (1 ; g log<N>> < N'O(Wo +6).

But N'=°(Wy + 6) < eN for N large enough. It follows that, for any & € (0, 1),

TN 1—
(3.5) liminf —5— > 76, almost surely.

N—oo log(N) p

By the same argument, for any ¢ € (0,«) and « € (0,1),

L TaN a—90
(30 W ) = o

On the event {W, = 0}, the branching process (Ag, Jg) goes extinct (i.e., To(t) =0
for all ¢ large enough), and

tll)l’glo Ao(t) < +00.
As a result, for any t > 0,

AN (tlog(N)) < Ag(tlog(N))

<
< lim Ap(s).

S§— 00
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Hence TN > tlog(N) for all ¢ > 0 for all N such that N > lim;_,, Ag(t). Hence

R

almost surely on the event {Wy = 0} for any a € (0,1). Since TV > TN for a € (0,1)
and N large enough, we also obtain

TN
1 1 76 fr— X
(3:8) i inf og(V) ~ %

almost surely on the same event.
We now prove the upper bound on 7.V on the event {W, > 0}. By Lemma 3.1,
for any 6 € (0,1 — ) and € € (0,1/2), for N large enough,

AN <a+6log(N)/\T€N> > Ao <a+§log(N)/\TEN).
P p

By (3.5), TN > %6 log(N) for all N large enough (choosing a different ¢ in (3.5) if
needed) and, by Lemma 3.2,

6 W- & IS
Ao, (a + log(N)) > TQNP% (at6)
p

almost surely for N large enough. By Lemma 3.4, we can choose € small enough that

p—zs(aJré) > a.

As a result,

N a
(39) P ({hjlvn_?;lop IOZ;%N) > :6} N{Wy > 0}) <P({{Wa =0} N{Wy > 0}).

Since, by construction, As.(t) < Ag(t),
]P)({WQE = 0} N {WO > 0}) = P(Wo > O) — IP(WQE > O)

The right hand side can then be made arbitrarily small by choosing € small enough by
Lemma 3.5. Since the left hand side in (3.9) does not depend on €, we conclude that

TN a+6
3.10 lim su & < —
( ) Naoop IOg(N) op

almost surely on {WWy > 0}. Combining (3.6), (3.7) and (3.10), we obtain that, for
any « € (0, 1), almost surely,

@ *> P
log(N) +00  otherwise.

N {a it Wy >0

This convergence thus holds in distribution for the original model defined in Subsec-
tion 2.1.
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We now prove the upper bound on T on the event {Wy > 0} for e < 1 — R%,' To
do this, we define, for § € (0,1), &’ € (¢,1 — R%) and n € (0,1),

I(O) t [e%e]
~ 3 N + / / / At — )Ly ()90 (o) Q(ds, du, dN),
Pt oJo Jp

t 00
= / / / 1u§qN(s)3§(s*)Q(dsaduad>‘)7
0 JO D

N 1—-n if0<t<=%log(N)
¢ (t) = , o r
1-—¢ otherwise.

where

We note that, for ¢ < 1;;;5 log(N), (3N (1), AN(t)) = (3,(t), A,(t)) and, by a similar
argument as in Lemma 3.1, for all N large enough, using (3.5),

(3.11) ve< TN, 3N >3N@), AN() > AN().
In addition, for any ¢’ > 0,

/ _ AN 1;p510g(N)+6+Tf;,log(N)
2 (5 ) - (15 ) L)

By Lemma 3.2, for all N large enough

1- )
(3.12) A, ( ; 6log(N)> > WT NFA-9),

Next we note that we can write, for ¢ > 0,

Ay (452 log(N))

A§(1;510g<zv>+t): Z Ai(0),

where (A;(t),t > 0);>1 is a family of i.i.d. branching processes of the form

t 0o
~ t) :/ / / 1u§ 1—e)I;(s7) Qi(ds,du7d)\)7
= 5\ / / / t* 5 u< 1— 5/)3(8 )Q (ds du d)\)

where {Q, Q1,Qa, ...} are i.i.d., and Q is the PRM which was used in the definition of
the branching process A, up to time 1*5 log(N). Since &/ < 1— i , A; is supercritical

uz

and has growth rate p.r > 0. Moreover by Lemma 3.2, e ps’tA ( ) — W; as t — oo,
where the W; are i.i.d. and such that IF’(W >0) > 0. As a result, on {W, > 0}, from
(3.12),

A, <1 ; 0 log(N)) — o0

This manuscript is for review purposes only.



