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1 Introduction 

In this paper, we consider the parabolic quasilinear stochastic partial differential 
equation 

3u c~2u 0 2 W 
~[ (x, t) = ~x 2 (x, t) + f(u)(t, x) + ~ (t, x); t > O, x ~ (0, 1). 

with the initial condition 

u(0, x) = Uo(X); Uo ~ Co(J0, 1]) ; 

and Neumann boundary conditions 

du du 
~x (t, O)= ~x (t, 1 )=  0 , t=>O. 

02W 
Here ~ denotes the space-time white noise, f(u)(t, x) ~=f(t, x; u(t, x)), where 

(t, x, r) ~ f(t ,  x, r) 

satisfies some measurability and growth condition which will be specified below. 
Note that we won't make any continuity assumption on f 

* Partially supported by DRET under contract 901636/A000/DRET/DS/SR 
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We shall also consider the same equation with Dirichlet boundary conditions. 
A rigorous formulation of the above equation will be given in the next section. 
The aim of this paper is to prove existence and uniqueness of a strong solution 

to our equation. Similar results are known to hold for a more general equation with 
a variable diffusion coefficient under Lipschitz continuity assumptions, see e.g. 
Walsh [11], Manthey [8], and under monotonicity type conditions, see Buckdahn 
and Pardoux [1]. 

Note that, as in the finite dimensional case, weak existence and uniqueness is 
easy to establish using Girsanov's theorem, and that strong existence and unique- 
ness depends essentially, via Yamada-Watanabe's argument (see e.g. Ikeda and 
Watanabe [4]), on pathwise uniqueness. Our argument for pathwise uniqueness 
will use in an essential way a comparison theorem, which depends heavily on the 
fact that the solution u takes values in IR (i.e. we are dealing with an equation, 
not a system of equations). On the other hand, we shall not exploit the Yamada- 
Watanabe theorem, since our uniqueness proof will use the construction of a strong 
solution by an approximation procedure which is similar to that in Krylov [6]. The 
proof of the convergence of the approximating sequence uses an a priori estimate 
based on the fact that the law of u(t, x) has a density whose LP(IR) norm depends 
only on the sup off,  and plays the same role as deep estimates of Krylov [7] for 
finite dimensional It5 processes. 

Our results generalize in a sense part of the results of Zvonkin [12] and 
Veretennikov [10] to SPDEs. Note that our results are restricted to scalar valued 
solutions (for which much more is known in the finite dimensional case - see e.g. 
Rogers and Williams [9]). 

One open problem in our framework is the strong existence and uniqueness 
with measurable drift and nondegenerate Lipschitz diffusion coefficient, i.e. the 
equivalent of Veretennikov's full finite dimensional result. 

The paper is organised as follows. In Sect. 2, we shall state rigorously the 
equation and our assumptions, and prove some preliminary results in Sect. 3. The 
main results will be proved in Sects. 4 and 5. We shall consider the case of Dirichlet 
boundary conditions in Sect. 6. 

2 Statement of the problem 

Let (f2, ~ ,  (~t)t>__o, P) be a stochastic basis and ~ denote the a-algebra of pro- 
gressively measurable subsets of f2 x ]R+. We are given a space-time white noise on 
IR+ x [0, 1] defined on (f2, ~ ,  (~t), P), i.e. an application W:~(IR+ x [0, 1]) ~ H,  
where IH is a Gaussian space, ~-I ~ L2(O, ~,  P), s.t. 

(i) VA, B ~ NOR+ x [0, 1]) with A ~ B = 0, W(A) and W(B) are independent, 
(ii) VC e ~([0,  1]), {W([0, t ] x  C); t > 0} is an ~t-Brownian motion with 

covariance t2(C), where 2 denotes Lebesgue measure. 
Moreover, 

f : lR+ x[0,  1] x IR ~ ]R 

is supposed to be ~ ( ] R + ) |  1 ] ) |  measurable, where ~(IR+)(resp. 
~( [0 ,  1]), ~1) denotes the Borel g-algebra over IR+ (resp. [0, 1], ~,.), bounded on 
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[0, T] x [0, 1] x [ - R, R] for each T, R > 0, and has one-sided linear growth in 
the sense that there exists c s.t. 

r f ( t , x , r )<c( l+r2) ;  t > 0 , 0 < x < l ,  r E l R .  

We are finally given 

Uo e c ( [ o ,  1 ] ) .  

