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The generation time of an infectious disease is usually defined as the time from the moment one person
becomes infected until that person infects another person. The concept is similar to ‘‘generation gap” in
demography, with new infections replacing births in a population. Originally applied to diseases such as
measles where at least the first generations are clearly discernible, the concept has recently been
extended to other diseases, such as influenza, where time order of infections is usually much less appar-
ent.

By formulating the relevant statistical questions within a simple yet basic mathematical model for
infection spread, it is possible to derive theoretical properties of observations in various situations e.g.
in ‘‘isolation”, in households, or during large outbreaks. In each case, it is shown that the sampling dis-
tribution of observations depends on a number of factors, usually not considered in the literature and that
must be taken into account in order to achieve unbiased inference about the generation time distribution.
Some implications of these findings for statistical inference methods in epidemic spread models are
discussed.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

In this paper, we discuss statistical and stochastic properties re-
lated to generation times and serial intervals as used in models for
spread of communicable diseases. Both concepts concern the time
between the infection of a primary case and a secondary case. The
term generation time refers to the actual time (although usually
unobservable) between the moments of infection, while serial
interval refers to the time between two similar, well defined, ob-
servable events, such as appearance of symptoms.

The notion of generation time has seen a recent increasing use
in descriptions and models of epidemic processes. It plays an
important role in analyses of the SARS epidemic [1] and in plan-
ning for pandemic influenza [2]. A general discussion of generation
times and serial intervals which includes a survey of several infec-
tions is given by Fine [3]. Various aspects and uses of the concept
have recently been discussed [4–6].

In this paper, we will focus on the effects of different observation
schemes on the resulting sampling distributions of generation times
and serial intervals. Statistical methods both to infer important
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parameters related to the transmission of infections and to make
predictions from the early development of an epidemic are also con-
sidered. The simple stochastic SIR model is used to highlight the spe-
cial features and problems related to the studied observation
schemes. We then discuss how conclusions from the simple model
will be relevant in more complex, and realistic, situations.

The concept of generation time and much of the mathematical
treatment is modelled on demography. Generations in demogra-
phy are defined by parents and children. Births are taken to corre-
spond to transmission of the infection, a secondary case of
infection is seen as a descendant of a primary case. This makes it
possible, in theory, to use much of the advanced theory developed
in demography [7,8] and, more generally, in the theory of branch-
ing processes [9]. However, one important difference that has to be
considered is that the dynamics of an epidemic is influenced by the
depletion of susceptibles. This phenomenon has no natural coun-
terpart in the demographic theory. Another important difference
is that infection events are essentially not observable, as opposed
to births, leading to the use, in practice, of serial intervals as prox-
ies for generation times.

Theoretical arguments are illustrated and supported by simula-
tion results. All simulations have been performed using an individ-
ual (agent) based program written in C, where individual infection
chains and times are identifiable and thus available for analysis.

http://dx.doi.org/10.1016/j.mbs.2009.10.004
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2. Some general considerations about generation times

As in most statistical problems, it is important to distinguish be-
tween observations and models (statistical, probabilistic, analyti-
cal) for observations.

Seen as observations, generation times are, at least conceptu-
ally, i.e. disregarding the practical problem of observing them, well
defined if we assume that disease is transmitted from person to
person with well defined moments of infection. Abstractly, this
means that the disease spread can be seen as a graph with nodes,
representing individuals, that also contain information at least
about time of infection; it must also be assumed that there is a spe-
cific infector for each infectee, i.e. the graph is a tree. If the spread
is considered within a given population, all cases except the intro-
ductory ones will have an infector but some infected individuals
will have no secondary cases (infectees).

To any given outbreak, there corresponds a set of generation
times, where each time is defined by the pairs infector–infectee
and their respective infection times. It should be noted that gener-
ation times genuinely depend on two individuals, in the sense that
they cannot be measured (are not defined) on a single isolated in-
fected individual. This is different from e.g. infectious periods,
which can be measured by observing the timing of secondary cases
but also, in theory, by a reliable proxy such as viral shedding, that
can be measured in the primary case independently of the pres-
ence of other individuals. It should also be noted that generation
times are lengths of certain intervals and thus have no ‘‘natural”
time coordinate of occurence. This means that there is a choice
about when, during the course of the outbreak, a given generation
time can be considered to have occured.