820

826
827

828
829

831
832

833

834

835

836

89

840
841

842
843

845
846

847

848

24 R. FORIEN, G. PANG, AND E PARDOUX

and, by the law of large numbers, as N — oo,

AN (EL1og(N) + S Mog(N)) ., _
(p — ) — O L B4 > 0.
4, (2 10g(N))

Hence on the event {W, > 0}, for some constant C' > 0 and for N large enough,

1+ W, . en £t
AN(—;log(N)> 04 N A0+ (545)

But by Lemma 3.4, for any ¢’ >0 and ¢’ <1 — Rio (which ensures that p. > 0), we
can choose 7 and ¢ small enough that

Pn Pe /

—(1=0)+—(06+d)>1

p( ) p( )
For such a choice of n and §,

!
AN (1—;510g(N)) >N

for all N large enough, almost surely on the event {W, > 0}. By (3.11), this implies

P({lmsu L5 >1+5/}m{w >0})<]P’(W > 0) — P(W), > 0)
1 — - )
N log(N) " p ° S !

for all > 0 small enough. Letting n — 0 and using Lemma 3.5, we thus obtain

N /
T <1+5

£

lim su
N~>oop lOg( ) B 1Y

)

almost surely on {Wy > 0}, for any ¢’ > 0. Combining this with (3.5) and (3.8) yields
the result. a

Let us now prove Theorem 2.13.

_ Proof of Theorem 2.13. Plugging (2.29) into (2.27), and replacing 3 and Fy by
Ap and F),, we obtain

o0

I(O))\O(t)+/t>\(t—s) (s )ds—/

0

¢
/Fc t—s)J )ds—/ Fc(t—i—s)pe_psds—i—/ Fe(t — s)pe’?ds.
0 0

t
At + s)pe P°ds + / At — s)pePds,
0

Changing variables in each integral and then summing them together, we obtain
/ X(tJr S)pefﬂsds +/ X(t — 5)p€PSd5 — / X(S)pep(t—s)ds Jr/ X(S)pep(tis)ds
0 0 t 0
= pe’,

where we have used (2.26) in the last line. The same calculation with F¢ instead of A
yields

o] t o]
/ Fe(t+ s)peP°ds + / Fe(t — s)pelds = F(s)peP' =) ds = ie’!,
0 0 0
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using the definition of 4 in (2.28). In the case p < 0, these calculations are unchanged,
and we simply multiply each line by —1. Finally, the equation for R(t) follows from
the fact that

I(t) + R(t) = I(0) + R(0) + /t J(s)ds
0
= R(0) + 1(0) +/0 |ple’®ds.

Subtracting I(t) = |i|e”*, we obtain
R(t) = R(0) + sign(p)(1 —4)(e”* — 1).

Since 7 = 1 — 4, this concludes the proof (we choose R(0) = r in the case p > 0). O

4. Proof of the FLLN. In this section, for a sequence { X, N > 1} of random
elements of D, and X a random element of D, X" = X in D means that XV
converges weakly (i.e., in law) towards X in D, that is, for any ® € Cy(D;R),
E[®(XN)] — E[®(X)] as N — oo.

4.1. Convergence of (SV 3V).. For the process A" (t), we have the decompo-
sition
t
(4.1) AN(t) = MY (t) + / TN (s)ds,
0

where

t oo
szélv(t) = / / 1u§TN(s*)Q(dsa du),
0o Jo
with Q(ds, du) = Q(ds, du) — dsdu being the compensated PRM. It is clear that the

process {MY () : t > 0} is a square-integrable martingale (see, e.g., [7, Chapter VI])
with respect to the filtration {F¥ : ¢ > 0} defined by

FN = U{EN(O)JN(O), 9 et I ezt AN () b,

t’ [e'e]
/ / 1,<yvs—)Q(ds, du) : t' < t}.
0 0

It has a finite quadratic variation
t
(MY () = / TN (s)ds, > 0.