We shall refer to our SPDE with the drift coefficientfas Eq(f). More precisely, 
we say that a ~ |  measurable and continuous random field 
{u(t, x); t > 0, 0 < x < 1} solves equation Eq(f)  if for any q~ s cz([0, 1]) s.t. 
~o'(o) = ~o'(1) = o, 

0 0 0 0 

t 1 

+ f f ~o(x) W(ds, dx), t > 0, p.s. 
0 0 

where the last integral is a Wiener integral and 

f(u)(s, x) ~= f (s, x; u(s, x) ) . 

It is shown in Walsh [11] that the continuous and adapted process u solves 
Eq(f)  iff u satisfies: 

1 

u(t, x) = f G,(x, y)uo(y)dy 
0 

t 1 t 1 

+ f f G,_s(x, y)f(u)(s, y)dyds + f f Gt-s(x, y) W(ds, dy); 
0 0 0 0 

t ~ O ,  O ~ x ~ l ,  a.s. 
where 

G,(x, y) x / / ~  .= _ ~ exp 4t  + exp ~- (1) 

is the fundamental solution of the heat equation on IR+ • (0, 1) with Neumann 
boundary conditions. 

3 Preliminary results 

In this section, we assume that f is bounded. 

In this case, it is easily seen, using Girsanov's theorem exactly as for finite 
dimensional It6 equations, that Eq(f) has a unique weak solution. The details can 
be found in the companion paper [3]. 

We now establish an estimate which will play an essential role below. 
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Proposition 3.1 Let u denote the solution of Eq(f). For any T > 0 and p > 5/4, there 
exists a constant K(T, p) (which depends also on the uniform bound for f )  such that for 
any x ~ [0, 1] and any Borel measurable function g:]R+ x Ill --. IR, 

,(; J E f [a(t, u(t, x))ldt < K(T, p 
0 0 - o o  

"~1/0 
[9(t, r)lPdrdt) . 

Proof Define/~ by 

dig := ZdP 

T 1 I ; 1 ) 
-- f fZ(u)(s, x)dxds . Z : = e x p  - o f of f(u)(s' x) W(ds' dx) 2 o o 

Then/~ is a probability measure and under P 

ff/(dt, dx):= f(u)(t, x)dtdx + W(dt, dx) 

is a space-time white noise. Thus u solves Eq(O) driven by W in place of W, and 

1 t 1 
u(t, x) = f G,(x, y)Uo(y)dy + f f G,_s(x, y) g/(ds, @). 

0 0 0 

Hence we see that under P the solution u is a Gaussian random field with 
expectation 

1 
re(t, x) = f G,(x, y)Uo(y)dy , 

0 

and variance 

t 1 

az(t, x) = f f Gz~_~(x, y)dyds. 
0 0 

By (1) we have 

a2(t, x) > ~ 1/s exp 2 s  
n = -oo 

1 1/s f exp - ~  dz 
2r~ o - x- 2n 

+ Z f exp - dz ds 
n - x - 2 n  

/ ( - )  , j ,  
>-7Co 1/s_~ exp --~s  d z d s = - - ~ o  C a s =  x/~. (2) 
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By H61der's inequality 

; (7 )'" E lOG u(t, x))ldt < Kr(EZ =)1/= E [g(t, u(t, x))l~dt 
0 

<=K=,r f [O(t,r)lP'dtdr f 
0 - m  0 - m  

\ lla# 
IPt,~(r) l~ drdt ) 

for every ~, fl, 7, 6 ~ (1, oo) such that 

1 1 1 1 
- +  = 1 ,  + = 1  

(3) 

where Pt, ~(r) is the density function of the distribution of u(t, x),/~ is the expectation 
with respect to/~, and KT, KT,= are constants. 

By (2) we get 

r 1 r 1 ( 6(m(t,x)-- r) 2 
f 7 ]P,,x(r)[ adrdt = ~ !  la(t,x)l, f e xp \  2a2(t,x) jdrdt 

0 - -o0  

1 1 r 1 r 1 
- -  ( 2 r e ) a / 2 / ~  / icr(t,x)la_ , at < K / tal4_,l 4 dt 

which is finite if 6 < 5, i.e., when 7 > �88 Therefore, taking fl close to 1 and y > �88 we 
get our estimate from (3). [] 

We now exploit the above estimate and establish a technical result which will be 
crucial for the convergence proof of our approximation procedure. 