In simple disease spread models, it is usually assumed that, say,
infectious periods are random but that periods belonging to differ-
ent individuals are independent and identically distributed. This is
an assumption of the model, not a result. This makes it possible to
talk about ‘‘the distribution of the infectious period” in an unequiv-
ocal way. Generation times are ‘‘results”, with properties to be de-
rived from other assumptions in the model. We will show that
generation times are not, in general, identically distributed during
an outbreak and that the statistical distribution of observations
critically depends on how the observations have been collected.
Thus, statements about the probability distribution of generation
times need to be qualified in a meaningful way, detailing which
generation times are intended and, as we will see later, how they
have been observed.

Some of the results about the effects of different observation
schemes are intimately linked to the statistical concept of ‘‘size
biased sampling” [10] or, equivalently, to the probabilistic ‘‘waiting
time paradox” in stochastic process theory [11].
3. Generation times and size biased sampling

There are two different definitions of generation time in demog-
raphy that are relevant to the infectious disease situation [5,7,8].
Below, we summarize the main notions and relations. If we denote
the probability of survival at age a by l(a) (= probability that the
infectious period is longer than a) and the childbearing intensity
at age a by m(a) (= intensity of infectious contact at infection age
a), we first define the intrinsic growth rate of the population, also
called Malthusian parameter and denoted by r, as the unique value
of r P 0 satisfying

1 ¼
Z 1

0
e�ralðaÞmðaÞda:

We also note that
Z 1

0
lðaÞmðaÞda ¼ R0;

the expected total offspring of an individual (= basic reproduction
number R0 in a totally susceptible population, in the disease spread
setting). We then define the ‘‘cohort generation time distribution”
as

gðaÞ ¼ lðaÞmðaÞ
R0

and the ‘‘average cohort generation time” as the expected value in
this distribution, i.e.

Tc ¼
Z 1

0
agðaÞda

usually explained as ‘‘the average age of mothers calculated over all
births in a cohort”. This cohort generation time distribution seems
to be the de facto accepted concept in the theory of disease spread
models, also because of the useful relation between Malthusian
parameter, generation time distribution and R0 given by (see [4]
for a review of related results)

1
R0
¼
Z

e�ragðaÞda:

There is also the concept of ‘‘average age at childbearing in the
stable age distribution of an exponentially increasing population”,
defined as

TA ¼
Z 1

0
ae�ralðaÞmðaÞda

representing the ‘‘average age of a mother chosen from the stable
age distribution in an exponentially growing population (with
intrinsic growth parameter = r)”. It is also well known that TA and
TC do not in general agree and that, in fact, TA 6 TC .

With the infection spread interpretation in mind, it is quite easy
to see that TA might be applicable while the disease spread experi-
ences an exponential growth at constant rate, which, as well
known from theory, only happens during the initial phase of an
epidemic in a large population.

It is usually not realized that there is a statistical implication of
both these definitions, namely that the generation time is to be ob-
served starting from (in infectious disease terminology) an infec-
tee, finding the related infector and finally measuring the interval
between their respective moments of infection. This is different
from following an infected individual and observing the time
points of his secondary cases, if any. Infectee based observations
and averages allow infectors with long infectious periods and thus
many secondary cases to appear several times in the calculations
(one for each infectee), while, in an infector based perspective,
every infector only appears once in the global average, if an aver-
age generation time has been calculated among his secondary
cases. This is the sampling effect known as ‘‘size biased sampling”,
namely that a quantity does not appear with the ‘‘natural” fre-
quency, but with a frequency modified by weighting the natural
frequencies with the size of the values to be sampled, thus putting
more emphasis on larger values.

Let us start this investigation by studying generation times from
the point of view of a newly infected individual and what this indi-
vidual should expect, in terms of secondary cases, during his infec-
tious period. We will refer to this calculation as the ‘‘single
infector” model.