0

Under Assumption 2.1, we have
t

(4.2) 0< Nﬁl/ YN (u)du < XN*(t —s), w.p.1 for 0<s<t.
Thus, this implies that, in probability as N — oo,

(M) (t) = N2 /Ot YN(s)ds — 0 in D,
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26 R. FORIEN, G. PANG, AND E PARDOUX

and by Doob’s inequality,
(4.3) M () =0

in mean square, locally uniformly in ¢, hence in probability in D. As a consequence,
we obtain the following lemma.

LEMMA 4.1. Under Assumptions 2.1, 2.5 and 2.6, the sequence {(AN, Siv)}N21 is
tight in D?. The limit of any converging subsequence of { AN}, denoted by A, satisfies

(4.4) A= lim AY = lim [ TN(u)du,
N—o00 N—oo Jg
and
(4.5) <A{)—A(s) <N (t—s), wp.1 for 0<s<t.

Given the limit A of a converging subsequence of {AN}, along the same subsequence,

SN = 8§:=50)-A=1-1I1(0)—Ain D as N — <.
Let

o B
() =N~ Z/\OI . Oyt =N~ ZAO t>0.

LEMMA 4.2. Under Assumptions 2.1 and 2.5, as N — oo,
(4.6) (jé\fl,jé\f2) — (J0,1,J02) in  D? in probability,
where
Joa(t) := T(O)AM (1), Toa(t) := E(0)A°(t), t>0.
Proof. Define the processes

NI(0)

7)) 3 1ZA‘” RO 12/\0 t>0.

By the i.i.d. assumptions for the sequences {\}(t)} and {/\g’l(t)}, and their indepen-
dence, and by the LLN for random elements in D (see Theorem 1 in [24] or Corollary
7.10 in [18]), we directly obtain that, as N — oo,

(58{1,56\7’2) — (30,1, 5072) in D? in probability.
It then suffices to show that, as N — oo,
(4.8) (3, = 38,38, = 3,) =0 in D? in probability.
We have

N(IN (0)vI(0))

(4.9) 30(t) = 30, () = sign(I(0) — TN (0))N > ),
k=N (IN (0)AI(0))
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and thus

sup |J01 3(])\{1(15)| SA*|fN(O)fI(O)|.
0<t<T

By the convergence IV (0) — I(0) — 0 in probability under Assumption 2.5, we obtain
that Jé\f 1= ﬁé\f 1 — 0in D in probability. A similar argument yields the convergence

53’2 — 56\{2 — 0 in D in probability. This completes the proof. 0
Let
AN (t)
WE =N NE—7Y), t=0
i=1

Before we prove the convergence of IV in D, let us first establish three technical
results which will be useful in the next proof. The first of those results was implicitly
used in [21].

LEMMA 4.3. Let {XN}Nzl be a sequence of random elements in D. If the two
conditions

(i) for alle >0,0<t<T,P(|XN(t)] >¢€) =0, as N = oo, and
(i) for all € > 0, limsup y supg<;<r %]P’(supogugé XN (t+u)— XN (t)| >¢€) =0,
asd =0
are satisfied for all T > 0, then XN (t) — 0 in probability locally uniformly in t.

Proof. We partition the interval [0, 7] into subintervals of length ¢, that is, we
define t; =i6 AT, i=0,1,...,|T/d], and obtain

sup [XN() < sup  [XV()[+ sup osup [XV(ti+u) - XV(8)]
te[0,T) i=0,...,|T/5] i=0,...,|T/5] ue0,]

We immediately obtain the following inequality

|T/A)
IP’( sup | XN(t)] > 5) < >0 P(XN(t)] > /2)
0<t<T =0

T
+ < + 1) sup P < sup |XN(t+u) — XN()| > 6/2) .
o 0<t<T \0<u<s
From condition (i), limsup, of the first term on the right is zero for any ¢ > 0, while
by condition (ii), limsup, of the second term tends to zero as § — 0. The result
follows. ad

In the next statement, Dy(Ry) (resp. Cy(Ry)) denotes the set of real-valued
nondecreasing function on Ry, which belong to D(R,) (resp. C(R4)).