Let {f~(t, x, r); t > 0, 0 _< x _< 1, r ~ JR} and {h,(t, r); t > 0, r e ]R}, n = 1, 2 . . .  
be ~ ( ~ + )  | ~( [0 ,  1] | ~1 (resp. ~(IR+) | ~( [0 ,  1])) measurable functions 
satisfying 

(A) f, is bounded uniformly in n. 
(B) Suppose there exists an ~-t-adapted solution u, to Eq(f~) such that for every 

every (t, x) 

lim un(t, x) = u(t, x) 
n.-+ oo 

for almost every 09 e f2, where u is some random field with values in IR. 
(C) hn is bounded, uniformly in n, and the set {hn; n e IN} is relatively compact 

in L2([0, T]  x [ - R, R])  for any T, R > 0. 
We first prove: 

Proposition 3.2 Assume (A) and (B). Then the result of Proposition 3.1 applies to 
u := limn u,. 

Proof. From Proposition 3.1 and (A), there exists a constant K(T, p), which is 
independent of n, such that: 

s ,(7 E Ig(t, Un(t, x))l dt< K(T, p 
0 - -oo  
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Let 9 be continuous, bounded and non negative. We can then take the limit in 
the above, yielding: 

E f O(t, u(t, x))dt < K(T, O) [g(t, r)[Pdrdt �9 
0 0 - ~  

By the monotone class theorem the last inequality holds for any non negative and 
Borel measurable g. The result follows. [] 

Proposition 3.3 Assume (A)-(C). Then 

T 

lira sup E f ]hk(t, u,(t, x)) -- hk(t, u(t, x)) I dt = 0 
n ~  oo k 0 

for every x e [0, 1] and T >= O. 

Proof. Let ~ ' ]R-~ ]R be a smooth function such that 0 =< ~(z)<= 1 for every 
z, ~(z) = 0 for Izl _-> 1 and ~(0) = 1. Let us fix x e ]R and T > 0. For  a given e > 0, 
let R > 0 be such that 

T 

E f l1 x(u(t,x)/R)ldt < e. 
0 

We can find finitely many bounded smooth functions Ht  . . . . .  H~r such that for 
every k 

f [hk(t, r) -- Hi(t, r)12drdt < ~ 
0 - R  

for some Hi. Obviously 

T 

I(n, k):= E f Ihk(u,) -- hk(u)ldt < I t(n,  k) + I2(n) + I3(k) ,  
13 

where 

T 

i~(n, k):= E f Ihk(u.) -- Hi(u.)[dt, 
0 

N T 

I2(n) := Z E f IHj(u.) - Hj(u)[dt ,  
j = l  0 

T 

I3(k) := E f Ih,(u) - H~(u)ldt . 
o 

(For simplicity of writing we omit the variables t, x of the integrands). It is clear 
that lim, + ~ I2 (n) = 0. By Proposition 3.1 

T 

l l (n,  k) = E f ~c(u,/R)lhk(u,) - Hi(u.)[dt 
0 

T 

+ E f bl - lc(u./R)[ [hk(u.) -- H,(u.)ldt  
0 

<__K f ]hk(t,r)-Hi(t,r)[2drdt + KE f [1-tc(u./a)[dt, 
0 - R  0 
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where K is a constant. Hence 

T 

lim sup I~(n, k) <__ Ke + KE f [1 - ~:(u/R)[dt <= 2Ke . 
n ~ o o  k 0 

Similarly, using Proposition 3.2 instead of Proposition 3.1 

sup 13(k) < 2Le,  
k 

where L is a constant. Consequently, 

lim sup I(n, k) < 2(K + L)e,  
n~oo k 

and the proof is complete, since e > 0 can be chosen arbitrarily small. 

Corollary 3.4 Assume (A) and (B) and suppose that for n ~ Go 

h. --* h in L2([0, T]  • [ - R, R])  

for every T > O, R > O, and h, is bounded uniformly in n. Then 

T 

lira E f Ih.(t, u.(t, x)) - h(t, u(t, x))ldt = 0 
n--* oo 0 

for every x e [0, 1] and T >= O. 