Because of its simplicity, we will initially consider the simple
Markov SIR model, i.e. we assume that there is no latent period,
that the infectious period is exponentially distributed with ex-
pected length 1=l and that infectious contacts occur according to
a Poisson process with constant intensity b during the infectious
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period. These contacts lead to secondary cases if the contacted
individual is susceptible, which has a given probability (depending
on the outcome of the outbreak up to the considered time point)
depending on time. We will first assume that this probability re-
mains constant during the infectious period of the considered indi-
vidual. The following well known results will then hold:

(a) given the infectious period T, contacts are created according
to a Poisson process on [0,T], thus S = number of contacts
will be Po(bT);

(b) given S = k, the conditional distribution of T is Gamma dis-
tributed with parameters k + 1 and (intensity) lþ b;

(c) PðS ¼ kÞ ¼ lbk=ðlþ bÞkþ1 (i.e. a geometric distribution);
(d) EðTjS > 0Þ ¼ 1=ðlþ bÞ þ 1=l;
(e) given T and S = k > 0, the k time points of events are indepen-

dent and identically distributed with uniform distribution
on [0,T], independently of the level of b;

(f) let G be a randomly chosen point among these time points.
Then EðGjS > 0Þ ¼ EðTjS > 0Þ=2.

Considering points (d) and (f), we see that the average generation
time in this model is slightly more than half the expected length of
the infectious period (the exceedance comes from conditioning the
infectious periods to contain at least one secondary case).

In order for contacts to become cases, the contacts will be
thinned with the probability that a randomly chosen person at
the time the contact is made is susceptible. If this probability can
be assumed to be constant in [0,T], the thinning reduces to chang-
ing b but otherwise leaving the intensity constant, and thus the
conditional distribution (see point (e) above) of infection times re-
mains the same, i.e. uniform on [0,T]; if however the probability of
finding a susceptible decreases markedly in [0,T], then the condi-
tional distribution will be ‘‘tilted towards 0”, since generation
times will then tend to occur more frequently towards the start
of the infectious period than towards the end. The shortening in-
creases with increasing slope, but under the assumption of linear
decrease of the thinning probability, amounts to at most 1/3 of
the value that is obtained under the assumption of constant thin-
ning. A more formal treatment of the shortening phenomenon is
possible [4].

However, if we assume that the intervals above are chosen with
weights proportional both to the number of secondary cases that
they contain, i.e. based on infectees instead of infectors, and to
the original geometric probabilities, then the distribution of T,
which now by definition always contains at least one secondary
case, becomes Gamma distributed with parameters 2 and l, and
the expected value of a generation time, still half of the expected
length of an infectious period (but, in this case, an infectious period
selected according to the above rule), becomes exactly 1=l, i.e. the
same as the expected value of an infectious period (c.f. definition of
average generation time in Anderson and May [12]), and almost
twice what is expected when sampling infectors instead of infec-
tees. Again, in practice, the reduction of susceptibles may result
in slightly shorter generation times.
4. Sampling and representing generation times during an
epidemic outbreak in a large population

Let us now show how the infector and infectee sampling
schemes related to the ‘‘cohort” definition of generation time as
well as the definition related to exponential growth all naturally
appear when sampling and/or representing the generation times
that occur during a large epidemic outbreak in different ways. In
addition, we will also find that the dynamics of disease spread have
a modifying effect on generation times.
While remaining in the simple Markov SIR framework, we now
distinguish between two different ways of observing generation
times, namely the ‘‘forward” observation, i.e. following the infec-
tive career of an infective and, in case there is at least one second-
ary case, recording the times of his secondary cases, and the
‘‘backward” observation, i.e. starting from the moment of infection
of an infective and finding the time of infection of his infector. In
both cases, the generation time will be the difference between time
of infection of infectee and infector, but we have the choice of the
reference time point at which we consider the generation time to
have occured or to have been observed. There is also the option,
in the case of forward observations, to treat each single generation
time related to the same infector as a separate data points or to
summarize these single values by their mean and then consider
only one data point per infector. The sampling scheme that comes
closest to the cohort based generation time distribution definition
is the forward sampling scheme where each single generation time
related to the same infector is treated as a separate data point. The
forward sampling scheme where the mean generation time is cal-
culated within each infector’s set of generation times and then
used as a single data point per infector corresponds to the single
infector model treated above, which yields smaller averages be-
cause of the absence of size bias sampling effects. The backward
sampling scheme represents contact tracing data where an infector
is identified starting from a case.