LEMMA 4.4. Let f € D(Ry) and {gn}n>1 be a sequence of elements of Dy+(Ry)
which is such that gy — g locally uniformly as N — oo, where g € C+(Ry). Then, for
anyt >0, as N — oo,

f(s)gn(ds) — f(s)g(ds).
[0,1] [0,1]

Proof. The assumption implies that the sequence of measures gy (ds) converges
weakly, as N — oo, towards the measure g(ds). Since, moreover, f is bounded and
the set of discontinuities of f is of g(ds) measure 0, the convergence is essentially a
minor improvement of the Portmanteau theorem, see Theorem 2.1 in [3]. d
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LEMMA 4.5. Let {X, N > 1} be a sequence of random elements in D, which is
such that for allk > 1,0 <t; <ty <--- <ty, as N — oo, (XN(t1),..., XN (tx)) =
(X(t1),...,X(tr)), and moreover the sequence { XN} satisfies condition (ii) of Lemma
4.3. Then XN = X in D, and moreover X € C a.s. If, in addition, for all t > 0,
XN(t) — X (t) in probability, then XN (t) — X (t) in probability locally uniformly in t.

Proof. Define the modulus of continuity on [0, 7] of a function z as

wy (T, 8) = sup |lz(t) — x(s)].
0<s<t<T, t—s<4§

It is clear (see the proof of Theorem 7.4 in [3]) that

T
P(wx~(T,0) > 3¢) < sup ( + 1) IP’( sup |XN(t+u) — XN()| > 6)
o<t<T \ 0 0<u<s

Since the “D-modulus of continuity” w’ (T, ) satisfies w., (T, 0) < w,(T,26) (see (12.7)
in [3]), we conclude from Theorem 13.2 and its Corollary in [3] that { X} is tight in D.
Since all finite dimensional distributions of XV converge to those of X, all converging
subsequences of the sequence { X'} converge to X, and the whole sequence converges
to X. Moreover, it follows from our assumptions that for any T > 0, wx (T,4) — 0,
as & — 0, hence X € C a.s. Concerning the convergence in probability, we note that
under the additional assumption, YV (¢) := X (¢) — X (t) satisfies the conditions of
Lemma 4.3, hence the result. ]

LEMMA 4.6. Under Assumptions 2.1 and 2.0, if A is the limit of a converging
subsequence of {AN}, then along the same subsequence,

(4.10) N =73, in D as N — oo,

where

Proof. Let

N (t) t
N = 77' ) — S AN S .
(4.11) IN@) = z:: (t /O)\(t )dAN (s), t>0

The proof will be split in two steps.

STEP 1. CONVERGENCE OF JV

Under Assumption 2.1, applying Lemmas 4.1 and 4.4 and the continuous mapping
theorem, we obtain that, as N — oo, all finite dimensional distributions of 3 converge
to those of J;. It remains to establish condition (ii) from Lemma 4.3 in order to deduce
from Lemma 4.5 that

(4.12) N=73, in D as N — .

That is, we need to show that

1 v 9
(4.13) lim limsup ~ sup P | sup |’J{V(t +u) — ’J{V(t)’ >e| =0.
520 Nooo 0 ¢€[0,7) u€0,d]
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We have for t,u > 0,

M)

TN +u) =TV Z At +u—1) =Xt —1))
AN (t4u)
+NTDOY Mt tu—1Y)
i=AN(t)+1
= AN+ AN

We first note that by (4.2),
sup AN <A (AN (1 + ) — A¥(1)
0<u<s

< (N)20 + N (MY (t+6) — MY (1),

so that by (4.3), for any T' > 0, € > 0, provided § < &/(4(\*)?),

IF’( sup A >e/2> <P (|MY(t+6) — MY ()| > e/4x%)
0<u<é
— 0, as N — o0,

and consequently,

1
(4.14) limsup = sup ]P’( sup |A£V7;2} > e/2> =
N—oo 0 t€[0,T] uel0,6] '