Proof. Obviously 

T 

J(n) := E f [h,(u,) - h(u)ldt <= Jl(n) + Je(n) ,  
0 

where 

419 

u.(t, x) -~ u(t, x) 

T 

A(n) :-- sup e f Ih~(u.) - h~(u)lat 
k 0 

T 

J2(n) := E f [h,(u) - h(u)[dt. 
0 

By Proposition 3.3 we have lim, o| Jl(n) = O. By Proposition 3.2 

T T 

J2(n) = E f ~(u/R)]h.(u) - h(u)[dt + E f ]1 - ~(u/R)] [hn(u) - h(u)]dt 
0 0 

< K f [h . ( t , r ) -h( t , r ) ledrdt  + KE f l1 - t c (u /R) ld t ,  
0 - R  0 

where K is a constant. Letting here first n ~  oo then R ~  oo we get 
l i m . ~  J2(n) = 0, and the proof is complete. [] 

Corollary 3.5 Let f,  = f~ (t, x, r) be ~ (IR +) | ~([0,  1]) | ~1 measurable functions 
which are bounded uniformly in n and converge to a measurable function f for almost 
all t, x, r. Assume that Eq(f~) admits a ~ | ~([0 ,  1]) measurable solution un such 
that for every t, x 
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for almost every 09 ~ O, where u is some random field. Then u is a solution of Eq(f ) .  

Proof If suffices to show that for q~ ~ C| 1] 

0 0 0 0 

in probability as n ~ oo for every t > O. Clearly 

E J ? ( f ~ ( u . ) - f ( u ) ( s , x ) ) q ~ ( x ) d x d s  

1 t 

< f I~o(x)lE f Ifn(U.)(S, X) --f(u)(s, x)ldsdx "-", 0 
0 0 

by Corollary 3.4. [] 

We will construct converging sequences of solutions by using the following 
known result on comparison of solutions (see Buckdahn and Pardoux [1]). For  
more general comparison results for SPDEs with non constant diffusion co- 
efficients, see e.g. Kotelenez [5] and Donati-Martin and Pardoux [2]. 

Proposition 3.6 Let f =  (f(t,  x, r)) and F = (F(t, x, r)) be ~(IR+) | ~ ( [0 ,  1]) | ~1 
measurable and bounded functions. Assume that one of them is Lipschitz in r, 
uniformly in (t, x). Let u and v be solutions to Eq ( f )  and Eq( F ) respectively. Assume 
that for every r 

f ( t ,  x, r) < F(t, x, r) 

for dt x dx almost every t, x. Then almost surely 

u(t, x) <= v(t, x) 
for all t, x. 

4 Existence and uniqueness with bounded drift 

In this section, we assume that 

f =  IR+ x E0, 13 x IR ~ IR 

is ~(IR+) | ~ [0 ,  1] | ~1 measurable and bounded. 

Theorem 4.1 There exists a continuous and ~ | ~([0 ,  1]) measurable solution u of 
Eq(f ) .  

Proof Let p be a smooth non negative function with compact support in IR s.t. 
f~p ( z )dz  = 1. For  j e N, we define: 

f j(t, x, r) = j f~  f (t, x, z)p(j(r - z) )dz . 

Moreover, let 
k 

,k = fi,  n < 
j = n  

F. ~- f~  f j .  
j = n  
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Clearly, ~,  k is Lipschitz in r, uniformly with respect to (t, x), and: 

J~,k ~ F. ,  as k --*oo 

F, T f ,  a s n ~ m  

dr a.e., for any (t, x). 
Eq(f,k) has a unique solution (see e.g. Walsh [11]) u,k. From Proposition 3.6, 

the sequence {~nk} decreases with k, hence it has a limit 

u. ~ lim ~lnk. 
k---~ oo 

Note that again by Proposition 3.6 ~.k -- and hence u. - is bounded from above 
(resp. from below) by the solution of the equation with freplaced by [I f [I ~o (resp. 
- Ilfll~). From Corollary 3.4, u. solves Eq(F.). Moreover, u. increases as n in- 

creases, since 

So again un converges, and 

solves Eq( f )  by Corollary 3.5. 

t~.k > ZTmk, n < m < k .  

A 
u = l i m  Un 

n]'oo 

[] 

Theorem 4.2 Eq( f )  has at most one continuous and ~ | ~([0,  1]) measurable 
solution. 