In the following Figures, the generation times recorded in a sim-
ulation of the basic stochastic model with l ¼ 1 and b ¼ 2, i.e.
R0 ¼ 2, in a population of 10,000 individuals, given a large out-
break, are shown and summarized in different ways. The initial
number of infectives is 1, the final size is 7888, close to the ex-
pected final fraction, the outbreak lasts 19.6 time units (1 time
unit = 1 average infectious period), the ‘‘large” part of the epidemic
occurs between times 4.5 and 9.2 (times at which the # of suscep-
tibles is 9000 and 3000, respectively), the maximal incidence of
infections occurs at time 6.6, the maximal number of active infec-
tives is recorded at time 7.4, the last infection occurs at time 16.5
and the last removal at time 19.6. Out of the 7888 infectees, only
3895 were also infectors.

Forward observation of generation times is subject to the
changing numbers of susceptibles during different phases of an
epidemic. As discussed above, the observations can either be con-
sidered as separate data points for each infection or be averaged for
each infector before final representation and averaging. The results
are shown in Figs. 1 and 2. In the first graph, data points are indi-
vidual infections and each generation time is plotted at the mo-
ment of infection of the infector. This observation scheme
corresponds to the cohort generation time. The average level is
approximately equal to 1, as predicted by the analysis of the cohort
based generation time, because each infector is plotted with a mul-
tiplicity equal to his number of secondary cases since one point for
each infectee has been drawn. However, closer examination (Fig. 2)
shows that the average generation time is always slightly less than
predicted by the simple theory because the proportion of suscepti-
bles is always declining to some extent, the effect being most
marked near the peak of the epidemic, when the decrease of sus-
ceptibles, i.e. incidence of infection, is at its maximum [4]. This mo-
ment is somewhat earlier than the peak of infectives, at least in the
standard deterministic model, but also in the simulation repre-
sented in Figs. 1–3. This shortening has also been observed by Ke-
nah et al. [6], who however attribute it to the effect of a large
number of infectives. There is a subtle difference between the
two explanations, since, according to the decrease in susceptibles
approach, generation times would be expected to become smaller,
even in the absence of large numbers of infectives, if some other
event sharply decreased the number of susceptibles, such as a
quick vaccination of part of the population.
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In Fig. 2, the curve representing the average generation time per
infector is also shown. In this case, the average level is approxi-
mately 2/3, as predicted by the ‘‘single infector” model. The ‘‘theo-
retical” average level is successively modified by two counteracting
effects, a slight increase of the average generation times during the
epidemic, due to the decrease of the effective infectious contact
rate which leads to longer and longer intervals (dependence on
bÞ, when conditioning on at least one secondary case, and the pre-
viously discussed shortening effect.

Both curves are furthermore very unstable at both ends, in the
intervals [0,3] and [11,20], say, but examination of the epidemic
curve in Fig. 1 shows that the numbers of infectives involved in
both cases are quite small.

It should also be observed that, in practice, forward observation
could be difficult to implement due to a number of factors, includ-
ing selection of cases for which forward observation is possible,
censoring of infectious periods and missing/unobserved secondary
cases.

Backward observation of generation times involves a selection
effect, namely ‘‘finding” the infector of an infectee among available
infectives. In the standard Markovian formulation, for instance,
each infective has a probability proportional to his infection or
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contact intensity of being the infector of a given infectee, assuming
that the infector is not known. Thus, assuming that all infectives
have the same contact intensity, all available infectives are equally
probable and their ages of infection will be the possible generation
times. However, the distribution of age of infection at a given point
of time during the epidemic will depend on both the distribution of
the infectious period (‘‘still being active”) and preceding dynamics
of incidence of infectives. In terms of the deterministic approxima-
tion to the epidemic, the functions s(t), i(t) and r(t), t P 0, that
solve the ODE system