We now consider the first term Aff 1;1. Let

As(t) :=sup |A(t +u) — A(t)].

u<d
We have
t
sup Ai\i’} < / As(t — s)dle(s) ,
0

u<d

and

P a2 > §) <2 ( [ - 0276) > 5)
P(/OtAé(ts)dM;{(s) >i)
+P (/Ot As(t — )TN (s)ds > Z) .

It is not hard to show that for any 6 > 0,
€
>-—]=0.
4)

IN

/0 "Nl — )N (s)

1
limsup - sup IP’(
N—+o0 d te[0,T]
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Next we note that for any ¢ € [0, 7],
t t
/ As(t —s)TN (s)ds < \* / As(t — s)ds
0 0

T
S)\*/ As(s)ds.
0

Since A is right continuous and bounded by \*, this last expression tends to 0 as § — 0.
Consequently, for § > 0 small enough,

t
ap sup B [ 8= 915 is > §) <o,
N te€[0,T] 0 4

It follows that (4.14) holds true with Ai\f 2 replaced by Ai\f ' We have completed the
proof of (4.13), hence of (4.12).

STEP 2. IV 3N =0
Now it remains to show that, as N — oo,

(4.15) VN =3V —3¥ 50 in D in probability.
We have

AN (1)
VN(t) =N"! Z va(t)a Xﬁv(t) =Nt — TiN) - S‘(t - TiN)‘
i=1

X1 (t) clearly satisfies E[x¥ (t)] = 0 and E[x} (¢t)x}' (t)|7", 7] = 0. Thus,

7

AN (1)

> V(t—TiN)] :N‘lE[/Otu(t—s)d/_lN(s) ,

i=1

E[VN(t)?] = N2E

where v(t) := E[(\(t) — A(t))?] and v(t) < (A\*)? under Assumption 2.1. We easily
obtain that for each t > 0,

VN (t) = 0 in probability, as N — oco.

It remains to establish condition (ii) of Lemma 4.3, i.e., that for any T' > 0, € > 0,

1
(4.16) lim limsup - sup P | sup ‘VN(t +u) — VN(t)| >e]| =0.
60 Noyoo O t€[0,T u€[0,4]
We have for t,u > 0,
AN (1)

VNt +u) - V()| < [N Z it +u—1) = Nt — 7))

AN ()
+|NT! Z At +u—7N) =Xt —1))
i=1

AN (t+u) B
+INTDOY T (Nt u—TY) = At+u—1)))|.
i=AN(t)+1
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The second term has already been treated in STEP 1, and the treatment of the third
term is the same as that of the second term in the analogous inequality in STEP 1 in
(4.14). It remains to treat the first term, which we denote by @g&l. By Assumption 2.1,

AN@) &
N1 - j
Q0 <N ! Z ZW(HU*%N) =X (t*T )|1§J_1§t—7-iN<t+u—7'iN<§f
i=1 j=1
AN@) k
+ANT! Z th N <el <tu—rN
=1 j=1
AN (1)
< ¢rs(u) )+ A ZN Z Lovcecorumry -
i=1

The right hand side being nondecreasing in u, we deduce that

AN (1)
oiugg(bt“ < orps@ANO AN Y N D 1 v
w j= i=1

The first term on the right is the same as the one which appeared in the upper bound
of Ai\’[ 1in STEP 1. We need only consider the second term. We have

k AN (1)
SCP LD SENBSY
=1 i=1
) Rl 2
Si? [( Z 1t TZNSEj<t+5 7'1N> ]

k
2N
’E [( i / / /f“ u<w<s>@j(ds,du,d£>>2]