Proof Let u denote the solution constructed in Theorem 4.1, and v denote another 
solution. 

av ~2v a 2 W 

0--[ = ax 2 + f(v) + ata----x " 

Let ~0 ~=f(v). Then (p is a bounded ~ |  ([0, 1])-measurable random field. 
F,  being defined as in the proof of Theorem 4.1, Fn(V) <=f(v), hence v solves also (n is 
fixed below): 

av a2v a 2 W 
at  = ~ + Fn(v) v q~ + &a----x" 

Also F,( . )  v q~ is random, from [ a v  q~ - b v q~l < [a - b[ it is easily seen that 
the arguments used in the proof of Theorem 4.1 and Proposition 3.6 permit to 
construct a solution fi to this last equation, s.t. v < iT. From Girsanov's theorem, 
v and ~ have the same law. Hence v = fi a.s. Hence vk --* v, where Vk is the unique 
solution of: 

ark ~2Vk 0 2 W 
at = ~ + ~ ( v ~ )  v ~o + ~t~--~" 

Again by Proposition 3.6, 

Hence 
vk(t, x) > ~t.,k(t, X) a.s. 

v(t, x) >= u,(t, x) a.s. Vn e N 
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and 
v(t, x) >- u(t, x) a.s. 

Finally from Girsanov's theorem the laws u and v coincide, and consequently 

v(t,x) = u(t, x); t >= 0, x ~ [0, 1], a.s. [] 

From the above results and the procedure used in the existence theorem, we deduce 
the following extension of Proposition 3.6: 

Theorem 4.3 Let f and g be two ~(]R+) |  ~([0,  1]) |  ~l-measurable coefficients 
which are bounded on [0, T] x [0, 1] x [ - R, R], for any T, R > 0, and satisfy: 

f(t ,  x, r) <= g(t, x, r) , 

dt x dx x dr a.e. 
Let u(resp, v) denote a continuous and ~ | ~([0,  1])-measurable solution of  

Eq( f )  [resp. Eq(g)]. Then: 

u(t, x) <= v(t, x); t >_-- 0, x E [0, 1]; a.s. 

Proof. In the casefand g are bounded, the result follows from Proposition 3.6 and 
the way the solutions of Eq( f )  and Eq(g) are constructed in Theorem 4.1. 

In the general case, let T, R > 0, and fr, R(resp. gr, R) be ~(]R+) |  ~([0,  1]) 
| ~1 measurable and bounded, and coincide with f (resp. with g) on [0, T] 
x [0, 1] x [ -  R, R]. The unique solution UR (resp. Vg) of Eq(fT, R) (resp. of 
Eq(gr, R)) coincides with u (resp. v) on 

[0, ZR ^ T] x [0, 1] 

where ZR ---- inf {t; supxlu(t, x) l v Iv(t, x)[ __> R}. Hence from the result in the case of 
bounded coefficients, 

U_--<vonE0, ZR ^ T ] x [ 0 , 1 ] .  

But zR A T ~ o o  a.s., as R and T ~ o o .  [] 

5 Existence and uniqueness in the general case 

In this section, we finally assume that f i s  ~( IR+) |  ~([-0, 1])Q ~1 measurable, 
locally bounded and satisfies a one sided linear growth condition, i.e. 

(i) For any R > 0, BcR s.t. If(t, x, r)l < CR; t > 0, 0 --< X --< 1, -- R -< r _< R 
(ii) rf(t ,  x, r) <_ c(1 + r 2) 

for a constant c independent of (t, x, r). 
We first prove uniqueness: 

Theorem 5.1 There is at most one continuous and ~ | ~ ( [ 0, 1]) measurable solution 
of Eq(f) .  

Proof. Let u and v be two such solutions, 

R > O, zR = inf {t; o<-~<-lsup lu(t,x)[ v lv(t,x)l >= R}  , 
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fR(t, X, r) = f ( t ,  X, (r /x R) v ( - R)). The restrictions of u and v to [0, ZR] X [0, 1] 
are restrictions of the unique solution of Eq(fg), so they coincide. The result 
follows, since ZR ~ + ~ a.s. as R ~ + oo. [] 

We finally prove existence: 

Theorem 5.2 There exists a continuous and ~ | ~([0,  1]) measurable solution u of 
Eq(f ) .  

Proof. First step. We suppose that f has linear growth in r, i.e. 3c s.t. 
If((t, x, r)l < c(1 + Irl). 