s0 ¼ �bsi;

i0 ¼ bsi� li;
r0 ¼ li;

sð0Þ ¼ 1� e; ið0Þ ¼ e; rð0Þ ¼ 0 ðfor e > 0 but very smallÞ;
ð1Þ

the density htðaÞ; 0 6 a 6 t, of generation times of length a at time t
since the start of the epidemic will be proportional to
bs(t�a)i(t � a)l(a), where l(a) denotes the probability of having an
infectious period Pa and the term bsi accounts for the incidence
of infection. For instance, in the beginning of the epidemic, accord-
ing to the standard Markov model, it is well known that the number
of infectives increases exponentially with exponent (b� lÞt, while
the number of susceptibles remains approximately constant and
lðaÞ ¼ expð�laÞ. The result is that the distribution of generation
times will be approximately exponential with expected value 1=b,
in the initial phase of the outbreak. This is only an approximation,
however, because of the stochastic variability of incidence and
infectious periods. Thus the relevant theory for this kind of repre-
sentation is, during the early exponential phase of the epidemic,
the ‘‘mean age at childbearing in the stable age distribution related
to exponential growth” and an adaptation of this theory to the
changing rate of incidence during the subsequent phases of the epi-
demic. The result is, as can be seen in Fig. 3, a steadily increasing
average generation time, starting from about 1/2 and reaching 2
and more towards the end of the epidemic. This behaviour can be
intuitively understood by considering that the rate of increase of
infectives is steadily decreasing during the whole outbreak and that
the infectives present at a given time will less and less consist of
newly infected individuals.

Once again, backward sampling may be complicated by several
factors, in practice. Essentially, the observations will be the result
of backwards contact tracing, so many possible selection effects
will operate on subjects for whom this contact tracing is attempted
and successful. It may also be difficult to accurately assess the ac-
tual phase of the epidemic in which the observation was made. Fi-
nally, it should be remembered that contact tracing is not usually
performed, in practice, in a strict backward or forward manner.
Thus a possible mixture of the situations discussed above might
be needed to model observations.

In conclusion, the presentation and analysis of observations has
implications for what will be seen. For instance, since the set of
generation times in an outbreak is the same, whether plotted by
the time of infection of infector or infectee, Figs. 1 and 3 above
show the same generation time values, just plotted in two different
ways. However, this equality breaks down if only a subinterval of
time is considered. While this last observation may seem paradox-
ical, it essentially shows that observation schemes ‘‘reorder” the
set of observables or, in the case not all possible observations are
included, ‘‘select” from it and great care must be taken to clearly
understand what ‘‘subset” of observables has been obtained at a gi-
ven time by a certain observation scheme. There is thus a qualita-
tive difference between the ‘‘shortening of generation times”
discussed in the ‘‘forward observation” case, where the distribution
of generation times is modified by the susceptible dynamics, and
the ‘‘backward observation” scheme that reorders the same obser-
vations so that the average becomes progressively larger as the
epidemic progresses.
5. More general models

It is useful to consider, at least qualitatively, how the findings
above will transfer to epidemic spread models with more features
than the simple SIR model.

In many models, it is assumed that there is a latent period be-
tween the moment of infection and the beginning of the infectious
period (SEIR model). As a rule, assuming a fixed transmission
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intensity and distribution of the infectious period, the presence of a
latent period does not affect R0, but decreases the Malthusian
parameter, compared to the same situation without latent period.
All the effects described above will still hold within the infectious
period, but the generation time now consists of the sum of the la-
tent period and a part of the infectious period. In a ‘‘forward” look-
ing perspective, it is probable that the ‘‘observation modifying
effects” discussed above will be relatively smaller since the latent
period is unaffected by the sampling and analysis scheme. In fact,
in an extreme case, the Reed–Frost model, the latency time is as-
sumed to be constant and the infective period extremely short.
In that case, all observed generation times, independently of meth-
od of observation, analysis or representation, will be constant.
Thus, the relation between the lengths of the latent and infectious
periods will be of importance for the size of possible ‘‘modifying
effects” affecting observations of generation times.