J

()\*ZN / j(t+0—5) = Fj(t —8))TN(S)dS> ]

| A

(4.17)

where Q;(ds,du,d§) is a PRM on Ry x Ry x Ry with mean measure dsduf’;(d§), and
Q;(ds, du,df) is the corresponding compensated PRM. Observe that

t poo pt+0—s o 2
(Nl// / luSTN(s)Qj(dsadU,d€)>
0J0 t—s

=NE Uot (Fj(t+6—s)— Fj(t— s))TN(s)ds}

< N7 /t (Fi(t+6—s)— Fj(t—s))ds,
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1067 which tends to 0 as N — oo, for any § > 0. Moreover,

1068 E [(Nl/t(Fj(t +6—8)— Fj(t— s))TN(s)ds) ]
0
1069 < ()\*/O (Fj(t+06—s) — Fj(t— S))ds)
t+6 5 2
1070 < (x\ (/t Fj(u)du — /0 F](u)du>>
173 < (\0)*.

1073 We deduce that for any € > 0,

1074 (4.18) hmsupf sup IE”( sup ‘@ﬁﬂ > e) —0, as d—0.

Nooo 0 tef0.7] \uel0,6]
1075 We have proved (4.16). This completes the proof of the lemma. |
1076 From the proof of Lemma 4.6, clearly (AV, ﬁ{v) = (A,7,) along a subsequence. It

1077 also follows from Lemma 4.2 and the pron of Lemmaﬁ4._6 that 3V — j{V — 3071 + 5072
1078 in probability in D, as N — co. Hence (AY,3%) = (A, 7) along the same subsequence
1079 as above, where J = 30 1+ 30 9+ J;. Tt follows that, along that subsequence,

¢ N = ._stNss ._sfssin
50 (4,19 /OT (s)ds—/OS ()3 (s)d ;»/05( V3(s)d D,

1082 and also

1083 (4.20) AN = A = / S(s)3(s)ds in D.
1084 0

1085 Therefore, the limits (S, J) satisfy the integral equations (2.14) and (2.15) in Theorem
1086 2.7. Finally, the existence and uniqueness of a deterministic solution to the integral
1087 equations follows from applying Gronwall’s inequality in a straightforward way, and the

1088 whole sequence converges in probability. This completes the proof of the convergence
1089 of (SN,JN) — (5,3) in D? in probability.

1090 4.2. Convergence of (EN IV ,RN) . The proof for the convergence of the
1091 processes (EN, IV, RN) in D? will be similar to the previous step.
1092 For the initially exposed and infectious individuals, let
E”<0)
1093 EY(t):= N~ Z Leose,
IN(O) EN(0)
1094 I (1) -t Z 1or, 155(t) -t Z Leogyosts
IN(O) EN(O)
1095 RY(t) -1 Z Losg,, RY (1) - Z Leogpo<s -

1096

1097 By the FLLN for empirical processes, we obtain the following lemma.
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1098 LEMMA 4.7. Under Assumption 2.5, as N — 0o,
(4.21)
](1]88 (E(])V’ T(J)\fl, j(])YQ’ Ré\jl, Ré\,IQ) — (Eo, Iiovl, ]TO,Q, RO,l, RO,Q) m D5 m pmbability,

1101 where

1102 Eo(t) = E(0)G§(t), To1(t) = I(0)FS ;(t), Io2(t) = E(0)¥o(t),
164 Ro1(t) =1(0)Fo1(t), Roa(t) = E(0)Po(t).

Proof. Recall the definition of (Eév 1 Eé\&) in (4.7). Similarly, define (Eé\] , foj\fh 1:0]\,’2,
Eé\fl, Eé\fQ) by replacing E™V (0) and IV(0) with N E(0) and NI(0), respectively, in the

definitions of (Eév, fé\fh fé\fQ, Ré\fl,
R{’;). By the i.i.d. assumption of (A" }>1 and the definition of 7y’ from AY' in
(2.4), we obtain that, as N — oo,

(56\51, E)]Yl? E(I)\’[l) — (jo)l, 1_071, ROJ) in D?® in probability.