For  any R, let fR be defined as in the previous proof, and let UR be the unique 
solution of Eq(fR). We define "oR = inf{t; supxlUR(t, X)I > R}. Then UR solves E q ( f )  
on the random interval [0, Zn], and it is easily seen that by this procedure we 
construct a solution u of E q ( f )  on the random interval [0, r [, with z = limR T ~ ZR. 
It remains to show that r = + ~ .  This follows from the fact that t7 = u - v (v being 
the solution of Eq(O)) is continuous on ([0, z] c~ IR) • [0, 1]. Indeed, 

~/~ ~2/~ 
8t - ax 2 +f(t7 + v) on [0, z[ 

and satisfies the Neumann boundary condition. For  almost co, (t, x) ~ v(t, x, co) is 
continuous, and hence standard estimates on the equation for t7 show that tT(. , . ,  co) 
is continuous on ([0, z(co)] c~ [0, T ] ) x  [0, 1]. Hence z > T a.s. for any T >  0, 
which establishes our result. 

Second step. Supposefis  bounded from below by a function with linear growth, i.e. 
3c s.t. 

f(t ,  x, r) > - c(1 + Irl). 

It follows from the assumption of the theorem that 

f(t ,  x, r) < F (r) 

where F is continuous has at most linear growth as r ~ + oo, and arbitrary growth 
as r ~ - o o .  For  any N > 0, let CN = sup-s<r<o(F  +(r)), 

F(r) v Cs, r > 0 
FN(r)= F(r) ^ CN, r <O 

and fs(t,  x, r) = FN(r) A f(t ,  X, r). Clearly,fs has at most linear growth,fN increases 
with N, and 

f~==_fong2xlR+x[O, 1 ] x [ - N ,  + ~ [ .  

From the previous step, Eq(fN) has a unique solution UN. From Proposition 3.6 
UN increases, hence UN solves E q ( f )  on t2~ x [0, T]  x [0, 1], where 

f2 r = { u o ( t , x ) >  - N ; 0 < t < T ,  0<x_<l}, 
But U,Y2~ = t2 a.s. Hence we have constructed a solution up to time T, for any 
T > 0 .  

Third step. The general case. 

We construct an approximating decreasing sequence of functions which are 
bounded from below by linear functions of r, in a way which is very similar to what 
we have done in the second step, and apply the result of that step. [] 
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6 The case of Dirichlet boundary conditions 

We have proved a strong existence and uniqueness result of solutions of SPDEs 
driven by addive white noise in the case of a measurable drift satisfying some 
boundedness assumption. We have treated the case of Neumann boundary condi- 
tions only. However, the result extends to other types of boundary conditions. The 
only place in the paper where we have used explicitly the precise form of the kernel 
Gt(x, y) associated with the Neumann boundary conditions is the derivation of the 
estimate (2). Clearly, the same estimate holds if we choose periodic boundary 
conditions (i.e. we identify 0 and 1, and replace [0, 1] by the circle $1). In the case of 
Dirichlet boundary conditions, the estimate (2) cannot possibly hold at the bound- 
ary (x = 0 or 1). However, the following is still true: 

Lemma 6.1 Let {Gt(x, y); t > 0; x, y �9 [0, 1] } denote the fundamental solution of the 
heat equation with Dirichlet boundary conditions. For any x �9 (0, 1), T > 0, there 
exists c(T, x) > 0 s.t. 

t 1 

(~2(t, x) -- f f G~(x, y)dyds >_ c(T, x)x~tt, 
0 0 

O<_t<_T. 

Proof. Let pt(x, y) = - ~  exp denote the transition probability of 

the one-dimensional Brownian motion (multiplied by V/-2) and z denote the first 
exit time from (0, l) of Brownian motion {x/~Bt}. Then 

Q(x, y) = Px(z > s/x/~B~ = y)p~(x, y). 

Let 0 < a < x < b < 1. Clearly, 

e(T, X = 

Hence, for 0 < t _< 'T, 

t 1 

inf 
O<_s<_T 
a<-_y<-_b 

Px(z > s/~/2Bs = y) > O . 

t b 

f f G~(x, y)dsdy >= 6(T, x) f f p2(x, y)dyds 
0 0 0 a 

= 47r ? S o  exp ~ss dyds 

>~(T,x) ~ 1 h/x//~ 
f f 

- -  47~ 0 

= c ( r ,  [ ]  

This allows us to prove Proposition 3.1 up to Corollary 3.4 at any point 
x �9 (0, 1), and that is enough in order to deduce Corollary 3.5. Hence the results of 
the paper are still true in the case of Dirichlet boundary conditions (in that case we 
of course use an initial condition {Uo(X)} which vanishes at 0 and 1). 
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