In the ‘‘backward” observation scheme, the basic idea presented
in the previous section remains valid, assuming that individuals
are equally infective during their infectious periods. Given the time
of infection of an infectee, the generation time will be equal to the
age of infection of a randomly chosen infective at that moment of
time and, in the initial phase of an epidemic, there will be relatively
more people who have recently become infective than in later
phases of the spread. However, the distribution of latency times
will play a role in the relevant formulae, since it introduces a delay
between time of infection and start of infectivity for infected indi-
viduals and since it will play a role in the formula for the Malthu-
sian parameter.

One may also consider allowing the infectious period to have a
general probability distribution. As long as the infectivity is con-
stant during the infective period, the ‘‘single infector” generation
time will on average be half the expected length of an infectious
period conditioned on containing at least one secondary case (plus
an average latent period, if any). The effect of this conditioning de-
pends in a specific way on the distribution.

The size bias effect of infectee based sampling is however pre-
served in a simple way, transforming the original density of the
infectious period, f(t) say, to tf(t)/E(T) and resulting in an average
interval length of E(T) + Var(T)/E(T). An average generation time
will be half of this length.

If, finally, variable infectivity during the infectious period is con-
sidered, either as a model component or because the ‘‘shortening
effect” of quick susceptible reduction is to be explored, it becomes
difficult to make general statements. In general, a peaked infectiv-
ity will reduce the variability of the infection times of secondary
cases, thus mimicking the effect of longer latent period and shorter
infectious period. A decreasing infectivity during the infectious
period will result in more secondary cases with short generation
times and thus decrease the average generation time, compared
to constant infectivity.

In [4], a general theoretical framework is formulated within
which the combined effects on the behaviour of generation times
of different assumptions about latent period, infectious period
and varying infectivity during the infectious period can be ana-
lysed. In this formulation, it is possible to express important
parameters quite easily, but at the same time to show that there
is an important difference between what could be called individual
quantities and population level quantities. This difference is exem-
plified, in this paper, by the different results obtained in forward
sampling, with the two different kinds of averaging observations.

We have also simulated various combinations of latent and
infective period distributions (not reported here) and observed
that the phenomena discussed above for the simple SIR model al-
ways arise to some extent. It is worth noting that a given value
of R0, for instance, allows for many different values of r, depending
on the choices of distributions of latent and infectious periods and
also profile of infectivity within the infective period. The same is
true for outbreaks with given r, with respect to R0. Also, as ob-
served above, if the latent period is long compared to the infectious
period, sampling effects on generation times become less pro-
nounced. However, the results are quite strongly dependent on
the specific components of each model.
6. Generation times and epidemic prediction

In emerging epidemics, it is of fundamental value to be able to
draw conclusions about the potential impact of the epidemic
spread from the early assessment of the epidemic.

According to most epidemic models, the number of infected
individuals up to time t will increase exponentially in the begin-
ning of the epidemic, with rate of increase equal to the Malthusian
parameter r.

One of the main reasons for the interest in generation times is
that the Euler–Lotka equation establishes a connection between
the Malthusian parameter r, observable in the initial phase of an
epidemic, and R0, given the generation time distribution. Approxi-
mations to this relationship have also been proposed. For instance,
in Ferguson et al. [2], the approximate relationship

R0 � 1þ r � average generation time

is used. Other approximations are discussed by Wallinga and Lips-
itch [5]. However, these relationships assume that the distribution
or at least the average generation time, corresponding to the one
used in the Euler–Lotka equation, is known (or, at least, have been
estimated).