1105 Similarly, by the i.i.d. assumption of {)\?}jzl and the definition of ( J(-), n?) from
1106 A} in (2.3), we obtain that, as N — oo,

1107 (Eév,fég,ﬁég) — (Eo,j0)27R0)2) in D? in probability.
1108  Then it remains to show that, as N — oo,
oo (BY —EY I, -1, 1Y, — Iy, Ry, — RY,, Ry, —RY,) =0 in D in probability.

1110 Similarly as in the proof of Lemma 4.2, we have

N(E™ (0)VE(0))
111 (0 = o) = sign(E©O) — EXO)NT Y T,
1112 j=N(EN(0)AE(0))
1113  and
N(EN (0)VE(0))
1114 E|N7! > Lo o | For | < Wo(t)|E(0) — EN(0)] -0 as N — oo.
1115 J=N(EN(0)AE(0))

1116 The other convergences follow by a similar argument. This completes the proof. 0O

1117 For the newly infected individuals, let

AN (2) AN (1)

1118 E{V(t) = N_l Z ]"riNJrCi>t ’ I{V(t) = N_l Z 1TiIV+CiSt<TiN+Ci+77i ’
i=1 i=1
AN ()

1119 RY(t):=N"" Y~ LN o<t

1120 i=1

1121 LEMMA 4.8. Under Assumptions 2.1 , 2.5 and 2.6, as N — o0,

1133 (4.22) (E{V,ffV,R{V) — (El,fl,Rl) in  D* in probability,

This manuscript is for review purposes only.



1124

1125

1138

1139
1140

1141
1142
1143
1144
1145
1146

1147

1148

1149

34 R. FORIEN, G. PANG, AND E PARDOUX

Bu(t) = /O Gt — )S(s)3(s)ds, (1) = /O U(t — 5)S(s)3(s)ds
Ru(t) = / O(t — 5)S(s)3(5)ds

Proof. We first note that we have the two identities AN (¢) = EYY (t)+17" (t)+RY (t)
and A(t) = Ey(t) + I1(t) + Ri1(t), which reflects the two facts:

1= 1Cigt*TiN<Ci+7h' + lCi>t*TiN + lCHrmSt*TiN’
1=U{t—9s)+G{t—35)+D(t—s).

Consequently, since we already know that AN (t) — A(t) in probability locally uniformly
in ¢, we only need to establish the two convergences E{Y — E; and RY — Ry, from
which the convergence IY — I; will follow as a corollary.

We shall apply the same argument as in Lemma 4.6, but now we know that
AN — A in probability. Define

AN (t) t _
=Ny Gt -1) :/ G(t — 5)dAN(s),
=1 0

AT

RN(t) =N~ Z t—1N /tfb(ts)dAN(s).
0

Let us establish that £ — E;. We shall then discuss why the same arguments work
in the case of RY.

STEP 1 It follows from Lemma 4.4 that for all ¢ > 0, EN(t) — E\ (t) in probability.
In order to establish that the convergence is in fact locally uniform in ¢, according to
Lemma 4.5, it remains to prove that condition (ii) in Lemma 4.3 is satisfied, namely
that

1 o ¥
(4.23) lim limsup - sup P | sup |E{V(t +u) — E{V(t)’ >e| =0.
=0 Nooo 0 tef0,T] u€l0,6]

We have
BNt 4 u) — BN (1) = /O (GOt +u— 5) — G(t — 5)]dAN (s)
t+u
+ / Go(t +u — s)dAN (s),

t
sup |[EN(t+u) — EN(@t)| < / [GE(t — 5) — G(t + 6 — 5)]dAN (s)
o<u<d 0

+ AN (t 4 6) — AN(1).
The second term in the right hand side satisfies

AN+ 6) — AN () < N6+ MY (t +0) — MY (1),
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1156 and since M AV tends to 0 locally uniformly in ¢,

1. - _
1157 limsup sup —P(AN(t+0)— AN (t) > €) =0,
N = te[0,T]

1158 as soon as 0 < €/A\*. Moreover

1159 P (/t[Gc(t —5) = G(t + 6 — 5)]dAN (s) > e)
0
1160 gIP(/t[GC(t—s)—Gc(t—i-é—s)]dMiV(s) >e/2)
0
, tc_s_c — )TN (s)ds > €
e +]P’</O (Gt — 5) — G(t + 6 — )TV (s)ds > /2).