There are however potentially relevant situations where this
may not be the case. As an example, suppose that some generation
times have been observed in the beginning of an epidemic, in the
same time period as the exponential increase of infected is ob-
served, using ‘‘backwards” contact tracing. Then, if we denote the
standard generation time distribution by g(a), the observations will
instead follow the modified distribution

g�ðaÞ ¼ R0e�ragðaÞ:

For the simple SIR model, where R0 ¼ b=l; r ¼ b� l and
gðaÞ ¼ le�la the expected value in g�ðaÞ turns out to be 1=b. This
result would, somewhat unexpectedly, give the possibility to esti-
mate the transmission intensity directly from the initial phase gen-
eration time measurements. Furthermore, considering the explicit
expression for the Malthusian parameter r, we find that the rela-
tionship between R0 and average observed initial generation time
becomes

R0 � 1=ð1� r � average initial generation timeÞ:

More interestingly, in general, denoting by T1; . . . ; Tk the observa-
tions of generation times performed in this initial phase of the epi-
demic, it can be seen that the expression

1
k

Xk

i¼1

erTi

is an unbiased estimator of R0, since the expected value of erT , with T
having the distribution g*, is precisely R0. It can be observed that
this result, i.e. the unbiasedness of erT for R0, is valid in the SEIR
model as well. With the appropriate redefinition of the generation
time distribution g(a) and the Malthusian parameter r in the SEIR
model (see [5]), it can be seen that R0g(a) is equal to P(L 6 a 6 L + I),
with L = latency time and I = infectious period, i.e. the probability
that an individual is infectious at infection age a, and that, in conse-
quence, the ‘‘initial generation time distribution” will again satisfy
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g�ðaÞ ¼ R0e�ragðaÞ, where the exponential term expresses the
increasing initial incidence of infected individuals and R0 is the
proper scaling constant, taken from the Malthusian equation.

7. Generation times in households and endemic situations

A typical source of observations of infection chains might be the
household setting. It has been observed [3] that infection probabil-
ities within households may be larger than between members of
the general population and, may be, that infectious doses may be
larger and therefore that incubation and/or latent periods may be
shorter, but, independently of the question whether infection in
households is representative of infection in the general population,
we may ask what kind of observations of generation times may be
made in such a setting. Once again we will find that the rapid
changes in susceptibles have a strong effect on observable genera-
tion times.

In the household setting, it is difficult to derive closed expres-
sions or relevant approximations for many relevant model quanti-
ties. We will therefore illustrate the concept with a simple
example. Extending the theory to larger households or households
with structure and/or external infection can, in theory, be done
quite easily by simulation.

Consider a household with one initial infective and two suscep-
tibles. Assume, as before, that infectious periods have exponential
duration with expected value 1=l and that all individuals in the
household have potentially infectious contacts with each other
with intensity b. The expected times until transitions and their
probabilities now depend on the state of the process. For instance,
the first event, whether removal of the primary case or infection of
a secondary case, occurs at expected time 1=ð2bþ lÞ. The time un-
til the next event depends on what happened at the first event, etc.

Even without considering individual identities and just labelling
by the order of infection, there are 19 possible orderings of infec-
tions and removals, that can be classified in seven main cases. Ex-
plicit calculation of case probabilities and expected generation
times in the different cases yields an expression for the expected
generation time E(G) in this model (with R ¼ b=lÞ:

EðGÞ ¼ 1
l

5R3 þ 18R2 þ 12Rþ 2

2ðRþ 1Þ3ð2Rþ 1Þ
:

The rational function above assumes values between 37/48 and 0
for R P 1. There is thus no fixed relation between this value and,
say, 1=l, which could be considered as the expected generation
time in this situation.

However, by considering an explicit statistical model for house-
hold data, that takes the changing numbers of susceptible into ac-
count, as in e.g. [13], it is possible to achieve correct inference
about the infectious period and the contact intensity parameters.

Finally, it is perhaps not likely that the same disease can be ob-
served both in endemic and epidemic conditions, but one can still
investigate what would be observed if a disease were in endemic
equilibrium in a population. In this case, there is no commonly ac-
cepted simple stochastic model for the fluctuations and there is a
practical risk that ‘‘mini epidemics” may occur cyclically instead of
a really stationary behaviour. However, assuming that there is no la-
tent period, and since the numbers of susceptibles and infectives are
assumed to stay at constant levels, there will be no ‘‘forward” short-
ening, but still a difference between infector and infectee based sta-
tistics, as described by the size biased sampling effect. ‘‘Backward”
observations will now have a density proportional to just l(a), the
survival function corresponding to the distribution of infectious
periods, in the deterministic approximation, which yields an average
generation time equal to the (E(IP) + Var(IP)/E(IP))/2. Interestingly,
this average is the same as the one that will be observed in the infec-
tee based ‘‘forward” scheme, but not in the ‘‘single infector” model.
8. Inference about generation times