1163 It is not hard to show that for any § > 0,

t
1164 hmsup1 sup P < / [GE(t — 8) — G(t + 6 — 8)|dMY (s)| > 6/2) =
9 1efo,1) 0

1165 Next we note that for any ¢ € [0, T,

t t
1166 / (Go(t — 5) — G°(t + 6 — )TN (s)ds < \* / (G () — G°(s + 8)]ds

0 0

T

1167 < A*/ ([G°(s) — G°(s + 9)]ds
1168 0

1169  Since G€ is right continuous and bounded by 1, this last expression tends to 0 as § — 0.
1170 Consequently, for § > 0 small enough,

t
1171 sup sup P (/ [G(t — 8) — G(t + 0 — )] TN (s)ds > 6/2> =0

N te€l0,T] 0
1172 Thus, (4.23) has been established, hence EN(t) — By (t) in probability locally uniformly
1173 in t. It remains to consider E{¥ El , Wthh we do in the next step.
1174 STEP 2 Consider

AN (1)

1175 W) = BN () - BV () = Z (g simmy = Gt =)

1176 It is not hard to see that if i # j,

1177 E |:(1Ci>t—7'- —Ge(t—T)) (1< - —G(t—1))

i 0'g

N TN} =0.

1178 Consequently,

AN (1)
1179 E[(WN(t) Z Gt —1N)(1 = G°(t — 7 ))]
1180 = ;]]E{/ G(t—s)(1—G(t — s))dAN(s)]
0
1184 —0, as N —o00.
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It remains to show that condition (ii) of Lemma 4.3 holds, namely that

1
(4.24) lim limsup = sup P( sup |WN(t +u) — WN(t)| >e| =0.
=0 Nooo O te[0,T] w€[0,5]
We have
L AY®
Wt +u) — WV ()| < N S (Lestory = Lenriurn)
i=1
AN(t
Z (G(t—1N) = G(t+u—T))
AN(t+u)
TN Z (L¢,>tqury -G (t+u—1"))
i=AN (£)+1

The second term has already been treated in STEP 1, as well as AN (t + §) — AN (1),
which bounds the third term. It remains to treat the first term. Let

AN(
AA{V(LU’) L= Z t— TN<C1<t+u ‘r 9

AN
N —
sup Ay (¢, u) = § —rN <G <t+6—7N >
u<d =1

AN (1) 2
1 1
]P’<SUPA{V(1%U) > €> =< GQEKN > 1tn”<ci<t+6n”>

u<s i=1

A._‘

2 \

Let P(ds,du,d() be a PRM on Ry x R, x Ry with mean measure dsduG(d(), and P
the associated compensated measure. We have

L AY® 2

(5 % o)
=1
1 t oo t+5—s 2
—E N/ / / Lu<rn (s P(ds, du, dC)
0 0 t—s
t+d—s

< 9E / / / 1,<1n (o) P(ds, du, dc)

(}V / t(GC(t—s)—GC(t+6—s>>TN<s>ds)2] .

The first term is of ordre N1, and tends to 0 as N — co. The second term is bounded

by 2(A*)? times
t+6 5 2
< ( G(u)du—/ G(u)du)
t 0

< 2.

E

+2E

2

(/Ot(G(t +o—s)—G(t— s))ds>
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Consequently

1
limsupgsup]P’ <supA{V(t,u) > e> —0, asd — 0.
N t<T  \u<s

' STEP 3. THE CASE OF RY. Essentially the same argument will work in the case
of RY (G¢ was decreasing, ® is increasing). The details are left to the reader. |

Remark 4.9. A proof of Lemma 4.8 can be found in [21]. There the authors use
the fact that the integral of G°(t — s) (resp. ®(t — s)) can be integrated by parts,
since G (resp. ®) is decreasing (resp. increasing), thus simplifying step 1 of the proof.
However, the present version of step 1, which follows the same argument as Lemma
4.6, allows to shorten step 2.
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