In the above treatment, it has been assumed that infectious
periods and generation times are observable. In reality, most
observations will probably refer to serial intervals, i.e. the interval
between two similar observable events, such as appearance of
symptoms, in the progress of disease of infector and infectee. In
Svensson [4], it is argued that it is natural to assume that genera-
tion times and the corresponding serial intervals have the same ex-
pected value, but otherwise different distributions, making it
theoretically impossible, without further assumptions, to estimate
further characteristics of the generation time distribution. These
difficulties do not only involve, say, the variance but also other
nonlinear characteristics such as the Malthusian parameter. In
addition, since serial intervals are essentially generation times ob-
served with an error with mean zero, all the observational prob-
lems afflicting the mean of generation times and other
distributional aspects will of course also be relevant for serial
intervals.

Inference about various model parameters may be approached
either by maximum likelihood methods in a rather fully specified
model or by counting process and martingale methods, see e.g.
[14]. Either way, the dynamics of the disease and the observation
plan must be accounted for, in order to avoid bias in the estimates.

In a fully parametrized model, inference may be carried out
using ML or MCMC techniques, but the results will always be
dependent on the more or less correct representation of reality
by the model components, such as constant or variable infectivity
during the infectious period, the precise form of joint distribution
for latent and infectious period, etc. In a counting process ap-
proach, many of these quantities can be estimated non-parametri-
cally, thus allowing data to express the behaviour of some model
components.

As an example, following the general construction of an infec-
tivity function in [4], assume that we may observe the full trans-
mission chain in a household. For each individual in that
household, we can construct a counting process N(t) = the number
of transmissions of disease by this individual up to time t after
infection. This process has intensity kS(t)k(t), with k and k denoting
total infectivity and time evolution of infectivity, respectively, and
S(t) denoting the number of susceptibles left in the household just
before time t (still time since infection of the index infective). It is
then possible to derive, using counting process martingale theory,
a crude, but unbiased, estimator of

Z t

0
kkðsÞIðSðsÞ > 0Þds

by calculating

Z t

0

dNðsÞ
Sðs�Þ

for 0 6 t 6 T = time, if ever, at which S(T) = 0 for the first time. It is
also possible to estimate the (time dependent) variance of this esti-
mator. By combining such estimates from individuals in different
households, assumed independent, and also making the assumption
that the parameters ðk; kÞ are iid for all individuals and denoting
EðkkðsÞÞ=EðkÞ by m(s), it is now possible to produce a precise estimate
of

R0

Z t

0
mðsÞds;

i.e. the cumulated expected individual force of infection (including
possible latent period and time varying infectivity).
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9. Conclusions and discussion

The concept of generation time of an infectious disease has
several advantages: it has an obvious meaning, is observable,
at least approximately, in the form of serial interval, and, in the-
ory, determines an important part of the temporal evolution of
spread. However, as has been shown in this paper, observations
will be influenced by spread dynamics and sampling schemes
and the precise relation between generation times and overall
temporal evolution is model dependent. In this paper, the prob-
lems inherent in the observation and interpretation of genera-
tion times have been approached from the point of view of
stochastic models for infectious disease spread. The conclusions
regarding the analysis of observations of generation times is that
a simple presentation of data will almost never give an unbiased
picture of the generation time distribution and its main charac-
teristics; more elaborate statistical methods are required. Some
parametrical and non-parametrical statistical methods have al-
ready been proposed in the literature and some further sugges-
tions are given in this paper.

It should also be observed that the concept of generation time
for a disease was first introduced for diseases such as measles,
where latency times are much longer than infectious periods (see
e.g. [15]). In such cases, at least for some time in the beginning
of the disease spread, generations of infected are well separated
and therefore generation times are ‘‘easy” to estimate and have a
clear meaning . This may not be the case, however, for important
diseases such as influenza.
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